1
|
Reed EC, Silva VA, Giebel KR, Natour T, Lauten TH, Jojo CN, Schlieker AE, Case AJ. Hemoglobin alpha is a redox-sensitive mitochondrial-related protein in T-lymphocytes. Free Radic Biol Med 2025; 227:1-11. [PMID: 39586383 PMCID: PMC11757050 DOI: 10.1016/j.freeradbiomed.2024.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Hemoglobin subunits, which form the well-characterized, tetrameric, oxygen-carrying protein, have recently been described to be expressed in various non-canonical cell types. However, the exact function of hemoglobin subunits within these cells remains to be fully elucidated. Herein, we report for the first time, the expression of hemoglobin alpha-a1 (Hba-a1) in T-lymphocytes and describe its role as a mitochondrial-associated antioxidant. Within naïve T-lymphocytes, Hba-a1 mRNA and HBA protein are present and highly induced by redox perturbations, particularly those arising from the mitochondria. Additionally, preliminary data using a T-lymphocyte specific Hba-a1 knock-out mouse model indicated that the loss of Hba-a1 led to an exacerbated production of mitochondrial reactive oxygen species and inflammatory cytokines after a stress challenge, further supporting the role of HBA acting to buffer the mitochondrial redox environment. Interestingly, we observed Hba-a1 expression to be significantly upregulated or downregulated depending on T-lymphocyte polarization and metabolic state, which appeared to be controlled by both transcriptional regulation and chromatin remodeling. Altogether, these data suggest Hba-a1 may function as a crucial mitochondrial-associated antioxidant and appears to possess critical and complex functions related to T-lymphocyte activation and differentiation.
Collapse
Affiliation(s)
- Emily C Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - Valeria A Silva
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - Kristen R Giebel
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - Tatlock H Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - Caroline N Jojo
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - Abigail E Schlieker
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, USA; Department of Medical Physiology, Texas A&M University, Bryan, TX, USA.
| |
Collapse
|
2
|
Lauten TH, Elkhatib SK, Natour T, Reed EC, Jojo CN, Case AJ. T H17/Treg lymphocyte balance is regulated by beta adrenergic and cAMP signaling. Brain Behav Immun 2025; 123:1061-1070. [PMID: 39542072 DOI: 10.1016/j.bbi.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a debilitating psychological disorder that also presents with neuroimmune irregularities. Patients display elevated sympathetic tone and are at an increased risk of developing secondary autoimmune diseases. Previously, using a mouse model of repeated social defeat stress (RSDS) that recapitulates certain features of PTSD, we demonstrated that elimination of sympathetic signaling to T-lymphocytes specifically limited their ability to produce pro-inflammatory interleukin 17A (IL-17A); a cytokine implicated in the development of many autoimmune disorders. However, the mechanism linking sympathetic signaling to T-lymphocyte IL-17A production remained unclear. METHODS Using a modified version of RSDS that allows for both males and females, as well as ex vivo models of T-lymphocyte polarization, we assessed the impact and mechanism of adrenergic receptor blockade (genetically and pharmacologically) and catecholamine depletion on T-lymphocyte differentiation to IL-17A-producing subtypes (i.e., TH17). RESULTS Only pharmacological inhibition of the beta 1 and 2 adrenergic receptors (β1/2) significantly decreased circulating IL-17A levels after RSDS, but did not impact other pro-inflammatory cytokines (e.g.,IL-6, TNF-α, and IL-10). This finding was confirmed using RSDS with both global β1/2 receptor knock-out mice, as well as by adoptively transferring β1/2 knock-out T-lymphocytes into immunodeficient hosts. Ex vivo polarized T-lymphocytes produced significantly less IL-17A with the blockade of β1/2 signaling, even in the absence of exogenous sympathetic neurotransmitter supplementation, which suggested T-lymphocyte-produced catecholamines may be involved in IL-17A production. Furthermore, cyclic AMP (cAMP) was demonstrated to be mechanistically involved in driving IL-17A production in T-lymphocytes, and amplifying cAMP signaling could restore IL-17A deficits caused by the absence of β1/2 signaling. Last, removal of β1/2 and cAMP signaling, even in IL-17A polarizing conditions, promoted regulatory T-lymphocyte (Treg) polarization, suggesting adrenergic signaling plays a role in the switching between pro- and anti-inflammatory T-lymphocyte subtypes. CONCLUSIONS Our data depict a novel role for β1/2 adrenergic and cAMP signaling in the balance of TH17/Treg lymphocytes. These findings provide a new target for pharmacological therapy in both psychiatric and autoimmune diseases associated with IL-17A-related pathology.
Collapse
MESH Headings
- Animals
- Mice
- Th17 Cells/metabolism
- Th17 Cells/immunology
- Signal Transduction
- Cyclic AMP/metabolism
- Male
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/immunology
- Female
- Receptors, Adrenergic, beta-2/metabolism
- Mice, Inbred C57BL
- Interleukin-17/metabolism
- Mice, Knockout
- Receptors, Adrenergic, beta-1/metabolism
- Stress, Psychological/metabolism
- Stress, Psychological/immunology
- Social Defeat
- Disease Models, Animal
- Cell Differentiation
- Adrenergic beta-Antagonists/pharmacology
- Receptors, Adrenergic, beta/metabolism
Collapse
Affiliation(s)
- Tatlock H Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Safwan K Elkhatib
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Emily C Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Caroline N Jojo
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States.
| |
Collapse
|
3
|
Reed EC, Silva VA, Giebel KR, Natour T, Lauten TH, Jojo CN, Schleiker AE, Case AJ. Hemoglobin alpha is a redox-sensitive mitochondrial-related protein in T-lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613298. [PMID: 39345360 PMCID: PMC11429782 DOI: 10.1101/2024.09.16.613298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hemoglobin subunits, which form the well-characterized, tetrameric, oxygen-carrying protein, have recently been described to be expressed in various non-canonical cell types. However, the exact function of hemoglobin subunits within these cells remains to be fully elucidated. Herein, we report for the first time, the expression of hemoglobin alpha-a1 (Hba-a1) in T-lymphocytes and describe its role as a mitochondrial-associated antioxidant. Within naïve T-lymphocytes, Hba-a1 mRNA and HBA protein are present and highly induced by redox perturbations, particularly those arising from the mitochondria. Additionally, preliminary data using a T-lymphocyte specific Hba-a1 knock-out mouse model indicated that the loss of Hba-a1 led to an exacerbated production of mitochondrial reactive oxygen species and inflammatory cytokines after a stress challenge, further supporting the role of HBA acting to buffer the mitochondrial redox environment. Interestingly, we observed Hba-a1 expression to be significantly upregulated or downregulated depending on T-lymphocyte polarization and metabolic state, which appeared to be controlled by both transcriptional regulation and chromatin remodeling. Altogether, these data suggest Hba-a1 may function as a crucial mitochondrial-associated antioxidant and appears to possess critical and complex functions related to T-lymphocyte activation and differentiation.
Collapse
Affiliation(s)
- Emily C. Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Valeria A. Silva
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Kristen R. Giebel
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Tatlock H. Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Caroline N. Jojo
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Abigail E. Schleiker
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J. Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
4
|
Lauten TH, Elkhatib SK, Natour T, Reed EC, Jojo CN, Case AJ. Beta-adrenergic signaling and T-lymphocyte-produced catecholamines are necessary for interleukin 17A synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597633. [PMID: 38895227 PMCID: PMC11185643 DOI: 10.1101/2024.06.05.597633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Background Post-traumatic stress disorder (PTSD) is a debilitating psychological disorder that also presents with neuroimmune irregularities. Patients display elevated sympathetic tone and are at an increased risk of developing secondary autoimmune diseases. Previously, using a preclinical model of PTSD, we demonstrated that elimination of sympathetic signaling to T-lymphocytes specifically limited their ability to produce pro-inflammatory interleukin 17A (IL-17A); a cytokine implicated in the development of many autoimmune disorders. However, the mechanism linking sympathetic signaling to T-lymphocyte IL-17A production remained unclear. Methods Using a modified version of repeated social defeat stress (RSDS) that allows for both males and females, we assessed the impact of adrenergic receptor blockade (genetically and pharmacologically) and catecholamine depletion on T-lymphocyte IL-17A generation. Additionally, we explored the impact of adrenergic signaling and T-lymphocyte-produced catecholamines on both CD4+ and CD8+ T-lymphocytes polarized to IL-17A-producing phenotypes ex vivo. Results Only pharmacological inhibition of the beta 1 and 2 adrenergic receptors (β1/2) significantly decreased circulating IL-17A levels after RSDS, but did not impact other pro-inflammatory cytokines (e.g., IL-6, TNF-α, and IL-10). This finding was confirmed using RSDS with both global β1/2 receptor knock-out mice, as well as by adoptively transferring β1/2 knock-out T-lymphocytes into immunodeficient hosts. Furthermore, ex vivo polarized T-lymphocytes produced significantly less IL-17A with the blockade of β1/2 signaling, even in the absence of exogenous sympathetic neurotransmitter supplementation, which suggested T-lymphocyte-produced catecholamines may be involved in IL-17A production. Indeed, pharmacological depletion of catecholamines both in vivo and ex vivo abrogated T-lymphocyte IL-17A production demonstrating the importance of immune-generated neurotransmission in pro-inflammatory cytokine generation. Conclusions Our data depict a novel role for β1/2 adrenergic receptors and autologous catecholamine signaling during T-lymphocyte IL-17A production. These findings provide a new target for pharmacological therapy in both psychiatric and autoimmune diseases associated with IL-17A-related pathology.
Collapse
Affiliation(s)
- Tatlock H. Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Safwan K. Elkhatib
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Emily C. Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Caroline N. Jojo
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J. Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States
- Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
5
|
Lauten TH, Natour T, Case AJ. Innate and adaptive immune system consequences of post-traumatic stress disorder. Auton Neurosci 2024; 252:103159. [PMID: 38428324 PMCID: PMC11494466 DOI: 10.1016/j.autneu.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
In the field of psychiatry, biological markers are rarely, if ever, used in the diagnosis of mental health disorders. Clinicians rely primarily on patient histories and behavioral symptoms to identify specific psychopathologies, which makes diagnosis highly subjective. Moreover, therapies for mental health disorders are aimed specifically at attenuating behavioral manifestations, which overlooks the pathophysiological indices of the disease. This is highly evident in posttraumatic stress disorder (PTSD) where inflammation and immune system perturbations are becoming increasingly described. Further, patients with PTSD possess significantly elevated risks of developing comorbid inflammatory diseases such as autoimmune and cardiovascular diseases, which are likely linked (though not fully proven) to the apparent dysregulation of the immune system after psychological trauma. To date, there is little to no evidence that demonstrates current PTSD therapies are able to reverse the increased risk for psychological trauma-induced inflammatory diseases, which suggests the behavioral and somatic consequences of PTSD may not be tightly coupled. This observation provides an opportunity to explore unique mechanisms outside of the brain that contribute to the long-term pathology of PTSD. Herein, we provide an overview of neuroimmune mechanisms, describe what is known regarding innate and adaptive immunity in PTSD, and suggest new directions that are needed to advance the understanding, diagnosis, and treatment of PTSD moving forward.
Collapse
Affiliation(s)
- Tatlock H Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Tamara Natour
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States
| | - Adam J Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, TX, United States; Department of Medical Physiology, Texas A&M University, Bryan, TX, United States.
| |
Collapse
|
6
|
Alvarez MR, Alkaissi H, Rieger AM, Esber GR, Acosta ME, Stephenson SI, Maurice AV, Valencia LMR, Roman CA, Alarcon JM. The immunomodulatory effect of oral NaHCO 3 is mediated by the splenic nerve: multivariate impact revealed by artificial neural networks. J Neuroinflammation 2024; 21:79. [PMID: 38549144 PMCID: PMC10976719 DOI: 10.1186/s12974-024-03067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Stimulation of the inflammatory reflex (IR) is a promising strategy for treating systemic inflammatory disorders. Recent studies suggest oral sodium bicarbonate (NaHCO3) as a potential activator of the IR, offering a safe and cost-effective treatment approach. However, the mechanisms underlying NaHCO3-induced anti-inflammatory effects remain unclear. We investigated whether oral NaHCO3's immunomodulatory effects are mediated by the splenic nerve. Female rats received NaHCO3 or water (H2O) for four days, and splenic immune markers were assessed using flow cytometry. NaHCO3 led to a significant increase (p < 0.05, and/or partial eta squared > 0.06) in anti-inflammatory markers, including CD11bc + CD206 + (M2-like) macrophages, CD3 + CD4 + FoxP3 + cells (Tregs), and Tregs/M1-like ratio. Conversely, proinflammatory markers, such as CD11bc + CD38 + TNFα + (M1-like) macrophages, M1-like/M2-like ratio, and SSChigh/SSClow ratio of FSChighCD11bc + cells, decreased in the spleen following NaHCO3 administration. These effects were abolished in spleen-denervated rats, suggesting the necessity of the splenic nerve in mediating NaHCO3-induced immunomodulation. Artificial neural networks accurately classified NaHCO3 and H2O treatment in sham rats but failed in spleen-denervated rats, highlighting the splenic nerve's critical role. Additionally, spleen denervation independently influenced Tregs, M2-like macrophages, Tregs/M1-like ratio, and CD11bc + CD38 + cells, indicating distinct effects from both surgery and treatment. Principal component analysis (PCA) further supported the separate effects. Our findings suggest that the splenic nerve transmits oral NaHCO3-induced immunomodulatory changes to the spleen, emphasizing NaHCO3's potential as an IR activator with therapeutic implications for a wide spectrum of systemic inflammatory conditions.
Collapse
Affiliation(s)
- Milena Rodriguez Alvarez
- School of Graduate Studies & Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
- Department of Rheumatology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, 11203, USA.
| | - Hussam Alkaissi
- Division of Diabetes, Endocrinology, and Metabolic Diseases, NIH/NIDDK, Bethesda, MD, USA
| | - Aja M Rieger
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | - Guillem R Esber
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Canada
| | - Manuel E Acosta
- Mathematics and Computer Sciences Department, Barry University, Miami, FL, USA
| | - Stacy I Stephenson
- Division of Comparative Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Allison V Maurice
- Division of Comparative Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Christopher A Roman
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Juan Marcos Alarcon
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
7
|
Moshfegh CM, Elkhatib SK, Watson GF, Drake J, Taylor ZN, Reed EC, Lauten TH, Clopp AJ, Vladimirov VI, Case AJ. S100a9 Protects Against the Effects of Repeated Social Defeat Stress. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:919-929. [PMID: 37881565 PMCID: PMC10593888 DOI: 10.1016/j.bpsgos.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background Posttraumatic stress disorder, a consequence of psychological trauma, is associated with increased inflammation and an elevated risk of developing comorbid inflammatory diseases. However, the mechanistic link between this mental health disorder and inflammation remains elusive. We previously found that S100a8 and S100a9 messenger RNA, genes that encode the protein calprotectin, were significantly upregulated in T lymphocytes and positively correlated with inflammatory gene expression and the mitochondrial redox environment in these cells. Therefore, we hypothesized that genetic deletion of calprotectin would attenuate the inflammatory and redox phenotype displayed after psychological trauma. Methods We used a preclinical mouse model of posttraumatic stress disorder known as repeated social defeat stress (RSDS) combined with pharmacological and genetic manipulation of S100a9 (which functionally eliminates calprotectin). A total of 186 animals (93 control, 93 RSDS) were used in these studies. Results Unexpectedly, we observed worsening of behavioral pathology, inflammation, and the mitochondrial redox environment in mice after RSDS compared with wild-type animals. Furthermore, loss of calprotectin significantly enhanced the metabolic demand on T lymphocytes, suggesting that this protein may play an undescribed role in mitochondrial regulation. This was further supported by single-cell RNA sequencing analysis demonstrating that RSDS and loss of S100a9 primarily altered genes associated with mitochondrial function and oxidative phosphorylation. Conclusions These data demonstrate that the loss of calprotectin potentiates the RSDS-induced phenotype, which suggests that its observed upregulation after psychological trauma may provide previously unexplored protective functions.
Collapse
Affiliation(s)
- Cassandra M. Moshfegh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Safwan K. Elkhatib
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gabrielle F. Watson
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - John Drake
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas
| | - Zachary N. Taylor
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas
| | - Emily C. Reed
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Tatlock H. Lauten
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Amelia J. Clopp
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Vladimir I. Vladimirov
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas
- Department of Psychiatry, University of Arizona, Phoenix, Arizona
- Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Adam J. Case
- Department of Psychiatry and Behavioral Sciences, Texas A&M University, Bryan, Texas
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| |
Collapse
|
8
|
He S, Liu J, Xue Y, Fu T, Li Z. Sympathetic Nerves Coordinate Corneal Epithelial Wound Healing by Controlling the Mobilization of Ly6Chi Monocytes From the Spleen to the Injured Cornea. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 37682569 PMCID: PMC10500368 DOI: 10.1167/iovs.64.12.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/10/2023] [Indexed: 09/09/2023] Open
Abstract
Purpose This study aims to investigate the potential involvement of spleen-derived monocytes in the repair process following corneal epithelial abrasion. Methods A corneal epithelial abrasion model was established in male C57BL/6J mice, and the dynamic changes of monocyte subpopulations in the injured cornea were analyzed using flow cytometry. The effects of Ly6Chi monocyte depletion and local adoptive transfer of purified Ly6Chi monocytes on wound closure and neutrophil recruitment to the injured cornea were observed. The effect of sympathetic nerves on the recruitment of spleen-derived Ly6Chi monocytes to the injured cornea was also investigated using multiple methods. The emigration of fluorescence-labeled monocytes to the injured cornea was validated through intravital microscopy. Finally, differential genes between different groups were identified through high-throughput RNA sequencing and analyzed for functional enrichment, followed by verification by quantitative PCR. Results Ly6Chi monocytes were present in large numbers in the injured cornea prior to neutrophil recruitment. Predepletion of Ly6Chi monocytes significantly inhibited neutrophil recruitment to the injured cornea. Furthermore, surgical removal of the spleen significantly reduced the number of Ly6Chi monocytes in the injured cornea. Further observations revealed that sympathetic blockade significantly reduced the number of Ly6Chi monocytes recruited to the injured cornea. In contrast, administration of the β2-adrenergic receptor agonist significantly increased the number of Ly6Chi monocytes recruited to the injured cornea in animals treated with sympathectomy and catecholamine synthesis inhibition. Conclusions Our results suggest that spleen-derived Ly6Chi monocytes, under the control of the sympathetic nervous system, play a critical role in the inflammatory response following corneal injury.
Collapse
Affiliation(s)
- Siyu He
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| | - Zhijie Li
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, China
- International Ocular Surface Research Center, Institute of Ophthalmology, and Jinan University Medical School, Guangzhou, China
| |
Collapse
|