1
|
Adduri A, Kim S. Ornaments for efficient allele-specific expression estimation with bias correction. Am J Hum Genet 2024; 111:1770-1781. [PMID: 39047729 PMCID: PMC11339617 DOI: 10.1016/j.ajhg.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Allele-specific expression plays a crucial role in unraveling various biological mechanisms, including genomic imprinting and gene expression controlled by cis-regulatory variants. However, existing methods for quantification from RNA-sequencing (RNA-seq) reads do not adequately and efficiently remove various allele-specific read mapping biases, such as reference bias arising from reads containing the alternative allele that do not map to the reference transcriptome or ambiguous mapping bias caused by reads containing the reference allele that map differently from reads containing the alternative allele. We present Ornaments, a computational tool for rapid and accurate estimation of allele-specific transcript expression at unphased heterozygous loci from RNA-seq reads while correcting for allele-specific read mapping biases. Ornaments removes reference bias by mapping reads to a personalized transcriptome and ambiguous mapping bias by probabilistically assigning reads to multiple transcripts and variant loci they map to. Ornaments is a lightweight extension of kallisto, a popular tool for fast RNA-seq quantification, that improves the efficiency and accuracy of WASP, a popular tool for bias correction in allele-specific read mapping. In experiments with simulated and human lymphoblastoid cell-line RNA-seq reads with the genomes of the 1000 Genomes Project, we demonstrate that Ornaments improves the accuracy of WASP and kallisto, is nearly as efficient as kallisto, and is an order of magnitude faster than WASP per sample, with the additional cost of constructing a personalized index for multiple samples. Additionally, we show that Ornaments finds imprinted transcripts with higher sensitivity than WASP, which detects imprinted signals only at gene level.
Collapse
Affiliation(s)
- Abhinav Adduri
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Seyoung Kim
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
2
|
Aouci R, Fontaine A, Vion A, Belz L, Levi G, Narboux-Nême N. The Antidepressant Action of Fluoxetine Involves the Inhibition of Dlx5/6 in Cortical GABAergic Neurons through a TrkB-Dependent Pathway. Cells 2024; 13:1262. [PMID: 39120293 PMCID: PMC11311550 DOI: 10.3390/cells13151262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Major depressive disorder (MDD) is a complex and devastating illness that affects people of all ages. Despite the large use of antidepressants in current medical practice, neither their mechanisms of action nor the aetiology of MDD are completely understood. Experimental evidence supports the involvement of Parvalbumin-positive GABAergic neurons (PV-neurons) in the pathogenesis of MDD. DLX5 and DLX6 (DLX5/6) encode two homeodomain transcription factors involved in cortical GABAergic differentiation and function. In the mouse, the level of expression of these genes is correlated with the cortical density of PV-neurons and with anxiety-like behaviours. The same genomic region generates the lncRNA DLX6-AS1, which, in humans, participates in the GABAergic regulatory module downregulated in schizophrenia and ASD. Here, we show that the expression levels of Dlx5/6 in the adult mouse brain are correlated with the immobility time in the forced swim test, which is used to measure depressive-like behaviours. We show that the administration of the antidepressant fluoxetine (Flx) to normal mice induces, within 24 h, a rapid and stable reduction in Dlx5, Dlx6 and Dlx6-AS1 expression in the cerebral cortex through the activation of the TrkB-CREB pathway. Experimental Dlx5 overexpression counteracts the antidepressant effects induced by Flx treatment. Our findings show that one of the short-term effects of Flx administration is the reduction in Dlx5/6 expression in GABAergic neurons, which, in turn, has direct consequences on PV expression and on behavioural profiles. Variants in the DLX5/6 regulatory network could be implicated in the predisposition to depression and in the variability of patients' response to antidepressant treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicolas Narboux-Nême
- Molecular Physiology and Adaption, UMR7221 CNRS, Museum National d’Histoire Naturelle, 75005 Paris, France; (R.A.); (A.F.); (L.B.); (G.L.)
| |
Collapse
|
3
|
Zhao T, Huang C, Zhang Y, Zhu Y, Chen X, Wang T, Shao J, Meng X, Huang Y, Wang H, Wang H, Wang B, Xu D. Prenatal 1-Nitropyrene Exposure Causes Autism-Like Behavior Partially by Altering DNA Hydroxymethylation in Developing Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306294. [PMID: 38757379 PMCID: PMC11267330 DOI: 10.1002/advs.202306294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/13/2024] [Indexed: 05/18/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by social communication disability and stereotypic behavior. This study aims to investigate the impact of prenatal exposure to 1-nitropyrene (1-NP), a key component of motor vehicle exhaust, on autism-like behaviors in a mouse model. Three-chamber test finds that prenatal 1-NP exposure causes autism-like behaviors during the weaning period. Patch clamp shows that inhibitory synaptic transmission is reduced in medial prefrontal cortex of 1-NP-exposed weaning pups. Immunofluorescence finds that prenatal 1-NP exposure reduces the number of prefrontal glutamate decarboxylase 67 (GAD67) positive interneurons in fetuses and weaning pups. Moreover, prenatal 1-NP exposure retards tangential migration of GAD67-positive interneurons and downregulates interneuron migration-related genes, such as Nrg1, Erbb4, and Sema3F, in fetal forebrain. Mechanistically, prenatal 1-NP exposure reduces hydroxymethylation of interneuron migration-related genes through inhibiting ten-eleven translocation (TET) activity in fetal forebrain. Supplement with alpha-ketoglutarate (α-KG), a cofactor of TET enzyme, reverses 1-NP-induced hypohydroxymethylation at specific sites of interneuron migration-related genes. Moreover, α-KG supplement alleviates 1-NP-induced migration retardation of interneurons in fetal forebrain. Finally, maternal α-KG supplement improves 1-NP-induced autism-like behaviors in weaning offspring. In conclusion, prenatal 1-NP exposure causes autism-like behavior partially by altering DNA hydroxymethylation of interneuron migration-related genes in developing brain.
Collapse
Affiliation(s)
- Ting Zhao
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Cheng‐Qing Huang
- School of Food and BioengineeringHefei University of TechnologyHefei230009China
| | - Yi‐Hao Zhang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Yan‐Yan Zhu
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Xiao‐Xi Chen
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Tao Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Jing Shao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Xiu‐Hong Meng
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Yichao Huang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Hua Wang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - Hui‐Li Wang
- School of Food and BioengineeringHefei University of TechnologyHefei230009China
| | - Bo Wang
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| | - De‐Xiang Xu
- Department of ToxicologySchool of Public HealthAnhui Medical UniversityHefei230022China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education InstitutesAnhui Medical UniversityHefei230032China
| |
Collapse
|
4
|
Aouci R, El Soudany M, Maakoul Z, Fontaine A, Kurihara H, Levi G, Narboux-Nême N. Dlx5/6 Expression Levels in Mouse GABAergic Neurons Regulate Adult Parvalbumin Neuronal Density and Anxiety/Compulsive Behaviours. Cells 2022; 11:cells11111739. [PMID: 35681437 PMCID: PMC9179869 DOI: 10.3390/cells11111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Neuronal circuits integrating Parvalbumin-positive GABAergic inhibitory interneurons (PV) are essential for normal brain function and are often altered in psychiatric conditions. During development, Dlx5 and Dlx6 (Dlx5/6) genes are involved in the differentiation of PV-interneurons. In the adult, Dlx5/6 continue to be expressed at low levels in most telencephalic GABAergic neurons, but their importance in determining the number and distribution of adult PV-interneurons is unknown. Previously, we have shown that targeted deletion of Dlx5/6 in mouse GABAergic neurons (Dlx5/6VgatCre mice) results in altered behavioural and metabolic profiles. Here we evaluate the consequences of targeted Dlx5/6 gene dosage alterations in adult GABAergic neurons. We compare the effects on normal brain of homozygous and heterozygous (Dlx5/6VgatCre and Dlx5/6VgatCre/+ mice) Dlx5/6 deletions to those of Dlx5 targeted overexpression (GABAergicDlx5/+ mice). We find a linear correlation between Dlx5/6 allelic dosage and the density of PV-positive neurons in the adult prelimbic cortex and in the hippocampus. In parallel, we observe that Dlx5/6 expression levels in GABAergic neurons are also linearly associated with the intensity of anxiety and compulsivity-like behaviours. Our findings reinforce the notion that regulation of Dlx5/6 expression is involved in individual cognitive variability and, possibly, in the genesis of certain neuropsychiatric conditions.
Collapse
Affiliation(s)
- Rym Aouci
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Mey El Soudany
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Zakaria Maakoul
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Anastasia Fontaine
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Giovanni Levi
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
| | - Nicolas Narboux-Nême
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Team BBC, Département AVIV, Muséum National d’Histoire Naturelle, UMR-7221, 7 rue Cuvier, 75005 Paris, France; (R.A.); (M.E.S.); (Z.M.); (A.F.); (G.L.)
- Correspondence: ; Tel.: +33-140-798-027
| |
Collapse
|
5
|
Levi G, de Lombares C, Giuliani C, Iannuzzi V, Aouci R, Garagnani P, Franceschi C, Grimaud-Hervé D, Narboux-Nême N. DLX5/6 GABAergic Expression Affects Social Vocalization: Implications for Human Evolution. Mol Biol Evol 2021; 38:4748-4764. [PMID: 34132815 PMCID: PMC8557472 DOI: 10.1093/molbev/msab181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DLX5 and DLX6 are two closely related transcription factors involved in brain development and in GABAergic differentiation. The DLX5/6 locus is regulated by FoxP2, a gene involved in language evolution and has been associated with neurodevelopmental disorders and mental retardation. Targeted inactivation of Dlx5/6 in mouse GABAergic neurons (Dlx5/6VgatCre mice) results in behavioral and metabolic phenotypes notably increasing lifespan by 33%. Here, we show that Dlx5/6VgatCre mice present a hyper-vocalization and hyper-socialization phenotype. While only 7% of control mice emitted more than 700 vocalizations/10 min, 30% and 56% of heterozygous or homozygous Dlx5/6VgatCre mice emitted more than 700 and up to 1,400 calls/10 min with a higher proportion of complex and modulated calls. Hyper-vocalizing animals were more sociable: the time spent in dynamic interactions with an unknown visitor was more than doubled compared to low-vocalizing individuals. The characters affected by Dlx5/6 in the mouse (sociability, vocalization, skull, and brain shape…) overlap those affected in the "domestication syndrome". We therefore explored the possibility that DLX5/6 played a role in human evolution and "self-domestication" comparing DLX5/6 genomic regions from Neanderthal and modern humans. We identified an introgressed Neanderthal haplotype (DLX5/6-N-Haplotype) present in 12.6% of European individuals that covers DLX5/6 coding and regulatory sequences. The DLX5/6-N-Haplotype includes the binding site for GTF2I, a gene associated with Williams-Beuren syndrome, a hyper-sociability and hyper-vocalization neurodevelopmental disorder. The DLX5/6-N-Haplotype is significantly underrepresented in semi-supercentenarians (>105 years of age), a well-established human model of healthy aging and longevity, suggesting their involvement in the coevolution of longevity, sociability, and speech.
Collapse
Affiliation(s)
- Giovanni Levi
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Camille de Lombares
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Vincenzo Iannuzzi
- Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Italy
| | - Rym Aouci
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Dominique Grimaud-Hervé
- Histoire Naturelle de l’Homme Préhistorique, CNRS UMR 7194, Département H&E, Muséum National d'Histoire Naturelle, Paris, France
| | - Nicolas Narboux-Nême
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
6
|
Pan YH, Wu N, Yuan XB. Toward a Better Understanding of Neuronal Migration Deficits in Autism Spectrum Disorders. Front Cell Dev Biol 2019; 7:205. [PMID: 31620440 PMCID: PMC6763556 DOI: 10.3389/fcell.2019.00205] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/06/2019] [Indexed: 11/13/2022] Open
Abstract
Newborn neurons in developing brains actively migrate from germinal zones to designated regions before being wired into functional circuits. The motility and trajectory of migrating neurons are regulated by both extracellular factors and intracellular signaling cascades. Defects in the molecular machinery of neuronal migration lead to mis-localization of affected neurons and are considered as an important etiology of multiple developmental disorders including epilepsy, dyslexia, schizophrenia (SCZ), and autism spectrum disorders (ASD). However, the mechanisms that link neuronal migration deficits to the development of these diseases remain elusive. This review focuses on neuronal migration deficits in ASD. From a translational perspective, we discuss (1) whether neuronal migration deficits are general neuropathological characteristics of ASD; (2) how the phenotypic heterogeneity of neuronal migration disorders is generated; (3) how neuronal migration deficits lead to functional defects of brain circuits; and (4) how therapeutic intervention of neuronal migration deficits can be a potential treatment for ASD.
Collapse
Affiliation(s)
- Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Nan Wu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Sciences and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, China.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Lucchese G, Stahl B. Peptide Sharing Between Viruses and DLX Proteins: A Potential Cross-Reactivity Pathway to Neuropsychiatric Disorders. Front Neurosci 2018; 12:150. [PMID: 29618965 PMCID: PMC5871705 DOI: 10.3389/fnins.2018.00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 02/26/2018] [Indexed: 12/24/2022] Open
Abstract
The present study seeks to determine potential associations between viral infections and neuropsychiatric diseases. To address this issue, we investigated the peptide commonalities between viruses that have been related to psychiatric and neurological disorders—such as rubella, human immunodeficiency virus, and herpesviruses—and human distal-less homeobox (DLX) proteins expressed in developing brain—namely, DLX1, DLX2, DLX5, and DLX6. Peptide matching analyses revealed a high degree of pentapeptide sharing. From an immunological perspective, this overlap is relevant because pentapeptides are endowed with immunogenicity and antigenicity—that is, they are immune determinants. Moreover, infection-induced immune cross-reactions might have functional, spatial, and temporal implications related to the functions and expression patterns of DLX1 and DLX5 in the fetal and adult human brain. In sum, our data support the hypothesis that viral infections may be linked to neuropsychiatric diseases through autoimmune cross-reactions caused by molecular mimicry between viral proteins and brain-specific DLX self-antigens.
Collapse
Affiliation(s)
- Guglielmo Lucchese
- Brain Language Laboratory, Freie Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Benjamin Stahl
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Psychologische Hochschule Berlin, Berlin, Germany
| |
Collapse
|
8
|
Jin XR, Chen XS, Xiao L. MeCP2 Deficiency in Neuroglia: New Progress in the Pathogenesis of Rett Syndrome. Front Mol Neurosci 2017; 10:316. [PMID: 29046627 PMCID: PMC5632713 DOI: 10.3389/fnmol.2017.00316] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/19/2017] [Indexed: 01/24/2023] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disease predominantly caused by mutations of the methyl-CpG-binding protein 2 (MeCP2) gene. Generally, RTT has been attributed to neuron-centric dysfunction. However, increasing evidence has shown that glial abnormalities are also involved in the pathogenesis of RTT. Mice that are MeCP2-null specifically in glial cells showed similar behavioral and/or neuronal abnormalities as those found in MeCP2-null mice, a mouse model of RTT. MeCP2 deficiency in astrocytes impacts the expression of glial intermediate filament proteins such as fibrillary acidic protein (GFAP) and S100 and induces neuron toxicity by disturbing glutamate metabolism or enhancing microtubule instability. MeCP2 deficiency in oligodendrocytes (OLs) results in down-regulation of myelin gene expression and impacts myelination. While MeCP2-deficient microglia cells fail in response to environmental stimuli, release excessive glutamate, and aggravate impairment of the neuronal circuit. In this review, we mainly focus on the progress in determining the role of MeCP2 in glial cells involved in RTT, which may provide further insight into a therapeutic intervention for RTT.
Collapse
Affiliation(s)
- Xu-Rui Jin
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China.,The Cadet Brigade of Clinic Medicine, Third Military Medical University, Chongqing, China
| | - Xing-Shu Chen
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, Faculty of Basic Medicine, Collaborative Program for Brain Research, Third Military Medical University, Chongqing, China
| |
Collapse
|
9
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
10
|
Murphy E, Benítez-Burraco A. Language deficits in schizophrenia and autism as related oscillatory connectomopathies: An evolutionary account. Neurosci Biobehav Rev 2016; 83:742-764. [PMID: 27475632 DOI: 10.1016/j.neubiorev.2016.07.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 01/28/2023]
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are characterised by marked language deficits, but it is not clear how these arise from gene mutations associated with the disorders. Our goal is to narrow the gap between SZ and ASD and, ultimately, give support to the view that they represent abnormal (but related) ontogenetic itineraries for the human faculty of language. We will focus on the distinctive oscillatory profiles of the SZ and ASD brains, in turn using these insights to refine our understanding of how the brain implements linguistic computations by exploring a novel model of linguistic feature-set composition. We will argue that brain rhythms constitute the best route to interpreting language deficits in both conditions and mapping them to neural dysfunction and risk alleles of the genes. Importantly, candidate genes for SZ and ASD are overrepresented among the gene sets believed to be important for language evolution. This translational effort may help develop an understanding of the aetiology of SZ and ASD and their high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.
| | | |
Collapse
|
11
|
Benítez-Burraco A, Boeckx C. Approaching motor and language deficits in autism from below: a biolinguistic perspective. Front Integr Neurosci 2015; 9:25. [PMID: 25870545 PMCID: PMC4378279 DOI: 10.3389/fnint.2015.00025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/13/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA) Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
12
|
Kernohan KD, Vernimmen D, Gloor GB, Bérubé NG. Analysis of neonatal brain lacking ATRX or MeCP2 reveals changes in nucleosome density, CTCF binding and chromatin looping. Nucleic Acids Res 2014; 42:8356-68. [PMID: 24990380 PMCID: PMC4117782 DOI: 10.1093/nar/gku564] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ATRX and MeCP2 belong to an expanding group of chromatin-associated proteins implicated in human neurodevelopmental disorders, although their gene-regulatory activities are not fully resolved. Loss of ATRX prevents full repression of an imprinted gene network in the postnatal brain and in this study we address the mechanistic aspects of this regulation. We show that ATRX binds many imprinted domains individually but that transient co-localization between imprinted domains in the nuclei of neurons does not require ATRX. We demonstrate that MeCP2 is required for ATRX recruitment and that deficiency of either ATRX or MeCP2 causes decreased frequency of long-range chromatin interactions associated with altered nucleosome density at CTCF-binding sites and reduced CTCF occupancy. These findings indicate that MeCP2 and ATRX regulate gene expression at a subset of imprinted domains by maintaining a nucleosome configuration conducive to CTCF binding and to the maintenance of higher order chromatin structure.
Collapse
Affiliation(s)
- Kristin D Kernohan
- Department of Biochemistry, University of Western Ontario, London N6C 2V5, Canada Children's Health Research Institute, London, Canada
| | - Douglas Vernimmen
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Gregory B Gloor
- Department of Biochemistry, University of Western Ontario, London N6C 2V5, Canada
| | - Nathalie G Bérubé
- Department of Biochemistry, University of Western Ontario, London N6C 2V5, Canada Children's Health Research Institute, London, Canada Department of Paediatrics, University of Western Ontario, London N6C 2V5, Canada
| |
Collapse
|
13
|
Boeckx C, Benítez-Burraco A. The shape of the human language-ready brain. Front Psychol 2014; 5:282. [PMID: 24772099 PMCID: PMC3983487 DOI: 10.3389/fpsyg.2014.00282] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Abstract
Our core hypothesis is that the emergence of our species-specific language-ready brain ought to be understood in light of the developmental changes expressed at the levels of brain morphology and neural connectivity that occurred in our species after the split from Neanderthals–Denisovans and that gave us a more globular braincase configuration. In addition to changes at the cortical level, we hypothesize that the anatomical shift that led to globularity also entailed significant changes at the subcortical level. We claim that the functional consequences of such changes must also be taken into account to gain a fuller understanding of our linguistic capacity. Here we focus on the thalamus, which we argue is central to language and human cognition, as it modulates fronto-parietal activity. With this new neurobiological perspective in place, we examine its possible molecular basis. We construct a candidate gene set whose members are involved in the development and connectivity of the thalamus, in the evolution of the human head, and are known to give rise to language-associated cognitive disorders. We submit that the new gene candidate set opens up new windows into our understanding of the genetic basis of our linguistic capacity. Thus, our hypothesis aims at generating new testing grounds concerning core aspects of language ontogeny and phylogeny.
Collapse
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA) Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona Barcelona, Spain
| | | |
Collapse
|
14
|
Kwan KY. Transcriptional dysregulation of neocortical circuit assembly in ASD. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:167-205. [PMID: 24290386 DOI: 10.1016/b978-0-12-418700-9.00006-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorders (ASDs) impair social cognition and communication, key higher-order functions centered in the human neocortex. The assembly of neocortical circuitry is a precisely regulated developmental process susceptible to genetic alterations that can ultimately affect cognitive abilities. Because ASD is an early onset neurodevelopmental disorder that disrupts functions executed by the neocortex, miswiring of neocortical circuits has been hypothesized to be an underlying mechanism of ASD. This possibility is supported by emerging genetic findings and data from imaging studies. Recent research on neocortical development has identified transcription factors as key determinants of neocortical circuit assembly, mediating diverse processes including neuronal specification, migration, and wiring. Many of these TFs (TBR1, SOX5, FEZF2, and SATB2) have been implicated in ASD. Here, I will discuss the functional roles of these transcriptional programs in neocortical circuit development and their neurobiological implications for the emerging etiology of ASD.
Collapse
Affiliation(s)
- Kenneth Y Kwan
- Department of Human Genetics, Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
15
|
Oskvig DB, Elkahloun AG, Johnson KR, Phillips TM, Herkenham M. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav Immun 2012; 26:623-34. [PMID: 22310921 PMCID: PMC3285385 DOI: 10.1016/j.bbi.2012.01.015] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 01/07/2023] Open
Abstract
Maternal immune activation (MIA) is a risk factor for the development of schizophrenia and autism. Infections during pregnancy activate the mother's immune system and alter the fetal environment, with consequential effects on CNS function and behavior in the offspring, but the cellular and molecular links between infection-induced altered fetal development and risk for neuropsychiatric disorders are unknown. We investigated the immunological, molecular, and behavioral effects of MIA in the offspring of pregnant Sprague-Dawley rats given an intraperitoneal (0.25 mg/kg) injection of lipopolysaccharide (LPS) on gestational day 15. LPS significantly elevated pro-inflammatory cytokine levels in maternal serum, amniotic fluid, and fetal brain at 4 h, and levels decreased but remained elevated at 24 h. Offspring born to LPS-treated dams exhibited reduced social preference and exploration behaviors as juveniles and young adults. Whole genome microarray analysis of the fetal brain at 4 h post maternal LPS was performed to elucidate the possible molecular mechanisms by which MIA affects the fetal brain. We observed dysregulation of 3285 genes in restricted functional categories, with increased mRNA expression of cellular stress and cell death genes and reduced expression of developmentally-regulated and brain-specific genes, specifically those that regulate neuronal migration of GABAergic interneurons, including the Distal-less (Dlx) family of transcription factors required for tangential migration from progenitor pools within the ganglionic eminences into the cerebral cortex. Our results provide a novel mechanism by which MIA induces the widespread down-regulation of critical neurodevelopmental genes, including those previously associated with autism.
Collapse
Affiliation(s)
- Devon B. Oskvig
- Section on Functional Neuroanatomy, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Abdel G. Elkahloun
- Division of Intramural Research Programs Microarray Core Facility, NIH, Bethesda, MD, 20892 USA
| | - Kory R. Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892 USA
| | - Terry M. Phillips
- Ultramicro Immunodiagnostics Section, Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, 20892, USA
| | - Miles Herkenham
- Section on Functional Neuroanatomy, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA,Corresponding Author: Address: Bldg. 35, Rm. 1C913, Bethesda, MD 20892-3724, USA. (M. Herkenham)
| |
Collapse
|
16
|
Matsuzaki H, Iwata K, Manabe T, Mori N. Triggers for autism: genetic and environmental factors. J Cent Nerv Syst Dis 2012; 4:27-36. [PMID: 23650465 PMCID: PMC3619552 DOI: 10.4137/jcnsd.s9058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This report reviews the research on the factors that cause autism. In several studies, these factors have been verified by reproducing them in autistic animal models. Clinical research has demonstrated that genetic and environmental factors play a major role in the development of autism. However, most cases are idiopathic, and no single factor can explain the trends in the pathology and prevalence of autism. At the time of this writing, autism is viewed more as a multi-factorial disorder. However, the existence of an unknown factor that may be common in all autistic cases cannot be ruled out. It is hoped that future biological studies of autism will help construct a new theory that can interpret the pathology of autism in a coherent manner. To achieve this, large-scale epidemiological research is essential.
Collapse
Affiliation(s)
- Hideo Matsuzaki
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | |
Collapse
|
17
|
Vernes SC, Oliver PL, Spiteri E, Lockstone HE, Puliyadi R, Taylor JM, Ho J, Mombereau C, Brewer A, Lowy E, Nicod J, Groszer M, Baban D, Sahgal N, Cazier JB, Ragoussis J, Davies KE, Geschwind DH, Fisher SE. Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLoS Genet 2011; 7:e1002145. [PMID: 21765815 PMCID: PMC3131290 DOI: 10.1371/journal.pgen.1002145] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 05/07/2011] [Indexed: 11/19/2022] Open
Abstract
Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.
Collapse
Affiliation(s)
- Sonja C. Vernes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter L. Oliver
- Medical Research Council Functional Genetics Unit, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Spiteri
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Helen E. Lockstone
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rathi Puliyadi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jennifer M. Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Joses Ho
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Cedric Mombereau
- INSERM Institute du Fer à Moulin, University Pierre and Marie Curie, UMR-S 839, Paris, France
| | - Ariel Brewer
- INSERM Institute du Fer à Moulin, University Pierre and Marie Curie, UMR-S 839, Paris, France
| | - Ernesto Lowy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jérôme Nicod
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthias Groszer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- INSERM Institute du Fer à Moulin, University Pierre and Marie Curie, UMR-S 839, Paris, France
| | - Dilair Baban
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Natasha Sahgal
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jean-Baptiste Cazier
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jiannis Ragoussis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kay E. Davies
- Medical Research Council Functional Genetics Unit, University of Oxford, Oxford, United Kingdom
| | - Daniel H. Geschwind
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
- Semel Institute and Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Simon E. Fisher
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Parker-Athill EC, Tan J. Maternal immune activation and autism spectrum disorder: interleukin-6 signaling as a key mechanistic pathway. Neurosignals 2010; 18:113-28. [PMID: 20924155 DOI: 10.1159/000319828] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/30/2010] [Indexed: 12/29/2022] Open
Abstract
An emerging area of research in autism spectrum disorder (ASD) is the role of prenatal exposure to inflammatory mediators during critical developmental periods. Epidemiological data has highlighted this relationship showing significant correlations between prenatal exposure to pathogens, including influenza, and the occurrence of ASD. Although there has not been a definitive molecular mechanism established, researchers have begun to investigate this relationship as animal models of maternal infection have support- ed epidemiological findings. Several groups utilizing these animal models have found that activation of the maternal immune system, termed maternal immune activation (MIA), and more specifically the exposure of the developing fetus to maternal cytokines precipitate the neurological, immunological and behavioral abnormalities observed in the offspring of these animals. These abnormalities have correlated with clinical findings of immune dysregulation, neurological and behavioral abnormalities in some autistic individuals. Additionally, researchers have observed genetic variations in these models in genes which regulate neurological and immunological development, similar to what is observed clinically in ASD. Altogether, the role of MIA and cytokine dysregulation, as a key mediator in the neuropathological, behavioral and possibly genetic irregularities observed clinically in autism are important factors that warrant further investigation.
Collapse
Affiliation(s)
- E Carla Parker-Athill
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, University of South Florida, Tampa, FL 33613, USA
| | | |
Collapse
|
19
|
Poitras L, Yu M, Lesage-Pelletier C, Macdonald RB, Gagné JP, Hatch G, Kelly I, Hamilton SP, Rubenstein JLR, Poirier GG, Ekker M. An SNP in an ultraconserved regulatory element affects Dlx5/Dlx6 regulation in the forebrain. Development 2010; 137:3089-97. [PMID: 20702565 DOI: 10.1242/dev.051052] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dlx homeobox genes play a crucial role in the migration and differentiation of the subpallial precursor cells that give rise to various subtypes of gamma-aminobutyric acid (GABA)-expressing neurons of the forebrain, including local-circuit cortical interneurons. Aberrant development of GABAergic interneurons has been linked to several neurodevelopmental disorders, including epilepsy, schizophrenia, Rett syndrome and autism. Here, we report in mice that a single-nucleotide polymorphism (SNP) found in an autistic proband falls within a functional protein binding site in an ultraconserved cis-regulatory element. This element, I56i, is involved in regulating Dlx5/Dlx6 homeobox gene expression in the developing forebrain. We show that the SNP results in reduced I56i activity, predominantly in the medial and caudal ganglionic eminences and in streams of neurons tangentially migrating to the cortex. Reduced activity is also observed in GABAergic interneurons of the adult somatosensory cortex. The SNP affects the affinity of Dlx proteins for their binding site in vitro and reduces the transcriptional activation of the enhancer by Dlx proteins. Affinity purification using I56i sequences led to the identification of a novel regulator of Dlx gene expression, general transcription factor 2 I (Gtf2i), which is among the genes most often deleted in Williams-Beuren syndrome, a neurodevelopmental disorder. This study illustrates the clear functional consequences of a single nucleotide variation in an ultraconserved non-coding sequence in the context of developmental abnormalities associated with disease.
Collapse
Affiliation(s)
- Luc Poitras
- Center for Advanced Research in Environmental Genomics (CAREG), Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Grafodatskaya D, Chung B, Szatmari P, Weksberg R. Autism spectrum disorders and epigenetics. J Am Acad Child Adolesc Psychiatry 2010; 49:794-809. [PMID: 20643313 DOI: 10.1016/j.jaac.2010.05.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 05/05/2010] [Accepted: 05/10/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Current research suggests that the causes of autism spectrum disorders (ASD) are multifactorial and include both genetic and environmental factors. Several lines of evidence suggest that epigenetics also plays an important role in ASD etiology and that it might, in fact, integrate genetic and environmental influences to dysregulate neurodevelopmental processes. The objective of this review is to illustrate how epigenetic modifications that are known to alter gene expression without changing primary DNA sequence may play a role in the etiology of ASD. METHOD In this review, we summarize current knowledge about epigenetic modifications to genes and genomic regions possibly involved in the etiology of ASD. RESULTS Several genetic syndromes comorbid with ASD, which include Rett, Fragile X, Prader-Willi, Angelman, and CHARGE (Coloboma of the eye, Heart defects, Atresia of the nasal choanae, Retardation of growth and/or development, Genital and/or urinary abnormalities, and Ear abnormalities and deafness), all demonstrate dysregulation of epigenetic marks or epigenetic mechanisms. We report also on genes or genomic regions exhibiting abnormal epigenetic regulation in association with either syndromic (15q11-13 maternal duplication) or nonsyndromic forms of ASD. Finally, we discuss the state of current knowledge regarding the etiologic role of environmental factors linked to both the development of ASD and epigenetic dysregulation. CONCLUSION Data reviewed in this article highlight a variety of situations in which epigenetic dysregulation is associated with the development of ASD, thereby supporting a role for epigenetics in the multifactorial etiologies of ASD.
Collapse
|
21
|
Bogdanović O, Veenstra GJC. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 2009; 118:549-65. [PMID: 19506892 PMCID: PMC2729420 DOI: 10.1007/s00412-009-0221-9] [Citation(s) in RCA: 328] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/19/2009] [Accepted: 05/27/2009] [Indexed: 02/06/2023]
Abstract
DNA methylation is a major epigenetic modification in the genomes of higher eukaryotes. In vertebrates, DNA methylation occurs predominantly on the CpG dinucleotide, and approximately 60% to 90% of these dinucleotides are modified. Distinct DNA methylation patterns, which can vary between different tissues and developmental stages, exist on specific loci. Sites of DNA methylation are occupied by various proteins, including methyl-CpG binding domain (MBD) proteins which recruit the enzymatic machinery to establish silent chromatin. Mutations in the MBD family member MeCP2 are the cause of Rett syndrome, a severe neurodevelopmental disorder, whereas other MBDs are known to bind sites of hypermethylation in human cancer cell lines. Here, we review the advances in our understanding of the function of DNA methylation, DNA methyltransferases, and methyl-CpG binding proteins in vertebrate embryonic development. MBDs function in transcriptional repression and long-range interactions in chromatin and also appear to play a role in genomic stability, neural signaling, and transcriptional activation. DNA methylation makes an essential and versatile epigenetic contribution to genome integrity and function.
Collapse
Affiliation(s)
- Ozren Bogdanović
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | |
Collapse
|
22
|
Split hand/foot malformation due to chromosome 7q aberrations(SHFM1): additional support for functional haploinsufficiency as the causative mechanism. Eur J Hum Genet 2009; 17:1432-8. [PMID: 19401716 DOI: 10.1038/ejhg.2009.72] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We report on three patients with split hand/foot malformation type 1 (SHFM1). We detected a deletion in two patients and an inversion in the third, all involving chromosome 7q21q22. We performed conventional chromosomal analysis, array comparative genomic hybridization and fluorescence in situ hybridization. Both deletions included the known genes associated with SHFM1 (DLX5, DLX6 and DSS1), whereas in the third patient one of the inversion break points was located just centromeric to these genes. These observations confirm that haploinsufficiency due to either a simultaneous deletion of these genes or combined downregulation of gene expression due to a disruption in the region between these genes and a control element could be the cause of the syndrome. We review previously reported studies that support this hypothetical mechanism.
Collapse
|