1
|
Supekar K, de Los Angeles C, Ryali S, Kushan L, Schleifer C, Repetto G, Crossley NA, Simon T, Bearden CE, Menon V. Robust and replicable functional brain signatures of 22q11.2 deletion syndrome and associated psychosis: a deep neural network-based multi-cohort study. Mol Psychiatry 2024; 29:2951-2966. [PMID: 38605171 DOI: 10.1038/s41380-024-02495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
A major genetic risk factor for psychosis is 22q11.2 deletion (22q11.2DS). However, robust and replicable functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis remain elusive due to small sample sizes and a focus on small single-site cohorts. Here, we identify functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis, and their links with idiopathic early psychosis, using one of the largest multi-cohort data to date. We obtained multi-cohort clinical phenotypic and task-free fMRI data from 856 participants (101 22q11.2DS, 120 idiopathic early psychosis, 101 idiopathic autism, 123 idiopathic ADHD, and 411 healthy controls) in a case-control design. A novel spatiotemporal deep neural network (stDNN)-based analysis was applied to the multi-cohort data to identify functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis. Next, stDNN was used to test the hypothesis that the functional brain signatures of 22q11.2DS-associated psychosis overlap with idiopathic early psychosis but not with autism and ADHD. stDNN-derived brain signatures distinguished 22q11.2DS from controls, and 22q11.2DS-associated psychosis with very high accuracies (86-94%) in the primary cohort and two fully independent cohorts without additional training. Robust distinguishing features of 22q11.2DS-associated psychosis emerged in the anterior insula node of the salience network and the striatum node of the dopaminergic reward pathway. These features also distinguished individuals with idiopathic early psychosis from controls, but not idiopathic autism or ADHD. Our results reveal that individuals with 22q11.2DS exhibit a highly distinct functional brain organization compared to controls. Additionally, the brain signatures of 22q11.2DS-associated psychosis overlap with those of idiopathic early psychosis in the salience network and dopaminergic reward pathway, providing substantial empirical support for the theoretical aberrant salience-based model of psychosis. Collectively, our findings, replicated across multiple independent cohorts, advance the understanding of 22q11.2DS and associated psychosis, underscoring the value of 22q11.2DS as a genetic model for probing the neurobiological underpinnings of psychosis and its progression.
Collapse
Affiliation(s)
- Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Carlo de Los Angeles
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Srikanth Ryali
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Leila Kushan
- Department of Psychiatry and Behavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Charlie Schleifer
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gabriela Repetto
- Center for Genetics and Genomics, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Nicolas A Crossley
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Tony Simon
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
- MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Behavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Kereszturi É. Diversity and Classification of Genetic Variations in Autism Spectrum Disorder. Int J Mol Sci 2023; 24:16768. [PMID: 38069091 PMCID: PMC10706722 DOI: 10.3390/ijms242316768] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with symptoms that affect the whole personality and all aspects of life. Although there is a high degree of heterogeneity in both its etiology and its characteristic behavioral patterns, the disorder is well-captured along the autistic triad. Currently, ASD status can be confirmed following an assessment of behavioral features, but there is a growing emphasis on conceptualizing autism as a spectrum, which allows for establishing a diagnosis based on the level of support need, free of discrete categories. Since ASD has a high genetic predominance, the number of genetic variations identified in the background of the condition is increasing exponentially as genetic testing methods are rapidly evolving. However, due to the huge amount of data to be analyzed, grouping the different DNA variations is still challenging. Therefore, in the present review, a multidimensional classification scheme was developed to accommodate most of the currently known genetic variants associated with autism. Genetic variations have been grouped according to six criteria (extent, time of onset, information content, frequency, number of genes involved, inheritance pattern), which are themselves not discrete categories, but form a coherent continuum in line with the autism spectrum approach.
Collapse
Affiliation(s)
- Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
3
|
Fiksinski AM, Hoftman GD, Vorstman JAS, Bearden CE. A genetics-first approach to understanding autism and schizophrenia spectrum disorders: the 22q11.2 deletion syndrome. Mol Psychiatry 2023; 28:341-353. [PMID: 36192458 PMCID: PMC9812786 DOI: 10.1038/s41380-022-01783-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 02/03/2023]
Abstract
Recently, increasing numbers of rare pathogenic genetic variants have been identified that are associated with variably elevated risks of a range of neurodevelopmental outcomes, notably including Autism Spectrum Disorders (ASD), Schizophrenia Spectrum Disorders (SSD), and Intellectual Disability (ID). This review is organized along three main questions: First, how can we unify the exclusively descriptive basis of our current psychiatric diagnostic classification system with the recognition of an identifiable, highly penetrant genetic risk factor in an increasing proportion of patients with ASD or SSD? Second, what can be learned from studies of individuals with ASD or SSD who share a common genetic basis? And third, what accounts for the observed variable penetrance and pleiotropy of neuropsychiatric phenotypes in individuals with the same pathogenic variant? In this review, we focus on findings of clinical and preclinical studies of the 22q11.2 deletion syndrome (22q11DS). This particular variant is not only one of the most common among the increasing list of known rare pathogenic variants, but also one that benefits from a relatively long research history. Consequently, 22q11DS is an appealing model as it allows us to: (1) elucidate specific genotype-phenotype associations, (2) prospectively study behaviorally defined classifications, such as ASD or SSD, in the context of a known, well-characterized genetic basis, and (3) elucidate mechanisms underpinning variable penetrance and pleiotropy, phenomena with far-reaching ramifications for research and clinical practice. We discuss how findings from animal and in vitro studies relate to observations in human studies and can help elucidate factors, including genetic, environmental, and stochastic, that impact the expression of neuropsychiatric phenotypes in 22q11DS, and how this may inform mechanisms underlying neurodevelopmental expression in the general population. We conclude with research priorities for the field, which may pave the way for novel therapeutics.
Collapse
Affiliation(s)
- Ania M Fiksinski
- Department of Psychology and Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry and Neuropsychology, Division of Mental Health, MHeNS, Maastricht University, Maastricht, The Netherlands
| | - Gil D Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jacob A S Vorstman
- Program in Genetics and Genome Biology, Research Institute, and Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Jalbrzikowski M, Lin A, Vajdi A, Grigoryan V, Kushan L, Ching CRK, Schleifer C, Hayes RA, Chu SA, Sugar CA, Forsyth JK, Bearden CE. Longitudinal trajectories of cortical development in 22q11.2 copy number variants and typically developing controls. Mol Psychiatry 2022; 27:4181-4190. [PMID: 35896619 PMCID: PMC9718681 DOI: 10.1038/s41380-022-01681-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Probing naturally-occurring, reciprocal genomic copy number variations (CNVs) may help us understand mechanisms that underlie deviations from typical brain development. Cross-sectional studies have identified prominent reductions in cortical surface area (SA) and increased cortical thickness (CT) in 22q11.2 deletion carriers (22qDel), with the opposite pattern in duplication carriers (22qDup), but the longitudinal trajectories of these anomalies-and their relationship to clinical symptomatology-are unknown. Here, we examined neuroanatomic changes within a longitudinal cohort of 261 22q11.2 CNV carriers and demographically-matched typically developing (TD) controls (84 22qDel, 34 22qDup, and 143 TD; mean age 18.35, ±10.67 years; 50.47% female). A total of 431 magnetic resonance imaging scans (164 22qDel, 59 22qDup, and 208 TD control scans; mean interscan interval = 20.27 months) were examined. Longitudinal FreeSurfer analysis pipelines were used to parcellate the cortex and calculate average CT and SA for each region. First, general additive mixed models (GAMMs) were used to identify regions with between-group differences in developmental trajectories. Secondly, we investigated whether these trajectories were associated with clinical outcomes. Developmental trajectories of CT were more protracted in 22qDel relative to TD and 22qDup. 22qDup failed to show normative age-related SA decreases. 22qDel individuals with psychosis spectrum symptoms showed two distinct periods of altered CT trajectories relative to 22qDel without psychotic symptoms. In contrast, 22q11.2 CNV carriers with autism spectrum diagnoses showed early alterations in SA trajectories. Collectively, these results provide new insights into altered neurodevelopment in 22q11.2 CNV carriers, which may shed light on neural mechanisms underlying distinct clinical outcomes.
Collapse
Affiliation(s)
- Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Vardui Grigoryan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Charles Schleifer
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Rebecca A Hayes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephanie A Chu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Catherine A Sugar
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Biostatistics, University of California, Los Angeles, CA, USA
| | - Jennifer K Forsyth
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Sakdalan J, Maxwell Y. The application of adapted dialectical behaviour therapy concepts and skills in the treatment of adults with autistic spectrum disorder who display challenging or offending behaviours. ADVANCES IN AUTISM 2022. [DOI: 10.1108/aia-01-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Despite some advances in the assessment and treatment of autism spectrum disorder (ASD), there remains a paucity of intervention and research literature in treating adults with ASD. There is growing evidence supporting a relationship between the core features of ASD and emotion dysregulation. There is an overlap between ASD and borderline personality disorder (BPD) characteristics such as emotional dysregulation, sensory issues and social skills deficits. This paper aims to explore the applications of dialectical behaviour therapy (DBT) concepts and skills in treating ASD individuals who display challenging or offending behaviours. The similarities in characteristics between ASD and BPD and the core issue of emotion dysregulation hold promise in the utility of DBT with ASD.
Design/methodology/approach
This is a conceptual paper that includes a case vignette.
Findings
A DBT-informed treatment approach using the adaptations and reconceptualization, i.e. risky mind–wise mind outlined in this paper, can be considered promising in addressing issues for ASD individuals, particularly those with challenging and/or offending behaviours. DBT incorporates different elements of applied behaviour analysis, cognitive behavioural therapy, mindfulness skills, sensory-based treatments, psychosocial interventions and emotion regulation skills, which makes it a more cohesive and integrated approach to treatment. The authors assert that DBT can be considered a more integrated, strengths-based, habilitative and trauma-informed approach which can be promising in its application to address challenging behaviours or offending in ASD individuals.
Research limitations/implications
It is recommended that research be carried out to evaluate the effectiveness of adapted DBT programs in treating ASD individuals presenting with challenging and/or offending behaviours. Future research can focus on evaluating the effectiveness of the different DBT concepts and skills and the different DBT modules to determine which components of the program are particularly useful for this client group.
Practical implications
Treatment manuals have already been developed for clients with intellectual disability and developmental disabilities who exhibit challenging and/or offending behaviour; hence, it is recommended that modifications be made to make it more applicable and appropriate for ASD individuals. Modifications should address ASD-specific issues (e.g. black and white thinking, cognitive rigidity, sensory issues, impaired theory of mind, emotion dysregulation issues, social skills deficits and anxiety issues). The use of DBT has much wider implications regarding addressing comorbid mental health conditions and personality issues in this client group.
Originality/value
There are limited psychological interventions that prove to be useful for individuals with ASD with complex presentations and challenging or offending behaviours. This paper discusses the application of adapted DBT concepts and skills that appear to be promising in the treatment of this client group.
Collapse
|
6
|
Primary Psychosis: Risk and Protective Factors and Early Detection of the Onset. Diagnostics (Basel) 2021; 11:diagnostics11112146. [PMID: 34829493 PMCID: PMC8622963 DOI: 10.3390/diagnostics11112146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 01/15/2023] Open
Abstract
Primary psychosis, which includes schizophrenia and other psychoses not caused by other psychic or physical conditions, has a strong impact worldwide in terms of disability, suffering and costs. Consequently, improvement of strategies to reduce the incidence and to improve the prognosis of this disorder is a current need. The purpose of this work is to review the current scientific literature on the main risk and protective factors of primary psychosis and to examine the main models of prevention, especially those related to the early detection of the onset. The conditions more strongly associated with primary psychosis are socio-demographic and economic factors such as male gender, birth in winter, ethnic minority, immigrant status, and difficult socio-economic conditions while the best-established preventive factors are elevated socio-economic status and an economic well-being. Risk and protective factors may be the targets for primordial, primary, and secondary preventive strategies. Acting on modifiable factors may reduce the incidence of the disorder or postpone its onset, while an early detection of the new cases enables a prompt treatment and a consequential better prognosis. According to this evidence, the study of the determinants of primary psychosis has a pivotal role in designing and promoting preventive policies aimed at reducing the burden of disability and suffering of the disorder.
Collapse
|