1
|
Fernández de Gamarra-Oca L, Lucas-Jiménez O, Ontañón JM, Loureiro-Gonzalez B, Peña J, Ibarretxe-Bilbao N, García-Guerrero MA, Ojeda N, Zubiaurre-Elorza L. Amygdala structure and function and its associations with social-emotional outcomes in a low-risk preterm sample. Brain Struct Funct 2024; 229:477-488. [PMID: 38236400 PMCID: PMC10917835 DOI: 10.1007/s00429-023-02749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024]
Abstract
Amygdala atypical volume development and functional connectivity (FC) at small gestational ages (GA) have been found across childhood. This adult-oriented study assesses whether altered amygdala structure and function is present following low-risk preterm birth. T1-weighted and resting-state functional MRI images of 33 low-risk preterm (30-36 weeks' GA) and 29 full-term (37-42 weeks' GA) young adults of both sexes, aged between 20 and 32 years old, were analyzed using FreeSurfer (v6.0.0) and Coon Toolbox (v21.a). The social-emotional assessment included Happé's Strange Stories Test, the Moral Judgment Test, Delay-Discounting Test, Adult Self Report, and Emotion Regulation Questionnaire. No differences were found in social-emotional outcomes or amygdala volumes between the groups. Low-risk preterm young adults showed increased FC between the left amygdala, right amygdala and medial frontal cortex (MedFC) (F = 9.89, p-FWE = 0.009) at cluster level compared to their full-term peers. However, significant results at connection level were not observed between left and right amygdala. Lastly, increased FC at cluster level between the right amygdala and MedFC, and left amygdala and MedFC, was related to better social-emotional outcomes only in low-risk preterm young adults (F = 6.60, p-FWE = 0.036) at cluster level. At connection level, in contrast, only right amygdala-MedFC increased FC was significantly associated with better social-emotional outcomes. This study reveals that low-risk prematurity does not have an effect on social-emotional outcomes or structural amygdala volumes during young adulthood. However, individuals who were considered to be at a lower risk of exhibiting neurodevelopmental alterations following preterm birth demonstrated increased FC between the left and right amygdala and MedFC.
Collapse
Affiliation(s)
| | - O Lucas-Jiménez
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Bizkaia, Spain
| | - J M Ontañón
- OSATEK, MR Unit, Galdakao Hospital, Galdakao, Spain
| | - B Loureiro-Gonzalez
- Division of Neonatology, Biocruces Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - J Peña
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Bizkaia, Spain
| | - N Ibarretxe-Bilbao
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Bizkaia, Spain
| | - M A García-Guerrero
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Bizkaia, Spain
| | - N Ojeda
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Bizkaia, Spain
| | - L Zubiaurre-Elorza
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Bizkaia, Spain.
| |
Collapse
|
2
|
Matsudaira I, Yamaguchi R, Taki Y. Transmit Radiant Individuality to Offspring (TRIO) study: investigating intergenerational transmission effects on brain development. Front Psychiatry 2023; 14:1150973. [PMID: 37840799 PMCID: PMC10568142 DOI: 10.3389/fpsyt.2023.1150973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Intergenerational transmission is a crucial aspect of human development. Although prior studies have demonstrated the continuity of psychopathology and maladaptive upbringing environments between parents and offspring, the underlying neurobiological mechanisms remain unclear. We have begun a novel neuroimaging research project, the Transmit Radiant Individuality to Offspring (TRIO) study, which focuses on biological parent-offspring trios. The participants of the TRIO study were Japanese parent-offspring trios consisting of offspring aged 10-40 and their biological mother and father. Structural and functional brain images of all participants were acquired using magnetic resonance imaging (MRI). Saliva samples were collected for DNA analysis. We obtained psychosocial information, such as intelligence, mental health problems, personality traits, and experiences during the developmental period from each parent and offspring in the same manner as much as possible. By April 2023, we completed data acquisition from 174 trios consisting of fathers, mothers, and offspring. The target sample size was 310 trios. However, we plan to conduct genetic and epigenetic analyses, and the sample size is expected to be expanded further while developing this project into a multi-site collaborative study in the future. The TRIO study can challenge the elucidation of the mechanism of intergenerational transmission effects on human development by collecting diverse information from parents and offspring at the molecular, neural, and behavioral levels. Our study provides interdisciplinary insights into how individuals' lives are involved in the construction of the lives of their descendants in the subsequent generation.
Collapse
Affiliation(s)
- Izumi Matsudaira
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
- Smart-Aging Research Center, Tohoku University, Sendai, Japan
| | - Ryo Yamaguchi
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Medical Sciences, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Smart-Aging Research Center, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Li X, Qureshi MNI, Laplante DP, Elgbeili G, Jones SL, King S, Rosa-Neto P. Neural correlates of disaster-related prenatal maternal stress in young adults from Project Ice Storm: Focus on amygdala, hippocampus, and prefrontal cortex. Front Hum Neurosci 2023; 17:1094039. [PMID: 36816508 PMCID: PMC9929467 DOI: 10.3389/fnhum.2023.1094039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Background Studies have shown that prenatal maternal stress alters volumes of the amygdala and hippocampus, and alters functional connectivity between the amygdala and prefrontal cortex. However, it remains unclear whether prenatal maternal stress (PNMS) affects volumes and functional connectivity of these structures at their subdivision levels. Methods T1-weighted MRI and resting-state functional MRI were obtained from 19-year-old young adult offspring with (n = 39, 18 male) and without (n = 65, 30 male) exposure to PNMS deriving from the 1998 ice storm. Volumes of amygdala nuclei, hippocampal subfields and prefrontal subregions were computed, and seed-to-seed functional connectivity analyses were conducted. Results Compared to controls, young adult offspring exposed to disaster-related PNMS had larger volumes of bilateral whole amygdala, driven by the lateral, basal, central, medial, cortical, accessory basal nuclei, and corticoamygdaloid transition; larger volumes of bilateral whole hippocampus, driven by the CA1, HATA, molecular layer, fissure, tail, CA3, CA4, and DG; and larger volume of the prefrontal cortex, driven by the left superior frontal. Inversely, young adult offspring exposed to disaster-related PNMS had lower functional connectivity between the whole amygdala and the prefrontal cortex (driven by bilateral frontal poles, the left superior frontal and left caudal middle frontal); and lower functional connectivity between the hippocampal tail and the prefrontal cortex (driven by the left lateral orbitofrontal). Conclusion These results suggest the possibility that effects of disaster-related PNMS on structure and function of subdivisions of offspring amygdala, hippocampus and prefrontal cortex could persist into young adulthood.
Collapse
Affiliation(s)
- Xinyuan Li
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada,Mental Health and Society Division, Douglas Mental Health University Institute, Montreal, QC, Canada,Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Muhammad Naveed Iqbal Qureshi
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - David P. Laplante
- Centre for Child Development and Mental Health, Lady Davis Institute-Jewish General Hospital, Montreal, QC, Canada
| | - Guillaume Elgbeili
- Mental Health and Society Division, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Sherri Lee Jones
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Suzanne King
- Mental Health and Society Division, Douglas Mental Health University Institute, Montreal, QC, Canada,Department of Psychiatry, McGill University, Montreal, QC, Canada,*Correspondence: Suzanne King,
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada,Montreal Neurological Institute, McGill University, Montreal, QC, Canada,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Mareckova K, Mareček R, Jani M, Zackova L, Andryskova L, Brazdil M, Nikolova YS. Association of Maternal Depression During Pregnancy and Recent Stress With Brain Age Among Adult Offspring. JAMA Netw Open 2023; 6:e2254581. [PMID: 36716025 PMCID: PMC9887495 DOI: 10.1001/jamanetworkopen.2022.54581] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
IMPORTANCE Maternal mental health problems during pregnancy are associated with altered neurodevelopment in offspring, but the long-term relationship between these prenatal risk factors and offspring brain structure in adulthood remains incompletely understood due to a paucity of longitudinal studies. OBJECTIVE To evaluate the association between exposure to maternal depression in utero and offspring brain age in the third decade of life, and to evaluate recent stressful life events as potential moderators of this association. DESIGN, SETTING, AND PARTICIPANTS This cohort study examined the 30-year follow-up of a Czech prenatal birth cohort with a within-participant design neuroimaging component in young adulthood conducted from 1991 to 2022. Participants from the European Longitudinal Study of Pregnancy and Childhood prenatal birth cohort were recruited for 2 magnetic resonance imaging (MRI) follow-ups, one between ages 23 and 24 years (early 20s) and another between ages 28 and 30 years (late 20s). EXPOSURES Maternal depression during pregnancy; stressful life events in the past year experienced by the young adult offspring. MAIN OUTCOMES AND MEASURES Gap between estimated neuroanatomical vs chronological age at MRI scan (brain age gap estimation [BrainAGE]) calculated once in participants' early 20s and once in their late 20s, and pace of aging calculated as the differences between BrainAGE at the 2 MRI sessions in young adulthood. RESULTS A total of 260 individuals participated in the second neuroimaging follow-up (mean [SD] age, 29.5 [0.6] years; 135 [52%] male); MRI data for both time points and a history of maternal depression were available for 110 participants (mean [SD] age, 29.3 [0.6] years; 56 [51%] male). BrainAGE in participants' early 20s was correlated with BrainAGE in their late 20s (r = 0.7, P < .001), and a previously observed association between maternal depression during pregnancy and BrainAGE in their early 20s persisted in their late 20s (adjusted R2 = 0.04; P = .04). However, no association emerged between maternal depression during pregnancy and the pace of aging between the 2 MRI sessions. The stability of the associations between maternal depression during pregnancy and BrainAGE was also supported by the lack of interactions with recent stress. In contrast, more recent stress was associated with greater pace of aging between the 2 MRI sessions, independent of maternal depression (adjusted R2 = 0.09; P = .01). CONCLUSIONS AND RELEVANCE The findings of this cohort study suggest that maternal depression and recent stress may have independent associations with brain age and the pace of aging, respectively, in young adulthood. Prevention and treatment of depression in pregnant mothers may have long-term implications for offspring brain development.
Collapse
Affiliation(s)
- Klara Mareckova
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- 1st Department of Neurology, St Anne’s University Hospital and Faculty of Medicine, MU, Brno, Czech Republic
| | - Radek Mareček
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin Jani
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Zackova
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- 1st Department of Neurology, St Anne’s University Hospital and Faculty of Medicine, MU, Brno, Czech Republic
| | - Lenka Andryskova
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Milan Brazdil
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- 1st Department of Neurology, St Anne’s University Hospital and Faculty of Medicine, MU, Brno, Czech Republic
| | - Yuliya S. Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Environmental Risk Factors and Cognitive Outcomes in Psychosis: Pre-, Perinatal, and Early Life Adversity. Curr Top Behav Neurosci 2023; 63:205-240. [PMID: 35915384 PMCID: PMC9892366 DOI: 10.1007/7854_2022_378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Risk for psychosis begins to accumulate as early as the fetal period through exposure to obstetric complications like fetal hypoxia, maternal stress, and prenatal infection. Stressors in the postnatal period, such as childhood trauma, peer victimization, and neighborhood-level adversity, further increase susceptibility for psychosis. Cognitive difficulties are among the first symptoms to emerge in individuals who go on to develop a psychotic disorder. We review the relationship between pre-, perinatal, and early childhood adversities and cognitive outcomes in individuals with psychosis. Current evidence shows that the aforementioned environmental risk factors may be linked to lower overall intelligence and executive dysfunction, beginning in the premorbid period and persisting into adulthood in individuals with psychosis. It is likely that early life stress contributes to cognitive difficulties in psychosis through dysregulation of the body's response to stress, causing changes such as increased cortisol levels and chronic immune activation, which can negatively impact neurodevelopment. Intersectional aspects of identity (e.g., sex/gender, race/ethnicity), as well as gene-environment interactions, likely inform the developmental cascade to cognitive difficulties throughout the course of psychotic disorders and are reviewed below. Prospective studies of birth cohorts will serve to further clarify the relationship between early-life environmental risk factors and cognitive outcomes in the developmental course of psychotic disorders. Specific methodological recommendations are provided for future research.
Collapse
|
6
|
Tyborowska A, Gruber K, Beijers R, Kühn S, Roelofs K, de Weerth C. No evidence for association between late pregnancy maternal cortisol and gray matter volume in a healthy community sample of young adolescents. Front Neurosci 2022; 16:893847. [PMID: 36117621 PMCID: PMC9470950 DOI: 10.3389/fnins.2022.893847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
A compelling amount of animal and human research has shown that perceived maternal stress during pregnancy can affect the neurodevelopment of the offspring. Prenatal maternal cortisol is frequently proposed as the biological key mechanism underlying this link; however, literature that investigates the effects of prenatal cortisol on subsequent neurodevelopment in humans is scarce. By using longitudinal data from a relatively large community sample of mother-child dyads (N = 73), this pre-registered study prospectively examined the role of maternal prenatal cortisol concentrations on subsequent individual differences in gray matter volume (GMV) and hippocampal subfield volumes at the onset of puberty of the offspring (12 years of age). Two markers of cortisol, that is, evening cortisol and circadian decline over the day, were used as indicators of maternal physiological stress during the last trimester of pregnancy. The results indicate that prenatal maternal cortisol levels were not associated with GMV or hippocampal subfield volumes of the children. These findings suggest that late pregnancy maternal cortisol may not be related to the structural development of the offspring's brain, at least not in healthy community samples and at the onset of puberty. When examining the influence of prenatal stress on offspring neurodevelopment, future investigations should delineate gestational timing effects of the cortisol exposure, cortisol assessment method, and impact of additional biomarkers, as these were not investigated in this study.
Collapse
Affiliation(s)
- Anna Tyborowska
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Katharina Gruber
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roseriet Beijers
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Clinic and Policlinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Karin Roelofs
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|