1
|
Beacom MJ, Frasch MG, Lear CA, Gunn AJ. Monitoring chaos at the cot-side. Pediatr Res 2024; 96:281-282. [PMID: 38509228 PMCID: PMC11343696 DOI: 10.1038/s41390-024-03151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/02/2024] [Indexed: 03/22/2024]
Affiliation(s)
- Michael J Beacom
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Martin G Frasch
- Department of Obstetrics and Gynecology and Institute on Human Development and Disability, University of Washington School of Medicine, Seattle, WA, USA
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
2
|
Crotti M, Genoe S, Ben Itzhak N, Mailleux L, Ortibus E. The relation between neuroimaging and visual impairment in children and adolescents with cerebral palsy: A systematic review. Brain Dev 2024; 46:75-92. [PMID: 38016876 DOI: 10.1016/j.braindev.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVE The structure-function relation between magnetic resonance imaging (MRI) and visual impairment (VI) in children with cerebral palsy (CP) has not been fully unravelled. The present systematic review aims to summarize the relation between brain lesions on MRI and VI in children and adolescents with CP. METHODS PubMed, Embase, Web of Science Core Collection, and Cochrane Database were systematically searched according to the PRISMA checklist. A total of 45 articles met the inclusion criteria. RESULTS White matter lesions were most frequently associated with VI. Only 25 studies described lesions within specific structures, mainly in the optic radiations. Only four studies reported on the thalamus. 8.4% of children with CP showed no brain abnormalities on MRI. Diffusion-weighted MRI studies showed that decreased structural connectivity in the optic radiations, superior longitudinal fasciculus, posterior limb of the internal capsule, and occipital lobe is associated with more severe VI. CONCLUSIONS All types of brain lesions lead to visual dysfunctions, arguing for a comprehensive visual assessment in all children with CP. Whereas white matter damage is a well-known contributor, the exact contribution of specific visual structures requires further investigation, to enable early prediction, detection, and intervention.
Collapse
Affiliation(s)
- Monica Crotti
- KU Leuven, Department of Development and Regeneration, B-3000 Leuven, Belgium; KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium.
| | - Sarah Genoe
- KU Leuven, Faculty of Medicine, B-3000 Leuven, Belgium.
| | - Nofar Ben Itzhak
- KU Leuven, Department of Development and Regeneration, B-3000 Leuven, Belgium; KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium.
| | - Lisa Mailleux
- KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium; KU Leuven, Department of Rehabilitation Sciences, Research group for Neurorehabilitation, B-3000 Leuven, Belgium.
| | - Els Ortibus
- KU Leuven, Department of Development and Regeneration, B-3000 Leuven, Belgium; KU Leuven, Child and Youth Institute, B-3000 Leuven, Belgium.
| |
Collapse
|
3
|
Kim YJ, Kim EK, Cheon JE, Song H, Bang MS, Shin HI, Shin SH, Kim HS. Impact of Cerebellar Injury on Neurodevelopmental Outcomes in Preterm Infants With Cerebral Palsy. Am J Phys Med Rehabil 2023; 102:340-346. [PMID: 36075880 DOI: 10.1097/phm.0000000000002099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We aimed to analyze brain imaging findings and neurodevelopmental outcomes of preterm infants diagnosed with cerebral palsy. DESIGN Brain magnetic resonance imaging of preterm infants born between 23 and 32 wks' gestation and diagnosed with cerebral palsy at 2 yrs of corrected age were evaluated. Brain lesions were categorized as periventricular leukomalacia, intraventricular hemorrhage, and cerebellar hemorrhage and graded by the severity. Neurodevelopmental outcomes were assessed using the Bayley Scales of Infant and Toddler Development, Third Edition, at 18-24 mos corrected age, and the Korean Ages and Stages Questionnaire at 18 and 24 mos of corrected age. RESULTS Cerebral palsy was found in 38 children (6.1%) among 618 survivors. Cerebellar injury of high-grade cerebellar hemorrhage and/or atrophy accounted for 25%. Among patients with supratentorial lesions, those having cerebellar injury showed significantly lower scores on each Korean Ages and Stages Questionnaire domain except gross motor than patients without cerebellar injury. They also revealed a high proportion of patients below the cutoff value of Korean Ages and Stages Questionnaire in language, fine motor, and problem-solving domains ( P < 0.05) and lower Bayley Scales of Infant and Toddler Development, Third Edition, language composite scores ( P = 0.038). CONCLUSIONS Poor neurodevelopmental outcomes other than motor function were associated with cerebellar injury. Evaluation of the cerebellum may help predict functional outcomes of patients with cerebral palsy.
Collapse
Affiliation(s)
- Yoo Jinie Kim
- From the Division of Neonatology, Department of Pediatrics, Konkuk University Medical Center, Seoul, South Korea (YJK); Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea (YJK, E-KK, SHS, H-SK); Division of Neonatology, Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea (EK-K, SHS, H-SK); Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea (J-EC); Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea (HS); and Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, South Korea (MSB, H-IS)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Wallois F, Routier L, Bourel-Ponchel E. Impact of prematurity on neurodevelopment. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:341-375. [PMID: 32958184 DOI: 10.1016/b978-0-444-64150-2.00026-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The consequences of prematurity on brain functional development are numerous and diverse, and impact all brain functions at different levels. Prematurity occurs between 22 and 36 weeks of gestation. This period is marked by extreme dynamics in the physiologic maturation, structural, and functional processes. These different processes appear sequentially or simultaneously. They are dependent on genetic and/or environmental factors. Disturbance of these processes or of the fine-tuning between them, when caring for premature children, is likely to induce disturbances in the structural and functional development of the immature neural networks. These will appear as impairments in learning skills progress and are likely to have a lasting impact on the development of children born prematurely. The level of severity depends on the initial alteration, whether structural or functional. In this chapter, after having briefly reviewed the neurodevelopmental, structural, and functional processes, we describe, in a nonexhaustive manner, the impact of prematurity on the different brain, motor, sensory, and cognitive functions.
Collapse
Affiliation(s)
- Fabrice Wallois
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France.
| | - Laura Routier
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France
| | - Emilie Bourel-Ponchel
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France
| |
Collapse
|
5
|
Kuban KCK, Jara H, O'Shea TM, Heeren T, Joseph RM, Fichorova RN, Alshamrani K, Aakil A, Beaulieu F, Horn M, Douglass LM, Frazier JA, Hirtz D, Rollins JV, Cochran D, Paneth N. Association of Circulating Proinflammatory and Anti-inflammatory Protein Biomarkers in Extremely Preterm Born Children with Subsequent Brain Magnetic Resonance Imaging Volumes and Cognitive Function at Age 10 Years. J Pediatr 2019; 210:81-90.e3. [PMID: 31076229 PMCID: PMC7137312 DOI: 10.1016/j.jpeds.2019.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To examine elevated neonatal inflammatory and neurotrophic proteins from children born extremely preterm in relation to later childhood brain Magnetic Resonance Imaging volumes and cognition. STUDY DESIGN We measured circulating inflammation-related proteins and neurotrophic proteins on postnatal days 1, 7, and 14 in 166 children at 10 years of age (73 males; 93 females). Top quartile levels on ≥2 days for ≥3 inflammation-related proteins and for ≥4 neurotrophic proteins defined exposure. We examined associations among protein levels, brain Magnetic Resonance Imaging volumes, and cognition with multiple linear and logistic regressions. RESULTS Analyses were adjusted for gestational age at birth and sex. Children with ≥3 elevated inflammation-related proteins had smaller grey matter, brain stem/cerebellar, and total brain volumes than those without elevated inflammation-related proteins, adjusted for neurotrophic proteins. When adjusted for inflammation-related proteins, children with ≥4 neurotrophic proteins, compared with children with no neurotrophic proteins, had larger grey matter and total brain volumes. Higher grey matter, white matter, and cerebellum and brainstem volumes were significantly correlated with higher IQ. Grey and white matter volumes were correlated with each other (r = -0.18; P = .021), and cerebellum and brainstem was highly correlated with grey matter (r = 0.55; P < .001) and white matter (r = 0.29; P < .001). Adjusting for other brain compartments, cerebellum and brainstem was associated with IQ (P = .016), but the association with white matter was marginally significant (P = .051). Grey matter was not associated with IQ. After adjusting for brain volumes, elevated inflammation-related proteins remained significantly associated with a lower IQ, and elevated neurotrophic proteins remained associated with a higher IQ. CONCLUSIONS Newborn inflammatory and neurotrophin protein levels are associated with later brain volumes and cognition, but their effects on cognition are not entirely explained by altered brain volumes.
Collapse
Affiliation(s)
- Karl C K Kuban
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston, MA.
| | - Hernan Jara
- Department of Radiology, Boston University School of Medicine, Boston, MA
| | - T Michael O'Shea
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Timothy Heeren
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA
| | - Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Khalid Alshamrani
- Department of Radiology, Boston University School of Medicine, Boston, MA
| | - Adam Aakil
- Department of Radiology, Boston University School of Medicine, Boston, MA
| | - Forrest Beaulieu
- Department of Radiology, Boston University School of Medicine, Boston, MA
| | - Mitchell Horn
- Department of Radiology, Boston University School of Medicine, Boston, MA
| | - Laurie M Douglass
- Division of Pediatric Neurology, Department of Pediatrics, Boston Medical Center, Boston, MA
| | - Jean A Frazier
- Eunice Kennedy Shriver Center, Department of Psychiatry, UMASS Medical School/University of Massachusetts Memorial Health Care, Worcester, MA
| | - Deborah Hirtz
- National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Julie Vanier Rollins
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | - David Cochran
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics and Pediatrics, Michigan State University, East Lansing, MI
| |
Collapse
|
6
|
Sanches EF, van de Looij Y, Toulotte A, Sizonenko SV, Lei H. Mild Neonatal Brain Hypoxia-Ischemia in Very Immature Rats Causes Long-Term Behavioral and Cerebellar Abnormalities at Adulthood. Front Physiol 2019; 10:634. [PMID: 31231232 PMCID: PMC6560160 DOI: 10.3389/fphys.2019.00634] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Systemic hypoxia-ischemia (HI) often occurs during preterm birth in human. HI induces injuries to hinder brain cells mainly in the ipsilateral forebrain structures. Such HI injuries may cause lifelong disturbances in the distant regions, such as the contralateral side of the cerebellum. We aimed to evaluate behavior associated with the cerebellum, to acquire cerebellar abundant metabolic alterations using in vivo 1H magnetic resonance spectroscopy (1H MRS), and to determine GFAP, NeuN, and MBP protein expression in the left cerebellum, in adult rats after mild early postnatal HI on the right forebrain at day 3 (PND3). From PND45, HI animals exhibited increased locomotion in the open field while there is neither asymmetrical forelimb use nor coordination deficits in the motor tasks. Despite the fact that metabolic differences between two cerebellar hemispheres were noticeable, a global increase in glutamine of HI rats was observed and became significant in the left cerebellum compared to the sham-operated group. Furthermore, increases in glutamate, glycine, the sum of glutamate and glutamine and total choline, only occurred in the left cerebellum of HI rats. Remarkably, there were decreased expression of MBP and NeuN but no detectable reactive astrogliosis in the contralateral side of the cerebellum of HI rats. Taken together, the detected alterations observed in the left cerebellum of HI rats may reflect disequilibrium in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons from hypoxic-ischemic origin. Our data provides in vivo evidence of long-term changes in the corresponding cerebellum following mild neonatal HI in very immature rats, supporting the notion that systemic HI could cause cell death in the cerebellum, a distant region from the expected injury site. HIGHLIGHTS -Neonatal hypoxia-ischemia (HI) in very immature rats induces hyperactivity toward adulthood.-1H magnetic resonance spectroscopy detects long-term cerebellar metabolic changes in adult rats after neonatal HI at postnatal day 3.-Substantial decreases of expression of neuronal and myelin markers in adult rats cerebellum after neonatal cortical mild HI.
Collapse
Affiliation(s)
- Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Yohan van de Looij
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Audrey Toulotte
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Vladimir Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Hongxia Lei
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Vesoulis ZA, El Ters NM, Herco M, Whitehead HV, Mathur AM. A Web-Based Calculator for the Prediction of Severe Neurodevelopmental Impairment in Preterm Infants Using Clinical and Imaging Characteristics. CHILDREN-BASEL 2018; 5:children5110151. [PMID: 30441798 PMCID: PMC6262423 DOI: 10.3390/children5110151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 11/23/2022]
Abstract
Although the most common forms of brain injury in preterm infants have been associated with adverse neurodevelopmental outcomes, existing MRI scoring systems lack specificity, do not incorporate clinical factors, and are technically challenging to perform. The objective of this study was to develop a web-based, clinically-focused prediction system which differentiates severe neurodevelopmental outcomes from normal-moderate outcomes at two years. Infants were retrospectively identified as those who were born ≤30 weeks gestation and who had MRI imaging at term-equivalent age and neurodevelopmental testing at 18–24 months. Each MRI was scored on injury in three domains (intraventricular hemorrhage, white matter injury, and cerebellar hemorrhage) and clinical factors that were strongly predictive of an outcome were investigated. A binary logistic regression model was then generated from the composite of clinical and imaging components. A total of 154 infants were included (mean gestational age = 26.1 ± 1.8 weeks, birth weight = 889.1 ± 226.2 g). The final model (imaging score + ventilator days + delivery mode + antenatal steroids + retinopathy of prematurity requiring surgery) had strong discriminatory power for severe disability (AUC = 0.850), with a PPV (positive predictive value) of 76% and an NPV (negative predictive value) of 90%. Available as a web-based tool, it can be useful for prognostication and targeting early intervention services to infants who may benefit the most from such services.
Collapse
Affiliation(s)
- Zachary A Vesoulis
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Nathalie M El Ters
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Maja Herco
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Halana V Whitehead
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Amit M Mathur
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Spittle AJ, Morgan C, Olsen JE, Novak I, Cheong JLY. Early Diagnosis and Treatment of Cerebral Palsy in Children with a History of Preterm Birth. Clin Perinatol 2018; 45:409-420. [PMID: 30144846 DOI: 10.1016/j.clp.2018.05.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Infants born preterm are at increased risk of cerebral palsy (CP), with the risk increasing with decreasing gestational age. Although preterm children are at increased risk of CP compared with their term-born peers, most preterm children do not have CP and thus, it is important to have a standardized process for detecting those children at high risk of CP early. A combination of clinical history, neuroimaging, and physical examination is recommended to ensure early, accurate diagnosis. Early detection of CP is essential for timely early intervention to optimize outcomes for children and their families.
Collapse
Affiliation(s)
- Alicia J Spittle
- Physiotherapy, University of Melbourne, 161 Barry Street, Parkville 3052, Australia; Victorian Infant Brain Studies, Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Australia; Neonatal Services, The Royal Women's Hospitals, Cnr Flemington Road and Grattan Street, Parkville 3052, Australia.
| | - Catherine Morgan
- Cerebral Palsy Alliance, Child and Adolescent Health, The University of Sydney, Sydney NSW 2006, Australia
| | - Joy E Olsen
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Australia; Neonatal Services, The Royal Women's Hospitals, Cnr Flemington Road and Grattan Street, Parkville 3052, Australia
| | - Iona Novak
- Cerebral Palsy Alliance, Child and Adolescent Health, The University of Sydney, Sydney NSW 2006, Australia
| | - Jeanie L Y Cheong
- Physiotherapy, University of Melbourne, 161 Barry Street, Parkville 3052, Australia; Victorian Infant Brain Studies, Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Australia; Neonatal Services, The Royal Women's Hospitals, Cnr Flemington Road and Grattan Street, Parkville 3052, Australia
| |
Collapse
|
9
|
Matsufuji M, Sano N, Tsuru H, Takashima S. Neuroimaging and neuropathological characteristics of cerebellar injury in extremely low birth weight infants. Brain Dev 2017; 39:735-742. [PMID: 28527815 DOI: 10.1016/j.braindev.2017.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To determine the morphological characteristics and pathogenic factors of cerebellar injury in extremely low birth weight infants (ELBWI). SUBJECTS AND METHODS Neuroimaging examination was performed on 17 eligible surviving ELBWI. Their MR images were assessed and classified its pattern of cerebellar injuries. Brain pathology was examined on 15 patients, who isolated this neuroimaging subjects. The trend of brain pathologies was revealed. RESULTS Four types of morphological pattern were recognized: (i) the absence of major portions in the cerebellum (6/17 cases); (ii) focal cerebellar tissue loss (2/17); (iii) unilateral cerebellar atrophy/hypoplasia (3/17); (iv) small cerebellum with entrapped fourth ventricle (6/17). In cerebellar pathology, the most common findings were focal or widespread cerebellar subarachnoid hemorrhage (12/15) and olivocerebellar degeneration (12/15). In addition, one-third of the cases indicated remote cerebellar parenchymal hemorrhage. CONCLUSION In MRI-defined lesions, the absence of major portions or focal tissue loss was associated with cerebellar parenchymal hemorrhage and/or hemorrhagic infarction, that is destructive lesion. On the other hand, small cerebellum or unilateral atrophy/hypoplasia, that is impaired development, may be related to the cerebellar neuron loss due to hemosiderin deposits in the surface of the cerebellum. The cerebellar injury in ELBWI is probably caused by not only environmental factors such as hemorrhage, hypoxia-ischemia, or other deleterious effect, but also immaturity of the rapidly growing cerebellum in particular gestational age.
Collapse
Affiliation(s)
- Mayumi Matsufuji
- Department of Pediatrics, Yanagawa Institute for Developmental Disabilities, International University of Health and Welfare, Fukuoka, Japan; Department of Pediatric Neurology, Minamikyuusyu National Hospital, Kagoshima, Japan.
| | - Nozomi Sano
- Department of Pediatric Neurology, Minamikyuusyu National Hospital, Kagoshima, Japan
| | - Hisashi Tsuru
- Department of Pediatric Neurology, Minamikyuusyu National Hospital, Kagoshima, Japan
| | - Sachio Takashima
- Department of Pediatrics, Yanagawa Institute for Developmental Disabilities, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
10
|
Agyemang AA, Sveinsdóttir K, Vallius S, Sveinsdóttir S, Bruschettini M, Romantsik O, Hellström A, Smith LEH, Ohlsson L, Holmqvist B, Gram M, Ley D. Cerebellar Exposure to Cell-Free Hemoglobin Following Preterm Intraventricular Hemorrhage: Causal in Cerebellar Damage? Transl Stroke Res 2017; 8:10.1007/s12975-017-0539-1. [PMID: 28601919 PMCID: PMC5590031 DOI: 10.1007/s12975-017-0539-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/09/2017] [Indexed: 11/05/2022]
Abstract
Decreased cerebellar volume is associated with intraventricular hemorrhage (IVH) in very preterm infants and may be a principal component in neurodevelopmental impairment. Cerebellar deposition of blood products from the subarachnoid space has been suggested as a causal mechanism in cerebellar underdevelopment following IVH. Using the preterm rabbit pup IVH model, we evaluated the effects of IVH induced at E29 (3 days prior to term) on cerebellar development at term-equivalent postnatal day 0 (P0), term-equivalent postnatal day 2 (P2), and term-equivalent postnatal day 5 (P5). Furthermore, the presence of cell-free hemoglobin (Hb) in cerebellar tissue was characterized, and cell-free Hb was evaluated as a causal factor in the development of cerebellar damage following preterm IVH. IVH was associated with a decreased proliferative (Ki67-positive) portion of the external granular layer (EGL), delayed Purkinje cell maturation, and activated microglia in the cerebellar white matter. In pups with IVH, immunolabeling of the cerebellum at P0 demonstrated a widespread presence of cell-free Hb, primarily distributed in the white matter and the molecular layer. Intraventricular injection of the Hb scavenger haptoglobin (Hp) resulted in a corresponding distribution of immunolabeled Hp in the cerebellum and a partial reversal of the damaging effects observed following IVH. The results suggest that cell-free Hb is causally involved in cerebellar damage following IVH and that blocking cell-free Hb may have protective effects.
Collapse
Affiliation(s)
- Alex Adusei Agyemang
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden
| | - Kristbjörg Sveinsdóttir
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden
| | - Suvi Vallius
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden
| | - Snjolaug Sveinsdóttir
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden
| | - Matteo Bruschettini
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden
| | - Olga Romantsik
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden
| | - Ann Hellström
- Department of Ophthalmology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Magnus Gram
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden
- Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - David Ley
- Pediatrics, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, BMC C14, SE-221 84, Lund, Sweden.
| |
Collapse
|
11
|
Lee SH, Park KJ, Park DH, Kang SH, Park JY, Chung YG. Factors Associated with Clinical Outcomes in Patients with Primary Intraventricular Hemorrhage. Med Sci Monit 2017; 23:1401-1412. [PMID: 28325888 PMCID: PMC5374890 DOI: 10.12659/msm.899309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Primary intraventricular hemorrhage (PIVH) is an uncommon type of intracerebral hemorrhage. Owing to its rarity, the clinical and radiological factors affecting outcomes in patients with PIVH have not been widely studied. Material/Methods We retrospectively reviewed 112 patients (mean age 53 years) treated for PIVH at our institution from January 2004 to December 2014. Clinical and radiological parameters were analyzed 3 months after initial presentation to identify factors associated with clinical outcomes, as assessed by the Glasgow Outcome Scale (favorable ≥4, unfavorable <4). Results Of the 99 patients who underwent angiography, causative vascular abnormalities were found in 46%, and included Moyamoya disease, arteriovenous malformation, and cerebral aneurysm. At 3 months after initial presentation, 64% and 36% of patients were in the favorable and unfavorable outcome groups, respectively. The mortality rate was 19%. However, most survivors had no or mild deficits. Age, initial Glasgow Coma Scale (GCS) score, simplified acute physiology score (SAPS II), modified Graeb score, and various radiological parameters reflecting ventricular dilatation were significantly different between the groups. Specifically, a GCS score of less than 13 (p=0.015), a SAPS II score of less than 33 (p=0.039), and a dilated fourth ventricle (p=0.043) were demonstrated to be independent predictors of an unfavorable clinical outcome. Conclusions In this study we reveal independent predictors of poor outcome in primary intraventricular hemorrhage patients, and show that nearly half of the patients in our study had predisposing vascular abnormalities. Routine angiography is recommended in the evaluation of PIVH to identify potentially treatable etiologies, which may enhance long-term prognosis.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea
| | - Kyung-Jae Park
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea
| | - Dong-Hyuk Park
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea
| | - Shin-Hyuk Kang
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea
| | - Jung-Yul Park
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea
| | - Yong-Gu Chung
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Zhou J, Butler EE, Rose J. Neurologic Correlates of Gait Abnormalities in Cerebral Palsy: Implications for Treatment. Front Hum Neurosci 2017; 11:103. [PMID: 28367118 PMCID: PMC5355477 DOI: 10.3389/fnhum.2017.00103] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/20/2017] [Indexed: 01/17/2023] Open
Abstract
Cerebral palsy (CP) is the most common movement disorder in children. A diagnosis of CP is often made based on abnormal muscle tone or posture, a delay in reaching motor milestones, or the presence of gait abnormalities in young children. Neuroimaging of high-risk neonates and of children diagnosed with CP have identified patterns of neurologic injury associated with CP, however, the neural underpinnings of common gait abnormalities remain largely uncharacterized. Here, we review the nature of the brain injury in CP, as well as the neuromuscular deficits and subsequent gait abnormalities common among children with CP. We first discuss brain injury in terms of mechanism, pattern, and time of injury during the prenatal, perinatal, or postnatal period in preterm and term-born children. Second, we outline neuromuscular deficits of CP with a focus on spastic CP, characterized by muscle weakness, shortened muscle-tendon unit, spasticity, and impaired selective motor control, on both a microscopic and functional level. Third, we examine the influence of neuromuscular deficits on gait abnormalities in CP, while considering emerging information on neural correlates of gait abnormalities and the implications for strategic treatment. This review of the neural basis of gait abnormalities in CP discusses what is known about links between the location and extent of brain injury and the type and severity of CP, in relation to the associated neuromuscular deficits, and subsequent gait abnormalities. Targeted treatment opportunities are identified that may improve functional outcomes for children with CP. By providing this context on the neural basis of gait abnormalities in CP, we hope to highlight areas of further research that can reduce the long-term, debilitating effects of CP.
Collapse
Affiliation(s)
- Joanne Zhou
- Department of Orthopaedic Surgery, Stanford UniversityStanford, CA, USA; Motion and Gait Analysis Lab, Lucile Packard Children's HospitalPalo Alto, CA, USA
| | - Erin E Butler
- Thayer School of Engineering, Dartmouth CollegeHanover, NH, USA; Neukom Institute for Computational Sciences, Dartmouth CollegeHanover, NH, USA
| | - Jessica Rose
- Department of Orthopaedic Surgery, Stanford UniversityStanford, CA, USA; Motion and Gait Analysis Lab, Lucile Packard Children's HospitalPalo Alto, CA, USA
| |
Collapse
|
13
|
Venkatesan C. Outcome of Cerebellar Injury with Intraventricular Hemorrhage. Pediatr Neurol Briefs 2015; 29:12. [PMID: 26933555 PMCID: PMC4747287 DOI: 10.15844/pedneurbriefs-29-2-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Investigators from the Department of Pediatric Neurology, Morinomiya Hospital, Osaka, Japan performed a retrospective IRB approved study of the prevalence of cerebellar injury (CI) and effect on functional outcomes among preterm children with intraventricular hemorrhage (IVH) and cerebral palsy (CP), comparing them to infants with post-hemorrhagic hydrocephalus (PH).
Collapse
Affiliation(s)
- Charu Venkatesan
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Correspondence: Dr. Charu Venkatesan, E-mail:
| |
Collapse
|