1
|
Ye L, Ba L, Yan D. A study of dynamic functional connectivity changes in flight trainees based on a triple network model. Sci Rep 2025; 15:7828. [PMID: 40050304 PMCID: PMC11885617 DOI: 10.1038/s41598-025-89023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
The time-varying functional connectivity of the Central Executive Network (CEN), Default Mode Network (DMN), and Salience Network (SN) in flight trainees during a resting state was investigated using dynamic functional network connectivity (dFNC). The study included 39 flight trainees and 37 age- and sex-matched healthy controls. Resting-state fMRI data and behavioral test outcomes were obtained from both groups. Independent component analysis (ICA), sliding window, and K-means clustering approaches were utilized for evaluating functional network connectivity (FNC) and temporal metrics based on the triple networks. Correlation analyses were performed on the behavioral assessments and these metrics. The flight trainees demonstrated a significantly enhanced functional connection linking the CEN and DMN in state 2 (P < 0.05, FDR corrected). Additionally, flight trainees spent less time in state 5, while they exhibited a protracted mean dwell time and fractional windows in state 2, which were significantly correlated with accuracy on the Berg Card Sorting Test (BCST) and Change Detection Test (all P < 0.05). The improved connectivity of flight trainees between the CEN and DMN following the completion of rigorous flight training resulted in increased stability. This enhancement may be relevant to cognitive abilities such as decision-making, memory, and information integration. When multitasking, flight trainees displayed superior visual processing skills and enhanced cognitive flexibility. dFNC research provides a unique perspective on the sophisticated cognitive capabilities that are required in high-demand, high-stress occupations such as piloting, thereby providing significant insights into the intricate brain mechanisms that are inherent in these domains.
Collapse
Affiliation(s)
- Lu Ye
- ¹Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, 618307, China
| | - Liya Ba
- ¹Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, 618307, China
| | - Dongfeng Yan
- ¹Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, 618307, China.
| |
Collapse
|
2
|
Li Q, Fu Z, Walum H, Seraji M, Bajracharya P, Calhoun V, Shultz S, Iraji A. Deciphering Multiway Multiscale Brain Network Connectivity: Insights from Birth to 6 Months. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634772. [PMID: 39975042 PMCID: PMC11838216 DOI: 10.1101/2025.01.24.634772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Converging evidence suggests that understanding the human brain requires more than just examining pairwise functional brain interactions. The human brain is a complex, nonlinear system, and focusing solely on linear pairwise functional connectivity often overlooks important nonlinear and higher-order relationships. Infancy is a critical period marked by significant brain development that could contribute to future learning, health, and life success. Exploring higher-order functional relationships in the brain can provide insight into brain function and development. To the best of our knowledge, there is no existing research on multiway, multiscale brain network interactions in infants. In this study, we comprehensively investigate the interactions among brain intrinsic connectivity networks (ICNs), including both pairwise (pair-FNC) and triple relationships (tri-FNC). We focused on an infant dataset collected between birth and six months, a critical period for brain maturation. Our results revealed significant hierarchical, multiway, multiscale brain functional network interactions in the infant brain. These findings suggest that tri-FNC provide additional insights beyond what pairwise interactions reveal during early brain development. The tri-FNC predominantly involve the default mode, sensorimotor, visual, limbic, language, salience, and central executive domains. Notably, these triplet networks align with the classical triple network model of the human brain, which includes the default mode network, the salience network, and the central executive network. This suggests that the brain network system might already be initially established during the first six months of infancy. Interestingly, tri-FNC in the default mode and salience domains showed significantly stronger nonlinear interactions with age compared to pair-FNC. We also found that pair-FNC were less effective at detecting these networks. The present study suggests that exploring tri-FNC can offer additional insights beyond pair-FNC by capturing higher-order nonlinear interactions, potentially yielding more reliable biomarkers to characterize developmental trajectories.
Collapse
Affiliation(s)
- Qiang Li
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA, USA
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA, USA
| | - Hasse Walum
- Division of Autism & Related Disabilities, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Masoud Seraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA, USA
- School of Psychology, University of Texas at Austin, Austin, USA
| | - Prerana Bajracharya
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA, USA
| | - Vince Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
- School of Psychology, University of Texas at Austin, Austin, USA
| | - Sarah Shultz
- Division of Autism & Related Disabilities, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, and Emory University, Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
3
|
Liu D, Lin C, Liu B, Zhang Y, Jiang Y, Gu J, Jin O. Resting-state functional connectivity between the frontoparietal network and the default mode network is aberrantly increased in ankylosing spondylitis. BMC Musculoskelet Disord 2025; 26:80. [PMID: 39844161 PMCID: PMC11756163 DOI: 10.1186/s12891-025-08322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Lower back pain comprises the majority of the disease burden of patients with ankylosing spondylitis (AS), while the alterations of the large-scale brain networks could be implicated in the neuropathophysiology of pain. The frontoparietal network (FPN) is known as a pain modulation hub, with key nodes dorsolateral prefrontal cortex (dlPFC) and ventrolateral prefrontal cortex (vlPFC) participating in the pain modulation and reappraisal process. In this study, we adopted the analytical approaches of independent component analysis (ICA) and seed-based correlation analysis (SCA) to examine the resting-state functional connectivity (rsFC) of the large-scale brain networks, notably FPN, between 82 AS patients and 61 healthy controls (HCs). We also investigated the correlation between the rsFC and the clinical measures of AS patients. Both ICA and SCA consistently showed that the rsFC between FPN and mPFC, a key node of the default mode network (DMN), was significantly increased in AS. In addition, SCA also identified a cluster at the right posterior lobe of cerebellum which exhibited increased rsFC with the posterior cingulate cortex, and the right lateral prefrontal cortex also showed increased rsFC with the right dlPFC. Correlation analysis showed that the rsFC between mPFC and the left anterior prefrontal cortex was significantly correlated with C-reactive protein in AS. The increased FPN-DMN connectivity could contribute to the neuropathophysiology of lower back pain in AS, with potential association with faulty pain modulation and reappraisal mechanisms facilitated by the FPN.
Collapse
Affiliation(s)
- Dong Liu
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Churong Lin
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Budian Liu
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yanli Zhang
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yutong Jiang
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Jieruo Gu
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
| | - Ou Jin
- Department of Rheumatology, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Vaidya N, Marquand AF, Nees F, Siehl S, Schumann G. The impact of psychosocial adversity on brain and behaviour: an overview of existing knowledge and directions for future research. Mol Psychiatry 2024; 29:3245-3267. [PMID: 38658773 PMCID: PMC11449794 DOI: 10.1038/s41380-024-02556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Environmental experiences play a critical role in shaping the structure and function of the brain. Its plasticity in response to different external stimuli has been the focus of research efforts for decades. In this review, we explore the effects of adversity on brain's structure and function and its implications for brain development, adaptation, and the emergence of mental health disorders. We are focusing on adverse events that emerge from the immediate surroundings of an individual, i.e., microenvironment. They include childhood maltreatment, peer victimisation, social isolation, affective loss, domestic conflict, and poverty. We also take into consideration exposure to environmental toxins. Converging evidence suggests that different types of adversity may share common underlying mechanisms while also exhibiting unique pathways. However, they are often studied in isolation, limiting our understanding of their combined effects and the interconnected nature of their impact. The integration of large, deep-phenotyping datasets and collaborative efforts can provide sufficient power to analyse high dimensional environmental profiles and advance the systematic mapping of neuronal mechanisms. This review provides a background for future research, highlighting the importance of understanding the cumulative impact of various adversities, through data-driven approaches and integrative multimodal analysis techniques.
Collapse
Affiliation(s)
- Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Sebastian Siehl
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Clinical Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| |
Collapse
|
5
|
Zhang Y, Yin X, Chen YC, Chen H, Jin M, Ma Y, Yong W, Muthaiah VPK, Xia W, Yin X. Aberrant Brain Triple-Network Effective Connectivity Patterns in Type 2 Diabetes Mellitus. Diabetes Ther 2024; 15:1215-1229. [PMID: 38578396 PMCID: PMC11043308 DOI: 10.1007/s13300-024-01565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
INTRODUCTION Aberrant brain functional connectivity network is thought to be related to cognitive impairment in patients with type 2 diabetes mellitus (T2DM). This study aims to investigate the triple-network effective connectivity patterns in patients with T2DM within and between the default mode network (DMN), salience network (SN), and executive control network (ECN) and their associations with cognitive declines. METHODS In total, 92 patients with T2DM and 98 matched healthy controls (HCs) were recruited and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Spectral dynamic causal modeling (spDCM) was used for effective connectivity analysis within the triple network. The posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), lateral prefrontal cortex (LPFC), supramarginal gyrus (SMG), and anterior insula (AINS) were selected as the regions of interest. Group comparisons were performed for effective connectivity calculated using the fully connected model, and the relationships between effective connectivity alterations and cognitive impairment as well as clinical parameters were detected. RESULTS Compared to HCs, patients with T2DM exhibited increased or decreased effective connectivity patterns within the triple network. Furthermore, diabetes duration was significantly negatively correlated with increased effective connectivity from the r-LPFC to the mPFC, while body mass index (BMI) was significantly positively correlated with increased effective connectivity from the l-LPFC to the l-AINS (r = - 0.353, p = 0.001; r = 0.377, p = 0.004). CONCLUSION These results indicate abnormal effective connectivity patterns within the triple network model in patients with T2DM and provide new insight into the neurological mechanisms of T2DM and related cognitive dysfunction.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Xiao Yin
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Mingxu Jin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Yuehu Ma
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Wei Yong
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | | | - Wenqing Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| |
Collapse
|
6
|
Wen X, Qu D, Liu D, Shu Y, Zhao S, Wu G, Wang Y, Cui Z, Zhang X, Chen R. Brain structural and functional signatures of multi-generational family history of suicidal behaviors in preadolescent children. Mol Psychiatry 2024; 29:484-495. [PMID: 38102486 DOI: 10.1038/s41380-023-02342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023]
Abstract
Parent-child transmission of suicidal behaviors has been extensively studied, but the investigation of a three-generation family suicide risk paradigm remains limited. In this study, we aimed to explore the behavioral and brain signatures of multi-generational family history of suicidal behaviors (FHoS) in preadolescents, utilizing a longitudinal design and the dataset from Adolescent Brain and Cognitive DevelopmentSM Study (ABCD Study®), which comprised 4 years of data and includes a total of 9,653 preadolescents. Our findings revealed that multi-generational FHoS was significantly associated with an increased risk of problematic behaviors and suicidal behaviors (suicide ideation and suicide attempt) in offspring. Interestingly, the problematic behaviors were further identified as a mediator in the multi-generational transmission of suicidal behaviors. Additionally, we observed alterations in brain structure within superior temporal gyrus (STG), precentral/postcentral cortex, posterior parietal cortex (PPC), cingulate cortex (CC), and planum temporale (PT), as well as disrupted functional connectivity of default mode network (DMN), ventral attention network (VAN), dorsal attention network (DAN), fronto-parietal network (FPN), and cingulo-opercular network (CON) among preadolescents with FHoS. These results provide compelling longitudinal evidence at the population level, highlighting the associations between multi-generational FHoS and maladaptive behavioral and neurodevelopmental outcomes in offspring. These findings underscore the need for early preventive measures aimed at mitigating the familial transmission of suicide risk and reducing the global burden of deaths among children and adolescents.
Collapse
Affiliation(s)
- Xue Wen
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Diyang Qu
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Dongyu Liu
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| | - Yinuo Shu
- Chinese Institute for Brain Research, Beijing, China
| | - Shaoling Zhao
- Chinese Institute for Brain Research, Beijing, China
| | - Guowei Wu
- Chinese Institute for Brain Research, Beijing, China
| | - Yuanyuan Wang
- Key Laboratory of Brain, Cognition and Education Sciences; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China.
| | - Xiaoqian Zhang
- Wulituo Hospital of Shijingshan District, Beijing, China.
| | - Runsen Chen
- Vanke School of Public Health, Tsinghua University, Beijing, China.
- Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Agarwal K, Joseph PV, Zhang R, Schwandt ML, Ramchandani VA, Diazgranados N, Goldman D, Momenan R. Early life stress and body-mass-index modulate brain connectivity in alcohol use disorder. Transl Psychiatry 2024; 14:43. [PMID: 38245501 PMCID: PMC10799859 DOI: 10.1038/s41398-024-02756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Early life stress (ELS) significantly increases susceptibility to alcohol use disorder (AUD) by affecting the interplay between the executive and the salience networks (SNs). The link between AUD and higher body-mass index (BMI) is known, but we lack understanding of how BMI impacts the relationship between ELS and brain connectivity in individuals with AUD. To bridge this gap, we investigated the main and interaction effects of ELS and BMI on brain connectivity in individuals with AUD compared to non-AUD participants (n = 77 sex-matched individuals per group). All participants underwent resting-state functional magnetic resonance imaging, revealing intriguing positive functional connectivity between SN seeds and brain regions involved in somatosensory processing, motor coordination and executive control. Examining the relationship of brain connectivity with ELS and BMI, we observed positive associations with the correlations of SN seeds, right anterior insula (RAIns) and supramarginal gyrus (SMG) with clusters in motor [occipital cortex, supplementary motor cortex]; anterior cingulate cortex (ACC) with clusters in frontal, or executive, control regions (middle frontal gyrus; MFG, precentral gyrus) that reportedly are involved in processing of emotionally salient stimuli (all |β | > 0.001, |p | < 0.05). Interestingly, a negative association of the interaction effect of ELS events and BMI measures with the functional connectivity of SN seeds ACC with decision-making (MFG, precentral gyrus), RAIns and RSMG with visuo-motor control regions (occipital cortex and supplementary motor cortex) (all |β | = -0.001, |p | < 0.05). These findings emphasize the moderating effect of BMI on ELS-associated SN seed brain connectivity in AUD. Understanding the neural mechanisms linking BMI, ELS and AUD can guide targeted interventions for this population.
Collapse
Affiliation(s)
- Khushbu Agarwal
- Section of Sensory Science and Metabolism, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
- National Institute of Nursing Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Paule V Joseph
- Section of Sensory Science and Metabolism, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
- National Institute of Nursing Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Rui Zhang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Melanie L Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Vijay A Ramchandani
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Nancy Diazgranados
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - David Goldman
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, 20892, USA
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Paltoglou G, Stefanaki C, Chrousos GP. Functional MRI Techniques Suggesting that the Stress System Interacts with Three Large Scale Core Brain Networks to Help Coordinate the Adaptive Response: A Systematic Review. Curr Neuropharmacol 2024; 22:976-989. [PMID: 37533249 PMCID: PMC10845086 DOI: 10.2174/1570159x21666230801151718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 08/04/2023] Open
Abstract
OBJECTIVE Synthesis of functional MRI (fMRI) and functional connectivity (FC) analysis data on human stress system (SS) function, as it relates to the dynamic function of the Salience (SN), Default Mode (DMN) and Central Executive (CEN) networks. METHODS Systematic search of Medline, Scopus, Clinical Trials.gov, and Google Scholar databases of studies published prior to September 2022 resulted in 28 full-text articles included for qualitative synthesis. RESULTS Acute stress changes the states of intra-/inter- neural network FCs and activities from those of resting, low arousal state in the SN, DMN and CEN, during which intra- and inter-network FCs and activities of all three networks are low. SS activation is positively linked to the activity of the SN and negatively to that of the DMN, while, in parallel, it is associated with an initial decrease and a subsequent increase of the intra- network FC and activity of the CEN. The FC between the DMN and the CEN increases, while those between the SN and the CEN decrease, allowing time for frontal lobe strategy input and "proper" CEN activity and task decision. SN activation is linked to sensory hypersensitivity, "impaired" memory, and a switch from serial to parallel processing, while trait mindfulness is associated with FC changes promoting CEN activity and producing a "task-ready state". CONCLUSION SS activation is tightly connected to that of the SN, with stress hormones likely potentiating the intra-network FC of the latter, attenuating that of the DMN, and causing a biphasic suppression- to-activation response of the CEN, all adaptive changes favoring proper decisions and survival.
Collapse
Affiliation(s)
- George Paltoglou
- University Research Institute of Maternal and Child Health and Precision Medicine, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children's Hospital, Athens 11527, Greece
- Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “A. & P. Kyriakou” Children's Hospital, Athens 11527, Greece
- UNESCO Chair on Adolescent Health Care, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Charikleia Stefanaki
- University Research Institute of Maternal and Child Health and Precision Medicine, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children's Hospital, Athens 11527, Greece
- UNESCO Chair on Adolescent Health Care, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children's Hospital, Athens 11527, Greece
- UNESCO Chair on Adolescent Health Care, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|