1
|
Adelizzi A, Giri A, Di Donfrancesco A, Boito S, Prigione A, Bottani E, Bollati V, Tiranti V, Persico N, Brunetti D. Fetal and obstetrics manifestations of mitochondrial diseases. J Transl Med 2024; 22:853. [PMID: 39313811 PMCID: PMC11421203 DOI: 10.1186/s12967-024-05633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
During embryonic and neonatal development, mitochondria have essential effects on metabolic and energetic regulation, shaping cell fate decisions and leading to significant short- and long-term effects on embryonic and offspring health. Therefore, perturbation on mitochondrial function can have a pathological effect on pregnancy. Several shreds of evidence collected in preclinical models revealed that severe mitochondrial dysfunction is incompatible with life or leads to critical developmental defects, highlighting the importance of correct mitochondrial function during embryo-fetal development. The mechanism impairing the correct development is unknown and may include a dysfunctional metabolic switch in differentiating cells due to decreased ATP production or altered apoptotic signalling. Given the central role of mitochondria in embryonic and fetal development, the mitochondrial dysfunction typical of Mitochondrial Diseases (MDs) should, in principle, be detectable during pregnancy. However, little is known about the clinical manifestations of MDs in embryonic and fetal development. In this manuscript, we review preclinical and clinical evidence suggesting that MDs may affect fetal development and highlight the fetal and maternal outcomes that may provide a wake-up call for targeted genetic diagnosis.
Collapse
Affiliation(s)
- Alessia Adelizzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Anastasia Giri
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Alessia Di Donfrancesco
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Simona Boito
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, University of Verona, Verona, 37124, Italy
| | - Valentina Bollati
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Nicola Persico
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy.
| | - Dario Brunetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy.
| |
Collapse
|
2
|
Love C, Sominsky L, O'Hely M, Berk M, Vuillermin P, Dawson SL. Prenatal environmental risk factors for autism spectrum disorder and their potential mechanisms. BMC Med 2024; 22:393. [PMID: 39278907 PMCID: PMC11404034 DOI: 10.1186/s12916-024-03617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is globally increasing in prevalence. The rise of ASD can be partially attributed to diagnostic expansion and advocacy efforts; however, the interplay between genetic predisposition and modern environmental exposures is likely driving a true increase in incidence. A range of evidence indicates that prenatal exposures are critical. Infection during pregnancy, gestational diabetes, and maternal obesity are established risk factors for ASD. Emerging areas of research include the effects of maternal use of selective serotonin reuptake inhibitors, antibiotics, and exposure to toxicants during pregnancy on brain development and subsequent ASD. The underlying pathways of these risk factors remain uncertain, with varying levels of evidence implicating immune dysregulation, mitochondrial dysfunction, oxidative stress, gut microbiome alterations, and hormonal disruptions. This narrative review assesses the evidence of contributing prenatal environmental factors for ASD and associated mechanisms as potential targets for novel prevention strategies.
Collapse
Affiliation(s)
- Chloe Love
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Luba Sominsky
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Martin O'Hely
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Parkville, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Peter Vuillermin
- Child Health Research Unit, Barwon Health, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
- Murdoch Children's Research Institute, Parkville, Australia
| | - Samantha L Dawson
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia.
- Murdoch Children's Research Institute, Parkville, Australia.
- Food and Mood Centre, Deakin University, Geelong, Australia.
| |
Collapse
|
3
|
Trumpff C, Monzel AS, Sandi C, Menon V, Klein HU, Fujita M, Lee A, Petyuk VA, Hurst C, Duong DM, Seyfried NT, Wingo AP, Wingo TS, Wang Y, Thambisetty M, Ferrucci L, Bennett DA, De Jager PL, Picard M. Psychosocial experiences are associated with human brain mitochondrial biology. Proc Natl Acad Sci U S A 2024; 121:e2317673121. [PMID: 38889126 PMCID: PMC11228499 DOI: 10.1073/pnas.2317673121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
Psychosocial experiences affect brain health and aging trajectories, but the molecular pathways underlying these associations remain unclear. Normal brain function relies on energy transformation by mitochondria oxidative phosphorylation (OxPhos). Two main lines of evidence position mitochondria both as targets and drivers of psychosocial experiences. On the one hand, chronic stress exposure and mood states may alter multiple aspects of mitochondrial biology; on the other hand, functional variations in mitochondrial OxPhos capacity may alter social behavior, stress reactivity, and mood. But are psychosocial exposures and subjective experiences linked to mitochondrial biology in the human brain? By combining longitudinal antemortem assessments of psychosocial factors with postmortem brain (dorsolateral prefrontal cortex) proteomics in older adults, we find that higher well-being is linked to greater abundance of the mitochondrial OxPhos machinery, whereas higher negative mood is linked to lower OxPhos protein content. Combined, positive and negative psychosocial factors explained 18 to 25% of the variance in the abundance of OxPhos complex I, the primary biochemical entry point that energizes brain mitochondria. Moreover, interrogating mitochondrial psychobiological associations in specific neuronal and nonneuronal brain cells with single-nucleus RNA sequencing (RNA-seq) revealed strong cell-type-specific associations for positive psychosocial experiences and mitochondria in glia but opposite associations in neurons. As a result, these "mind-mitochondria" associations were masked in bulk RNA-seq, highlighting the likely underestimation of true psychobiological effect sizes in bulk brain tissues. Thus, self-reported psychosocial experiences are linked to human brain mitochondrial phenotypes.
Collapse
Affiliation(s)
- Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032
| | - Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Hans-Ulrich Klein
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Masashi Fujita
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Annie Lee
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Cheyenne Hurst
- Department of Biochemistry, Emory University, Atlanta, GA 30329
| | - Duc M Duong
- Department of Biochemistry, Emory University, Atlanta, GA 30329
| | | | - Aliza P Wingo
- Department of Neurology and Human Genetics, School of Medicine, Emory University, Atlanta, GA 30329
| | - Thomas S Wingo
- Department of Neurology and Human Genetics, School of Medicine, Emory University, Atlanta, GA 30329
| | - Yanling Wang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Philip L De Jager
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY 10032
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY 10032
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY 10032
- Division of Behavioral Medicine, New York State Psychiatric Institute, New York, NY 10032
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY 10032
| |
Collapse
|
4
|
Cuervo Sánchez ML, Prado Spalm FH, Furland NE, Vallés AS. Pregestational fructose-induced metabolic syndrome in Wistar rats causes sexually dimorphic behavioral changes in their offspring. Dev Neurobiol 2024; 84:142-157. [PMID: 38664979 DOI: 10.1002/dneu.22940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 07/17/2024]
Abstract
Metabolic syndrome (MetS), marked by enduring metabolic inflammation, has detrimental effects on cognitive performance and brain structure, influencing behavior. This study aimed to investigate whether maternal MetS could negatively impact the neurodevelopment and metabolism of offspring. To test this hypothesis, 2 months old female Wistar rats were subjected to a 10-week regimen of tap water alone or supplemented with 20% fructose to induce MetS. Dams were mated with healthy males to generate litters: OC (offspring from control dams) and OMetS (offspring from dams with MetS). To isolate prenatal effects, all pups were breastfed by control nurse dams, maintaining a standard diet and water ad libitum until weaning. Behavioral assessments were conducted between postnatal days (PN) 22 and 95, and metabolic parameters were analyzed post-sacrifice on PN100. Results from the elevated plus maze, the open field, and the marble burying tests revealed a heightened anxiety-like phenotype in OMetS females. The novel object recognition test showed that exclusively OMetS males had long-term memory impairment. In the reciprocal social interaction test, OMetS displayed a lower number of social interactions, with a notable increase in "socially inactive" behavior observed exclusively in females. Additionally, in the three-chamber test, social preference and social novelty indexes were found to be lower solely among OMetS females. An increase in visceral fat concomitantly with hypertriglyceridemia was the relevant postmortem metabolic finding in OMetS females. In summary, maternal MetS leads to enduring damage and adverse effects on offspring neurobehavior and metabolism, with notable sexual dimorphism.
Collapse
Affiliation(s)
- Marié L Cuervo Sánchez
- Nutrition and Neurodevelopmental Laboratory, INIBIBB-CONICET-UNS, Bahía Blanca, Argentina
| | - Facundo H Prado Spalm
- Nutrition and Neurodevelopmental Laboratory, INIBIBB-CONICET-UNS, Bahía Blanca, Argentina
| | - Natalia E Furland
- Nutrition and Neurodevelopmental Laboratory, INIBIBB-CONICET-UNS, Bahía Blanca, Argentina
| | - Ana S Vallés
- Nutrition and Neurodevelopmental Laboratory, INIBIBB-CONICET-UNS, Bahía Blanca, Argentina
| |
Collapse
|
5
|
Bradshaw JL, Wilson EN, Gardner JJ, Mabry S, Tucker SM, Rybalchenko N, Vera E, Goulopoulou S, Cunningham RL. Pregnancy-induced oxidative stress and inflammation are not associated with impaired maternal neuronal activity or memory function. Am J Physiol Regul Integr Comp Physiol 2024; 327:R35-R45. [PMID: 38708544 PMCID: PMC11381002 DOI: 10.1152/ajpregu.00026.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Pregnancy is associated with neural and behavioral plasticity, systemic inflammation, and oxidative stress, yet the impact of inflammation and oxidative stress on maternal neural and behavioral plasticity during pregnancy is unclear. We hypothesized that healthy pregnancy transiently reduces learning and memory and these deficits are associated with pregnancy-induced elevations in inflammation and oxidative stress. Cognitive performance was tested with novel object recognition (recollective memory), Morris water maze (spatial memory), and open field (anxiety-like) behavior tasks in female Sprague-Dawley rats of varying reproductive states [nonpregnant (nulliparous), pregnant (near term), and 1-2 mo after pregnancy (primiparous); n = 7 or 8/group]. Plasma and CA1 proinflammatory cytokines were measured with a MILLIPLEX magnetic bead assay. Plasma oxidative stress was measured via advanced oxidation protein products (AOPP) assay. CA1 markers of oxidative stress, neuronal activity, and apoptosis were quantified via Western blot analysis. Our results demonstrate that CA1 oxidative stress-associated markers were elevated in pregnant compared with nulliparous rats (P ≤ 0.017) but there were equivalent levels in pregnant and primiparous rats. In contrast, reproductive state did not impact CA1 inflammatory cytokines, neuronal activity, or apoptosis. Likewise, there was no effect of reproductive state on recollective or spatial memory. Even so, spatial learning was impaired (P ≤ 0.007) whereas anxiety-like behavior (P ≤ 0.034) was reduced in primiparous rats. Overall, our data suggest that maternal hippocampal CA1 is protected from systemic inflammation but vulnerable to peripartum oxidative stress. Peripartum oxidative stress elevations, such as in pregnancy complications, may contribute to peripartum neural and behavioral plasticity.NEW & NOTEWORTHY Healthy pregnancy is associated with elevated maternal systemic and brain oxidative stress. During postpregnancy, brain oxidative stress remains elevated whereas systemic oxidative stress is resolved. This sustained maternal brain oxidative stress is associated with learning impairments and decreased anxiety-like behavior during the postpregnancy period.
Collapse
Affiliation(s)
- Jessica L Bradshaw
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - E Nicole Wilson
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Jennifer J Gardner
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Steve Mabry
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Selina M Tucker
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Nataliya Rybalchenko
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Edward Vera
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Styliani Goulopoulou
- Lawrence D. Longo Center for Perinatal Biology, Departments of Basic Sciences, Gynecology and Obstetrics, Loma Linda University, Loma Linda, California, United States
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
6
|
Zeng R, Chen J, Peng Y, Xu W, Tao Y, Li M, Zhang R, Meng J, Li Z, Zeng L, Huang J. Microglia are necessary for probiotics supplementation to improve impaired fear extinction caused by pregnancy stress in adult offspring of rats. Neurobiol Stress 2024; 28:100591. [PMID: 38075026 PMCID: PMC10709091 DOI: 10.1016/j.ynstr.2023.100591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 11/12/2023] [Indexed: 10/19/2024] Open
Abstract
The prevention and treatment of fear-related disorders in offspring affected by pregnancy stress remains challenging at clinic. Here, we examined the effects of gut microbiota of stressed pregnant rats on the fear extinction of their offsprings, and the potential mechanisms. We found that gut microbiota transplantation from rats with pregnancy stress to normal pregnant rats impaired fear extinction, induced microglial activation and synaptic phagocytosis, increased synapse loss in offsprings. Probiotics supplement during pregnancy stress partly normalized pregnancy stress-induced gut microbiota dysbiosis of pregnant rats, and promoted fear memory extinction, inhibited fear memory reappearance, and limited microglial activation and synaptic phagocytosis in offsprings. These data revealed that gut microbiota of stressed pregnant mother improved the development of fear-related disorders of offspring, which may be associated with microglial synaptic pruning.
Collapse
Affiliation(s)
- Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jie Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
- Center for Experimental Medicine, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yihan Peng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Weiye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yuanyuan Tao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Ruqi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jingzhuo Meng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Zhiyuan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Leping Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| |
Collapse
|
7
|
Kouthouridis S, Sotra A, Khan Z, Alvarado J, Raha S, Zhang B. Modeling the Progression of Placental Transport from Early- to Late-Stage Pregnancy by Tuning Trophoblast Differentiation and Vascularization. Adv Healthc Mater 2023; 12:e2301428. [PMID: 37830445 PMCID: PMC11468690 DOI: 10.1002/adhm.202301428] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/18/2023] [Indexed: 10/14/2023]
Abstract
The early-stage placental barrier is characterized by a lack of fetal circulation and by a thick trophoblastic barrier, whereas the later-stage placenta consists of vascularized chorionic villi encased in a thin, differentiated trophoblast layer, ideal for nutrient transport. In this work, predictive models of early- and late-stage placental transport are created using blastocyst-derived placental stem cells (PSCs) by modulating PSC differentiation and model vascularization. PSC differentiation results in a thinner, fused trophoblast layer, as well as an increase in human chorionic gonadotropin secretion, barrier permeability, and secretion of certain inflammatory cytokines, which are consistent with in vivo findings. Further, gene expression confirms this shift toward a differentiated trophoblast subtype. Vascularization results in a molecule type- and size-dependent change in dextran and insulin permeability. These results demonstrate that trophoblast differentiation and vascularization have critical effects on placental barrier permeability and that this model can be used as a predictive measure to assess fetal toxicity of xenobiotic substances at different stages of pregnancy.
Collapse
Affiliation(s)
- Sonya Kouthouridis
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Alexander Sotra
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Zaim Khan
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Justin Alvarado
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Sandeep Raha
- Department of Pediatrics and the Graduate Programme in Medical SciencesMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Boyang Zhang
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| |
Collapse
|
8
|
Darbinian N, Darbinyan A, Merabova N, Kassem M, Tatevosian G, Amini S, Goetzl L, Selzer ME. In utero ethanol exposure induces mitochondrial DNA damage and inhibits mtDNA repair in developing brain. Front Neurosci 2023; 17:1214958. [PMID: 37621718 PMCID: PMC10444992 DOI: 10.3389/fnins.2023.1214958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Mitochondrial dysfunction is postulated to be a central event in fetal alcohol spectrum disorders (FASD). People with the most severe form of FASD, fetal alcohol syndrome (FAS) are estimated to live only 34 years (95% confidence interval, 31 to 37 years), and adults who were born with any form of FASD often develop early aging. Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage, hallmarks of aging, are postulated central events in FASD. Ethanol (EtOH) can cause mtDNA damage, consequent increased oxidative stress, and changes in the mtDNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1). Studies of molecular mechanisms are limited by the absence of suitable human models and non-invasive tools. Methods We compared human and rat EtOH-exposed fetal brain tissues and neuronal cultures, and fetal brain-derived exosomes (FB-Es) from maternal blood. Rat FASD was induced by administering a 6.7% alcohol liquid diet to pregnant dams. Human fetal (11-21 weeks) brain tissue was collected and characterized by maternal self-reported EtOH use. mtDNA was amplified by qPCR. OGG1 and Insulin-like growth factor 1 (IGF-1) mRNAs were assayed by qRT-PCR. Exosomal OGG1 was measured by ddPCR. Results Maternal EtOH exposure increased mtDNA damage in fetal brain tissue and FB-Es. The damaged mtDNA in FB-Es correlated highly with small eye diameter, an anatomical hallmark of FASD. OGG1-mediated mtDNA repair was inhibited in EtOH-exposed fetal brain tissues. IGF-1 rescued neurons from EtOH-mediated mtDNA damage and OGG1 inhibition. Conclusion The correlation between mtDNA damage and small eye size suggests that the amount of damaged mtDNA in FB-E may serve as a marker to predict which at risk fetuses will be born with FASD. Moreover, IGF-1 might reduce EtOH-caused mtDNA damage and neuronal apoptosis.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Medical College of Wisconsin-Prevea Health, Green Bay, WI, United States
| | - Myrna Kassem
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Laura Goetzl
- Department of Obstetrics and Gynecology, University of Texas, Houston, TX, United States
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Mitochondria play an essential role in the trajectory of adolescent neurodevelopment and behavior in adulthood: evidence from a schizophrenia rat model. Mol Psychiatry 2023; 28:1170-1181. [PMID: 36380234 PMCID: PMC10005953 DOI: 10.1038/s41380-022-01865-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Ample evidence implicate mitochondria in early brain development. However, to the best of our knowledge, there is only circumstantial data for mitochondria involvement in late brain development occurring through adolescence, a critical period in the pathogenesis of various psychiatric disorders, specifically schizophrenia. In schizophrenia, neurodevelopmental abnormalities and mitochondrial dysfunction has been repeatedly reported. Here we show a causal link between mitochondrial transplantation in adolescence and brain functioning in adulthood. We show that transplantation of allogenic healthy mitochondria into the medial prefrontal cortex of adolescent rats was beneficial in a rat model of schizophrenia, while detrimental in healthy control rats. Specifically, disparate initial changes in mitochondrial function and inflammatory response were associated with opposite long-lasting changes in proteome, neurotransmitter turnover, neuronal sprouting and behavior in adulthood. A similar inverse shift in mitochondrial function was also observed in human lymphoblastoid cells deived from schizophrenia patients and healthy subjects due to the interference of the transplanted mitochondria with their intrinsic mitochondrial state. This study provides fundamental insights into the essential role of adolescent mitochondrial homeostasis in the development of normal functioning adult brain. In addition, it supports a therapeutic potential for mitochondria manipulation in adolescence in disorders with neurodevelopmental and bioenergetic deficits, such as schizophrenia, yet emphasizes the need to monitor individuals' state including their mitochondrial function and immune response, prior to intervention.
Collapse
|
10
|
Xiong Y, Chen J, Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front Neurosci 2023; 17:1125428. [PMID: 37021129 PMCID: PMC10067592 DOI: 10.3389/fnins.2023.1125428] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with onset in childhood. The mechanisms underlying ASD are unclear. In recent years, the role of microglia and astrocytes in ASD has received increasing attention. Microglia prune the synapses or respond to injury by sequestrating the injury site and expressing inflammatory cytokines. Astrocytes maintain homeostasis in the brain microenvironment through the uptake of ions and neurotransmitters. However, the molecular link between ASD and microglia and, or astrocytes remains unknown. Previous research has shown the significant role of microglia and astrocytes in ASD, with reports of increased numbers of reactive microglia and astrocytes in postmortem tissues and animal models of ASD. Therefore, an enhanced understanding of the roles of microglia and astrocytes in ASD is essential for developing effective therapies. This review aimed to summarize the functions of microglia and astrocytes and their contributions to ASD.
Collapse
|
11
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
12
|
Heland S, Fields N, Ellery SJ, Fahey M, Palmer KR. The role of nutrients in human neurodevelopment and their potential to prevent neurodevelopmental adversity. Front Nutr 2022; 9:992120. [PMID: 36483929 PMCID: PMC9722743 DOI: 10.3389/fnut.2022.992120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/02/2022] [Indexed: 06/21/2024] Open
Abstract
Nutritional deficits or excesses affect a huge proportion of pregnant women worldwide. Maternal nutrition has a significant influence on the fetal environment and can dramatically impact fetal brain development. This paper reviews current nutritional supplements that can be used to optimise fetal neurodevelopment and prevent neurodevelopmental morbidities, including folate, iodine, vitamin B12, iron, and vitamin D. Interestingly, while correcting nutritional deficits can prevent neurodevelopmental adversity, overcorrecting them can in some cases be detrimental, so care needs to be taken when recommending supplementation in pregnancy. The potential benefits of using nutrition to prevent neurodiversity is shown by promising nutraceuticals, sulforaphane and creatine, both currently under investigation. They have the potential to promote improved neurodevelopmental outcomes through mitigation of pathological processes, including hypoxia, inflammation, and oxidative stress. Neurodevelopment is a complex process and whilst the role of micronutrients and macronutrients on the developing fetal brain is not completely understood, this review highlights the key findings thus far.
Collapse
Affiliation(s)
- Sarah Heland
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
| | - Neville Fields
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Stacey Joan Ellery
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Michael Fahey
- Paediatric Neurology Unit, Monash Children’s Hospital, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Kirsten Rebecca Palmer
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
13
|
Namvarpour Z, Ranaei E, Amini A, Roudafshani Z, Fahanik-Babaei J. Effects of prenatal exposure to inflammation coupled with prepubertal stress on prefrontal white matter structure and related molecules in adult mouse offspring. Metab Brain Dis 2022; 37:1655-1668. [PMID: 35347584 DOI: 10.1007/s11011-022-00968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
Maternal immune activation (MIA) by inflammatory agents such as lipopolysaccharide (LPS) and prepubertal stress (PS) may individually and collectively affect the central nervous system (CNS) during adulthood. Here, we intended to assess the effects of MIA, alone or combined with PS, on prefrontal white matter structure and its related molecules in adult mice offspring. Pregnant mice received either an i.p. dose of LPS (50 μg/kg) on gestational day 17 (GD17) or normal saline. Their pups were exposed to stress from postnatal days (PD) 30 to PD38 or no stress during prepubertal development. We randomly chose 56-day-old male offspring (n = 2 offspring per mother) from each group and isolated their prefrontal areas according to relevant protocols. The tissue samples were prepared for structural, histological, and molecular examinations. The LPS + stress group had evidence of increased damage in the white matter structures compared to the control, stress, and LPS groups (p < 0.05). The LPS + stress group also had significant downregulation of the genes involved in white matter formation (Sox10, Olig1, myelin regulatory factor, and Wnt compared with the control, stress, and LPS groups (p < 0.05). In conclusion, although each manipulation individually resulted in small changes in myelination, their combined effects were more pronounced. These changes were parallel to abnormal expression levels of the molecular factors that contribute to myelination.
Collapse
Affiliation(s)
- Zahra Namvarpour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Sciences Students (ICSS), Tehran, Iran
| | - Elahe Ranaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Roudafshani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Central Lab, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, 1985717443, Tehran, Iran
| |
Collapse
|