1
|
Iyer SH, Hinman JE, Warren T, Matthews SA, Simeone TA, Simeone KA. Altered ventilatory responses to hypercapnia-hypoxia challenges in a preclinical SUDEP model involve orexin neurons. Neurobiol Dis 2024; 199:106592. [PMID: 38971479 DOI: 10.1016/j.nbd.2024.106592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Failure to recover from repeated hypercapnia and hypoxemia (HH) challenges caused by severe GCS and postictal apneas may contribute to sudden unexpected death in epilepsy (SUDEP). Our previous studies found orexinergic dysfunction contributes to respiratory abnormalities in a preclinical model of SUDEP, Kcna1-/- mice. Here, we developed two gas challenges consisting of repeated HH exposures and used whole body plethysmography to determine whether Kcna1-/- mice have detrimental ventilatory responses. Kcna1-/- mice exhibited an elevated ventilatory response to a mild repeated hypercapnia-hypoxia (HH) challenge compared to WT. Moreover, 71% of Kcna1-/- mice failed to survive a severe repeated HH challenge, whereas all WT mice recovered. We next determined whether orexin was involved in these differences. Pretreating Kcna1-/- mice with a dual orexin receptor antagonist rescued the ventilatory response during the mild challenge and all subjects survived the severe challenge. In ex vivo extracellular recordings in the lateral hypothalamus of coronal brain slices, we found reducing pH either inhibits or stimulates putative orexin neurons similar to other chemosensitive neurons; however, a significantly greater percentage of putative orexin neurons from Kcna1-/-mice were stimulated and the magnitude of stimulation was increased resulting in augmentation of the calculated chemosensitivity index relative to WT. Collectively, our data suggest that increased chemosensitive activity of orexin neurons may be pathologic in the Kcna1-/- mouse model of SUDEP, and contribute to elevated ventilatory responses. Our preclinical data suggest that those at high risk for SUDEP may be more sensitive to HH challenges, whether induced by seizures or other means; and the depth and length of the HH exposure could dictate the probability of survival.
Collapse
Affiliation(s)
- Shruthi H Iyer
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Jillian E Hinman
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Ted Warren
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Stephanie A Matthews
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Timothy A Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Kristina A Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
2
|
Devère M, Takhlidjt S, Prévost G, Chartrel N, Leprince J, Picot M. The 26RFa (QRFP)/GPR103 Neuropeptidergic System: A Key Regulator of Energy and Glucose Metabolism. Neuroendocrinology 2024:1-17. [PMID: 38599200 DOI: 10.1159/000538629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Obesity and type 2 diabetes are strongly associated pathologies, currently considered as a worldwide epidemic problem. Understanding the mechanisms that drive the development of these diseases would enable to develop new therapeutic strategies for their prevention and treatment. Particularly, the role of the brain in energy and glucose homeostasis has been studied for 2 decades. In specific, the hypothalamus contains well-identified neural networks that regulate appetite and potentially also glucose homeostasis. A new concept has thus emerged, suggesting that obesity and diabetes could be due to a dysfunction of the same, still poorly understood, neural networks. SUMMARY The neuropeptide 26RFa (also termed QRFP) belongs to the family of RFamide regulatory peptides and has been identified as the endogenous ligand of the human G protein-coupled receptor GPR103 (QRFPR). The primary structure of 26RFa is strongly conserved during vertebrate evolution, suggesting its crucial roles in the control of vital functions. Indeed, the 26RFa/GPR103 peptidergic system is reported to be involved in the control of various neuroendocrine functions, notably the control of energy metabolism in which it plays an important role, both centrally and peripherally, since 26RFa regulates feeding behavior, thermogenesis and lipogenesis. Moreover, 26RFa is reported to control glucose homeostasis both peripherally, where it acts as an incretin, and centrally, where the 26RFa/GPR103 system relays insulin signaling in the brain to control glucose metabolism. KEY MESSAGES This review gives a comprehensive overview of the role of the 26RFa/GPR103 system as a key player in the control of energy and glucose metabolism. In a pathophysiological context, this neuropeptidergic system represents a prime therapeutic target whose mechanisms are highly relevant to decipher.
Collapse
Affiliation(s)
- Mélodie Devère
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Saloua Takhlidjt
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Gaëtan Prévost
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Rouen Normandie, Inserm, Normandie University, NorDiC UMR 1239, CHU Rouen, Rouen, France
| | - Nicolas Chartrel
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Jérôme Leprince
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- University Rouen Normandie, Normandie University, INSERM US 51, CNRS UAR 2026, HeRacLeS, Rouen, France
| | - Marie Picot
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| |
Collapse
|
3
|
Le N, Sayers S, Mata-Pacheco V, Wagner EJ. The PACAP Paradox: Dynamic and Surprisingly Pleiotropic Actions in the Central Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:877647. [PMID: 35721722 PMCID: PMC9198406 DOI: 10.3389/fendo.2022.877647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), a pleiotropic neuropeptide, is widely distributed throughout the body. The abundance of PACAP expression in the central and peripheral nervous systems, and years of accompanying experimental evidence, indicates that PACAP plays crucial roles in diverse biological processes ranging from autonomic regulation to neuroprotection. In addition, PACAP is also abundantly expressed in the hypothalamic areas like the ventromedial and arcuate nuclei (VMN and ARC, respectively), as well as other brain regions such as the nucleus accumbens (NAc), bed nucleus of stria terminalis (BNST), and ventral tegmental area (VTA) - suggesting that PACAP is capable of regulating energy homeostasis via both the homeostatic and hedonic energy balance circuitries. The evidence gathered over the years has increased our appreciation for its function in controlling energy balance. Therefore, this review aims to further probe how the pleiotropic actions of PACAP in regulating energy homeostasis is influenced by sex and dynamic changes in energy status. We start with a general overview of energy homeostasis, and then introduce the integral components of the homeostatic and hedonic energy balance circuitries. Next, we discuss sex differences inherent to the regulation of energy homeostasis via these two circuitries, as well as the activational effects of sex steroid hormones that bring about these intrinsic disparities between males and females. Finally, we explore the multifaceted role of PACAP in regulating homeostatic and hedonic feeding through its actions in regions like the NAc, BNST, and in particular the ARC, VMN and VTA that occur in sex- and energy status-dependent ways.
Collapse
Affiliation(s)
- Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Veronica Mata-Pacheco
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
4
|
Pantazis CB, James MH, O’Connor S, Shin N, Aston-Jones G. Orexin-1 receptor signaling in ventral tegmental area mediates cue-driven demand for cocaine. Neuropsychopharmacology 2022; 47:741-751. [PMID: 34635803 PMCID: PMC8782853 DOI: 10.1038/s41386-021-01173-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 02/03/2023]
Abstract
Drug-associated sensory cues increase motivation for drug and the orexin system is importantly involved in this stimulus-enhanced motivation. Ventral tegmental area (VTA) is a major target by which orexin signaling modulates reward behaviors, but it is unknown whether this circuit is necessary for cue-driven motivation for cocaine. Here, we investigated the role of VTA orexin signaling in cue-driven motivation for cocaine using a behavioral economics (BE) paradigm. We found that infusion of the orexin-1 receptor (Ox1R) antagonist SB-334867 (SB) into VTA prior to BE testing reduced motivation when animals were trained to self-administer cocaine with discrete cues and tested on BE with those cues. SB had no effect when animals were trained to self-administer cocaine without cues or tested on BE without cues, indicating that learning to associate cues with drug delivery during self-administration training was necessary for cues to recruit orexin signaling in VTA. These effects were specific to VTA, as injections of SB immediately dorsal had no effect. Moreover, intra-VTA SB did not have an impact on locomotor activity, or low- or high-effort consumption of sucrose. Finally, we microinjected a novel retrograde adeno-associated virus (AAVretro) containing an orexin-specific short hairpin RNA (OxshRNA) into VTA to knock down orexin in the hypothalamus-VTA circuit. These injections significantly reduced orexin expression in lateral hypothalamus (LH) and decreased cue-driven motivation. These studies demonstrate a role for orexin signaling in VTA, specifically when cues predict drug reward.
Collapse
Affiliation(s)
- Caroline B. Pantazis
- grid.430387.b0000 0004 1936 8796Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ USA ,grid.94365.3d0000 0001 2297 5165Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Morgan H. James
- grid.430387.b0000 0004 1936 8796Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers Unviversity, Piscataway, NJ USA
| | - Shayna O’Connor
- grid.430387.b0000 0004 1936 8796Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ USA
| | - Noah Shin
- grid.430387.b0000 0004 1936 8796Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ USA ,grid.430387.b0000 0004 1936 8796Cell Biology and Neuroscience Department, Rutgers University-New Brunswick, Piscataway, NJ USA
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University/Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA.
| |
Collapse
|
5
|
Gao HR, Wu ZJ, Wu SB, Gao HY, Wang J, Zhang JL, Zhou MQ. Roles of central orexinergic system on cardiovascular function and acupuncture on intervention of cardiovascular risk: Orexinergic system mediate the role of acupuncture? Neuropeptides 2021; 87:102132. [PMID: 33636511 DOI: 10.1016/j.npep.2021.102132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/09/2021] [Accepted: 02/11/2021] [Indexed: 12/26/2022]
Abstract
Central orexinergic system contributes to the regulation of cardiovascular function. Orexinergic neurons receiving projections of nerve fibers from multiple structures of brain which involved in control and regulation of cardiovascular function locate in hypothalamus, and their axon terminals widely project to various central structures where orexins receptors are expressed. Here, we summarize the present knowledge that describes the influence of central orexinergic system on cardiovascular activity, the relevance of dysfunction in central orexinergic system with hypertension and psychological stress induced cardiovascular reactivity which are serious risk factors for cardiovascular disease and cardiovascular death. We propose that central orexinergic system may be potentially important targets for the prevention of cardiovascular disease and cardiovascular death, and different orexinergic system involved neuronal circuits may be involved in distinct cardiovascular functions. Acupuncture having bidirectional regulatory ability and a much lower incidence of side effects can prevent disease. We review the improvement of acupuncture on hypertension and psychological stress induced cardiovascular reactivity. We think that acupuncture intervenes hypertension and psychological stress induced cardiovascular reactivity to prevent cardiovascular disease and cardiovascular death. We also summarize relation between acupuncture and central orexinergic system. We propose a hypothesis that acupuncture improve hypertension and psychological stress induced cardiovascular reactivity through regulating central orexinergic system. The knowledge is beneficial for the development of potential therapeutic targets and methods to prevent cardiovascular disease and cardiovascular death.
Collapse
Affiliation(s)
- He-Ren Gao
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Zi-Jian Wu
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Sheng-Bing Wu
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - He-Yuan Gao
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Jie Wang
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jin-Li Zhang
- Anhui Vocational College of Grain Engineering, Hefei, China
| | - Mei-Qi Zhou
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China; Bozhou Institute of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine, Bozhou, China.
| |
Collapse
|
6
|
Impact of sex and depressed mood on the central regulation of cardiac autonomic function. Neuropsychopharmacology 2020; 45:1280-1288. [PMID: 32152473 PMCID: PMC7298013 DOI: 10.1038/s41386-020-0651-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
Abstract
Cardiac autonomic dysregulation has been implicated in the comorbidity of major psychiatric disorders and cardiovascular disease, potentially through dysregulation of physiological responses to negative stressful stimuli (here, shortened to stress response). Further, sex differences in these comorbidities are substantial. Here, we tested the hypothesis that mood- and sex-dependent alterations in brain circuitry implicated in the regulation of the stress response are associated with reduced peripheral parasympathetic activity during negative emotional arousal. Fifty subjects (28 females) including healthy controls and individuals with major depression, bipolar psychosis and schizophrenia were evaluated. Functional magnetic resonance imaging and physiology (cardiac pulse) data were acquired during a mild visual stress reactivity challenge. Associations between changes in activity and functional connectivity of the stress response circuitry and variations in cardiovagal activity [normalized high frequency power of heart rate variability (HFn)] were evaluated using GLM analyses, including interactions with depressed mood and sex across disorders. Our results revealed that in women with high depressed mood, lower cardiovagal activity in response to negative affective stimuli was associated with greater activation of hypothalamus and right amygdala and reduced connectivity between hypothalamus and right orbitofrontal cortex, amygdala, and hippocampus. No significant associations were observed in women with low levels of depressed mood or men. Our results revealed mood- and sex-dependent interactions in the central regulation of cardiac autonomic activity in response to negative affective stimuli. These findings provide a potential pathophysiological mechanism for previously observed sex differences in the comorbidity of major depression and cardiovascular disease.
Collapse
|
7
|
Barnett S, Li A. Orexin in Respiratory and Autonomic Regulation, Health and Diseases. Compr Physiol 2020; 10:345-363. [DOI: 10.1002/cphy.c190013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Ciarlone GE, Hinojo CM, Stavitzski NM, Dean JB. CNS function and dysfunction during exposure to hyperbaric oxygen in operational and clinical settings. Redox Biol 2019; 27:101159. [PMID: 30902504 PMCID: PMC6859559 DOI: 10.1016/j.redox.2019.101159] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022] Open
Abstract
Hyperbaric oxygen (HBO2) is breathed during hyperbaric oxygen therapy and during certain undersea pursuits in diving and submarine operations. What limits exposure to HBO2 in these situations is the acute onset of central nervous system oxygen toxicity (CNS-OT) following a latent period of safe oxygen breathing. CNS-OT presents as various non-convulsive signs and symptoms, many of which appear to be of brainstem origin involving cranial nerve nuclei and autonomic and cardiorespiratory centers, which ultimately spread to higher cortical centers and terminate as generalized tonic-clonic seizures. The initial safe latent period makes the use of HBO2 practical in hyperbaric and undersea medicine; however, the latent period is highly variable between individuals and within the same individual on different days, making it difficult to predict onset of toxic indications. Consequently, currently accepted guidelines for safe HBO2 exposure are highly conservative. This review examines the disorder of CNS-OT and summarizes current ideas on its underlying pathophysiology, including specific areas of the CNS and fundamental neural and redox signaling mechanisms that are thought to be involved in seizure genesis and propagation. In addition, conditions that accelerate the onset of seizures are discussed, as are current mitigation strategies under investigation for neuroprotection against redox stress while breathing HBO2 that extend the latent period, thus enabling safer and longer exposures for diving and medical therapies.
Collapse
Affiliation(s)
- Geoffrey E Ciarlone
- Undersea Medicine Department, Naval Medical Research Center, 503 Robert Grant Ave., Silver Spring, MD, USA
| | - Christopher M Hinojo
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Nicole M Stavitzski
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jay B Dean
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
9
|
Fang YY, Yamaguchi T, Song SC, Tritsch NX, Lin D. A Hypothalamic Midbrain Pathway Essential for Driving Maternal Behaviors. Neuron 2019; 98:192-207.e10. [PMID: 29621487 DOI: 10.1016/j.neuron.2018.02.019] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/11/2018] [Accepted: 02/21/2018] [Indexed: 01/03/2023]
Abstract
Maternal behaviors are essential for the survival of the young. Previous studies implicated the medial preoptic area (MPOA) as an important region for maternal behaviors, but details of the maternal circuit remain incompletely understood. Here we identify estrogen receptor alpha (Esr1)-expressing cells in the MPOA as key mediators of pup approach and retrieval. Reversible inactivation of MPOAEsr1+ cells impairs those behaviors, whereas optogenetic activation induces immediate pup retrieval. In vivo recordings demonstrate preferential activation of MPOAEsr1+ cells during maternal behaviors and changes in MPOA cell responses across reproductive states. Furthermore, channelrhodopsin-assisted circuit mapping reveals a strong inhibitory projection from MPOAEsr1+ cells to ventral tegmental area (VTA) non-dopaminergic cells. Pathway-specific manipulations reveal that this projection is essential for driving pup approach and retrieval and that VTA dopaminergic cells are reliably activated during those behaviors. Altogether, this study provides new insight into the neural circuit that generates maternal behaviors.
Collapse
Affiliation(s)
- Yi-Ya Fang
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Takashi Yamaguchi
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Soomin C Song
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, 1 Park Avenue, New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
10
|
Connectional architecture of a mouse hypothalamic circuit node controlling social behavior. Proc Natl Acad Sci U S A 2019; 116:7503-7512. [PMID: 30898882 PMCID: PMC6462064 DOI: 10.1073/pnas.1817503116] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
How hypothalamic cellular heterogeneity maps onto circuit connectivity, and the relationship of this anatomical mapping to behavioral function, remain poorly understood. Here we systematically map the connectivity of estrogen receptor-1–expressing neurons in the ventromedial hypothalamus (VMHvlEsr1), which control aggression and related social behaviors, using multiple viral-genetic tracers. Rather than a simple feed-forward sensory-to-motor processing stream, we find high convergence (fan-in) and divergence (fan-out) in VMHvlEsr1 inputs and projections, respectively, with massive feedback. However, outputs are split into two subpopulations that project either posteriorly, to premotor structures, or anteriorly back to the amygdala and hypothalamus. This fan-in/-out system architecture is consistent with “antenna” and “broadcasting” functions for VMHvlEsr1 neurons, with the feedback pathway possibly controlling behavioral decisions and internal state. Type 1 estrogen receptor-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvlEsr1) play a causal role in the control of social behaviors, including aggression. Here we use six different viral-genetic tracing methods to systematically map the connectional architecture of VMHvlEsr1 neurons. These data reveal a high level of input convergence and output divergence (“fan-in/fan-out”) from and to over 30 distinct brain regions, with a high degree (∼90%) of bidirectionality, including both direct as well as indirect feedback. Unbiased collateralization mapping experiments indicate that VMHvlEsr1 neurons project to multiple targets. However, we identify two anatomically distinct subpopulations with anterior vs. posterior biases in their collateralization targets. Nevertheless, these two subpopulations receive indistinguishable inputs. These studies suggest an overall system architecture in which an anatomically feed-forward sensory-to-motor processing stream is integrated with a dense, highly recurrent central processing circuit. This architecture differs from the “brain-inspired,” hierarchical feed-forward circuits used in certain types of artificial intelligence networks.
Collapse
|
11
|
Bastianini S, Silvani A. Clinical implications of basic research. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x18789327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Stefano Bastianini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Sclocco R, Beissner F, Bianciardi M, Polimeni JR, Napadow V. Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. Neuroimage 2017; 168:412-426. [PMID: 28232189 DOI: 10.1016/j.neuroimage.2017.02.052] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/30/2017] [Accepted: 02/19/2017] [Indexed: 12/19/2022] Open
Abstract
The human brainstem plays a central role in connecting the cerebrum, the cerebellum and the spinal cord to one another, hosting relay nuclei for afferent and efferent signaling, and providing source nuclei for several neuromodulatory systems that impact central nervous system function. While the investigation of the brainstem with functional or structural magnetic resonance imaging has been hampered for years due to this brain structure's physiological and anatomical characteristics, the field has seen significant advances in recent years thanks to the broader adoption of ultrahigh-field (UHF) MRI scanning. In the present review, we focus on the advantages offered by UHF in the context of brainstem imaging, as well as the challenges posed by the investigation of this complex brain structure in terms of data acquisition and analysis. We also illustrate how UHF MRI can shed new light on the neuroanatomy and neurophysiology underlying different brainstem-based circuitries, such as the central autonomic network and neurotransmitter/neuromodulator systems, discuss existing and foreseeable clinical applications to better understand diseases such as chronic pain and Parkinson's disease, and explore promising future directions for further improvements in brainstem imaging using UHF MRI techniques.
Collapse
Affiliation(s)
- Roberta Sclocco
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, CNY 149-2301, 13th St. Charlestown, Boston, MA 02129, USA; Department of Radiology, Logan University, Chesterfield, MO, USA.
| | - Florian Beissner
- Somatosensory and Autonomic Therapy Research, Institute for Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Marta Bianciardi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, CNY 149-2301, 13th St. Charlestown, Boston, MA 02129, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, CNY 149-2301, 13th St. Charlestown, Boston, MA 02129, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vitaly Napadow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, CNY 149-2301, 13th St. Charlestown, Boston, MA 02129, USA; Department of Radiology, Logan University, Chesterfield, MO, USA
| |
Collapse
|
13
|
Chartrel N, Picot M, El Medhi M, Arabo A, Berrahmoune H, Alexandre D, Maucotel J, Anouar Y, Prévost G. The Neuropeptide 26RFa (QRFP) and Its Role in the Regulation of Energy Homeostasis: A Mini-Review. Front Neurosci 2016; 10:549. [PMID: 27965532 PMCID: PMC5126098 DOI: 10.3389/fnins.2016.00549] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/15/2016] [Indexed: 01/09/2023] Open
Abstract
This mini-review deals with the neuropeptide 26RFa (or QRFP) which is a member of the RFamide peptide family discovered simultaneously by three groups in 2003. 26RFa (or its N-extended form 43RFa) was subsequently shown to be the endogenous ligand of the human orphan receptor GPR103. In the brain, 26RFa and GPR103mRNA are primarily expressed in hypothalamic nuclei involved in the control of feeding behavior, and at the periphery, the neuropeptide and its receptor are present in abundance in the gut and the pancreatic islets, suggesting that 26RFa is involved in the regulation of energy metabolism. Indeed, 26RFa stimulates food intake when injected centrally, and its orexigenic effect is even more pronounced in obese animals. The expression of 26RFa is up-regulated in the hypothalamus of obese animals, supporting that the 26RFa/GPR103 system may play a role in the development and/or maintenance of the obese status. Recent data indicate that 26RFa is also involved in the regulation of glucose homeostasis. 26RFa reduces glucose-induced hyperglycemia, increases insulin sensitivity and insulinemia. Furthermore, an oral ingestion of glucose strongly stimulates 26RFa release by the gut, indicating that 26RFa is a novel incretin. Finally, 26RFa is able to prevent pancreatic β cell death and apoptosis. This brief overview reveals that 26RFa is a key neuropeptide in the regulation of energy metabolism. Further fields of research are suggested including the pathophysiological implication of the 26RFa/GPR103 system.
Collapse
Affiliation(s)
- Nicolas Chartrel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Marie Picot
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Mouna El Medhi
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Arnaud Arabo
- University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Hind Berrahmoune
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy UniversityMont-Saint-Aignan, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Institute for Research and Innovation in Biomedecine, University Hospital of Rouen, University of Rouen, Normandy UniversityRouen, France
| | - David Alexandre
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Julie Maucotel
- University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Youssef Anouar
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Gaëtan Prévost
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Normandy UniversityMont-Saint-Aignan, France; Department of Endocrinology, Diabetes and Metabolic Diseases, Institute for Research and Innovation in Biomedecine, University Hospital of Rouen, University of Rouen, Normandy UniversityRouen, France
| |
Collapse
|
14
|
Mikulášková B, Maletínská L, Zicha J, Kuneš J. The role of food intake regulating peptides in cardiovascular regulation. Mol Cell Endocrinol 2016; 436:78-92. [PMID: 27450151 DOI: 10.1016/j.mce.2016.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022]
Abstract
Obesity is a risk factor that worsens cardiovascular events leading to higher morbidity and mortality. However, the exact mechanisms of relation between obesity and cardiovascular events are unclear. Nevertheless, it has been demonstrated that pharmacological therapy for obesity has great potential to improve some cardiovascular problems. Therefore, it is important to determine the common mechanisms regulating both food intake and blood pressure. Several hormones produced by peripheral tissues work together with neuropeptides involved in the regulation of both food intake and blood pressure. Anorexigenic (food intake lowering) hormones such as leptin, glucagon-like peptide-1 and cholecystokinin cooperate with α-melanocyte-stimulating hormone, cocaine- and amphetamine-regulated peptide as well as prolactin-releasing peptide. Curiously their collective actions result in increased sympathetic activity, especially in the kidney, which could be one of the factors responsible for the blood pressure increases seen in obesity. On the other hand, orexigenic (food intake enhancing) peptides, especially ghrelin released from the stomach and acting in the brain, cooperates with orexins, neuropeptide Y, melanin-concentrating hormone and galanin, which leads to decreased sympathetic activity and blood pressure. This paradox should be intensively studied in the future. Moreover, it is important to know that the hypothalamus together with the brainstem seem to be major structures in the regulation of food intake and blood pressure. Thus, the above mentioned regions might be essential brain components in the transmission of peripheral signals to the central effects. In this short review, we summarize the current information on cardiovascular effects of food intake regulating peptides.
Collapse
Affiliation(s)
- B Mikulášková
- Institute of Physiology AS CR, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - L Maletínská
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - J Zicha
- Institute of Physiology AS CR, Prague, Czech Republic
| | - J Kuneš
- Institute of Physiology AS CR, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic.
| |
Collapse
|
15
|
López JM, Morales L, González A. Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis. BRAIN, BEHAVIOR AND EVOLUTION 2016; 88:127-146. [DOI: 10.1159/000449278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
Abstract
The present immunohistochemical study represents a detailed spatiotemporal analysis of the localization of orexin-immunoreactive (OX-ir) cells and fibers throughout development in the brain of the anuran amphibian Xenopus laevis, a model frequently used in developmental studies. Anurans undergo remarkable physiological changes during the early life stages, and very little is known about the ontogeny and the localization of the centers that control functions such as appetite and feed ingestion in the developing brain. We examined the onset of the orexinergic system, demonstrated to be involved in appetite regulation, using antibodies against mammalian orexin-A and orexin-B peptides. Simultaneous detection of orexins with other territorial markers was used to assess the precise location of the orexinergic cells in the hypothalamus, analyzed within a segmental paradigm. Double staining of orexins and tyrosine hydroxylase served to evaluate possible interactions with the catecholaminergic systems. At early embryonic stages, the first OX-ir cells were detected in the hypothalamus and, soon after, long descending projections were observed through the brainstem to the spinal cord. As brain development proceeded, the double-staining techniques demonstrated that this OX-ir cell group was located in the suprachiasmatic nucleus within the alar hypothalamus. Throughout larval development, the number of OX-ir cells increased notably and a widespread fiber network that innervated the main areas of the forebrain and brainstem was progressively formed, including innervation in the posterior tubercle and mesencephalon, the locus coeruleus, and the nucleus of the solitary tract where catecholaminergic cells are present. In addition, orexinergic cells were detected in the preoptic area and the tuberal hypothalamus only at late prometamorphic stages. The final distribution pattern, largely similar to that of the adult, was achieved through metamorphic climax. The early expression of orexins in Xenopus suggests important roles in brain development in the embryonic period before feeding, and the progression of the temporal and spatial complexity of the orexinergic system might be correlated to the maturation of appetite control regulation, among other functions.
Collapse
|
16
|
Chitravanshi VC, Kawabe K, Sapru HN. Stimulation of the hypothalamic arcuate nucleus increases brown adipose tissue nerve activity via hypothalamic paraventricular and dorsomedial nuclei. Am J Physiol Heart Circ Physiol 2016; 311:H433-44. [PMID: 27402666 DOI: 10.1152/ajpheart.00176.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/01/2016] [Indexed: 11/22/2022]
Abstract
Hypothalamic arcuate nucleus (ARCN) stimulation elicited increases in sympathetic nerve activity (IBATSNA) and temperature (TBAT) of interscapular brown adipose tissue (IBAT). The role of hypothalamic dorsomedial (DMN) and paraventricular (PVN) nuclei in mediating these responses was studied in urethane-anesthetized, artificially ventilated, male Wistar rats. In different groups of rats, inhibition of neurons in the DMN and PVN by microinjections of muscimol attenuated the increases in IBATSNA and TBAT elicited by microinjections of N-methyl-d-aspartic acid into the ipsilateral ARCN. In other groups of rats, blockade of ionotropic glutamate receptors by combined microinjections of D(-)-2-amino-7-phosphono-heptanoic acid (D-AP7) and NBQX into the DMN and PVN attenuated increases in IBATSNA and TBAT elicited by ARCN stimulation. Blockade of melanocortin 3/4 receptors in the DMN and PVN in other groups of rats resulted in attenuation of increases in IBATSNA and TBAT elicited by ipsilateral ARCN stimulation. Microinjections of Fluoro-Gold into the DMN resulted in retrograde labeling of cells in the ipsilateral ARCN, and some of these cells contained proopiomelanocortin (POMC), α-melanocyte-stimulating hormone (α-MSH), or vesicular glutamate transporter-3. Since similar projections from ARCN to the PVN have been reported by us and others, these results indicate that neurons containing POMC, α-MSH, and glutamate project from the ARCN to the DMN and PVN. Stimulation of ARCN results in the release of α-MSH and glutamate in the DMN and PVN which, in turn, cause increases in IBATSNA and TBAT.
Collapse
Affiliation(s)
- Vineet C Chitravanshi
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Kazumi Kawabe
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Hreday N Sapru
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
17
|
Gouraud SS, Takagishi M, Kohsaka A, Maeda M, Waki H. Altered neurotrophic factors' expression profiles in the nucleus of the solitary tract of spontaneously hypertensive rats. Acta Physiol (Oxf) 2016; 216:346-57. [PMID: 26485190 DOI: 10.1111/apha.12618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/19/2015] [Accepted: 10/10/2015] [Indexed: 01/09/2023]
Abstract
AIM Our previous findings suggest that the nucleus of the solitary tract (NTS), a pivotal region for regulating the set point of arterial pressure, exhibits abnormal inflammation in pre-hypertensive and spontaneously hypertensive rats (SHRs), with elevated anti-apoptotic and low apoptotic factor levels compared with that of normotensive Wistar-Kyoto (WKY) rats. Whether this chronic condition affects neuronal growth and plasticity in the NTS remains unknown. To unveil the characteristics of the neurodevelopmental environment in the NTS of SHRs, we investigated the expression of neurotrophic factors transcripts in SHRs. METHODS RT(2) Profiler PCR Array targeting rat neurotrophins and their receptors was used to screen for differentially expressed transcripts in the NTS of SHRs compared to that of WKY rats. Protein expression and physiological functions of some of the differentially expressed transcripts were also studied. RESULTS Gene and protein expressions of glial cell line-derived neurotrophic factor family receptor alpha-3 (Gfrα-3) factor were both upregulated in the NTS of adult SHRs. Gene expressions of corticotropin-releasing hormone-binding protein (Crhbp), interleukin-10 receptor alpha (Il-10ra) and hypocretin (Hcrt) were downregulated in the NTS of adult SHRs. The Gfrα-3 transcript was increased and the Hcrt transcript was decreased in the NTS of young pre-hypertensive SHRs, suggesting that these profiles are not secondary to hypertension. Moreover, microinjection in the NTS of hypocretin-1 decreased blood pressure in adult SHRs. CONCLUSION These results suggest that altered neurotrophic factors transcript profiles may affect the normal development and function of neuronal circuitry that regulates cardiovascular autonomic activity, thereby resulting in manifestations of neurogenic hypertension in SHRs.
Collapse
Affiliation(s)
- S. S. Gouraud
- Department of Biology; Faculty of Science; Ochanomizu University; Tokyo Japan
| | - M. Takagishi
- Department of Physiology; Wakayama Medical University; Wakayama Japan
| | - A. Kohsaka
- Department of Physiology; Wakayama Medical University; Wakayama Japan
| | - M. Maeda
- Department of Physiology; Wakayama Medical University; Wakayama Japan
| | - H. Waki
- Graduate School of Sport and Health Science; Juntendo University; Chiba Japan
| |
Collapse
|
18
|
Chartrel N, Prévost G, El Medhi M, Arabo A, Berrahmoune H, Maucotel J, Anouar Y, Picot M. [The neuropeptide 26RFa and its role in the regulation of energy metabolism]. Biol Aujourdhui 2016; 210:227-235. [PMID: 28327281 DOI: 10.1051/jbio/2016024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 11/14/2022]
Abstract
The neuropeptide 26RFa, also referred to as QRFP (for pyroglutamilated RFamide peptide), is the latest member of the RFamide peptide family to be discovered. 26RFa and its N-extended form, 43RFa, have been characterized in all vertebrate classes as the endogenous ligands of the human orphan receptor GPR103. In the brain, 26RFa and GPR103mRNA are primarily expressed in hypothalamic nuclei involved in the control of feeding behavior, and in the periphery, the neuropeptide and its receptor are present in abundance in the gut and the pancreatic islets, suggesting that 26RFa is involved in the regulation of energy metabolism. Indeed, 26RFa stimulates food intake when centrally injected, and its orexigenic effect is even more pronounced in obese animals. The expression of 26RFa is up-regulated in the hypothalamus of obese animals, supporting the view that 26RFa may play a role in the development and/or maintenance of the obese status. Recent data indicate that 26RFa is also involved in the regulation of glucose homeostasis. 26RFa reduces glucose-induced hyperglycemia, increases insulin sensitivity and insulinemia. Furthermore, an oral ingestion of glucose strongly stimulates 26RFa release by the gut, indicating that 26RFa is a novel incretin. Finally, 26RFa is able to prevent pancreatic β cell death and apoptosis. In conclusion, this overview of the literature reveals that 26RFa is a key neuropeptide in the regulation of energy metabolism. Further fields of research are suggested including the pathophysiological implication of the 26RFa/GPR103 system.
Collapse
Affiliation(s)
- Nicolas Chartrel
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Gaëtan Prévost
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France - Service d'Endocrinologie, Diabète et Maladies Métaboliques, Institut de Recherche et d'Innovation Biomédicale (IRIB), Centre Hospitalier Universitaire de Rouen, Université de Rouen, Normandie Université, Rouen, France
| | - Mouna El Medhi
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Arnaud Arabo
- Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Hind Berrahmoune
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France - Service d'Endocrinologie, Diabète et Maladies Métaboliques, Institut de Recherche et d'Innovation Biomédicale (IRIB), Centre Hospitalier Universitaire de Rouen, Université de Rouen, Normandie Université, Rouen, France
| | - Julie Maucotel
- Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Youssef Anouar
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Marie Picot
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale (IRIB), Université de Rouen, Normandie Université, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
19
|
Singh C, Oikonomou G, Prober DA. Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. eLife 2015; 4:e07000. [PMID: 26374985 PMCID: PMC4606453 DOI: 10.7554/elife.07000] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Pharmacological studies in mammals suggest that norepinephrine (NE) plays an important role in promoting arousal. However, the role of endogenous NE is unclear, with contradicting reports concerning the sleep phenotypes of mice lacking NE due to mutation of dopamine β-hydroxylase (dbh). To investigate NE function in an alternative vertebrate model, we generated dbh mutant zebrafish. In contrast to mice, these animals exhibit dramatically increased sleep. Surprisingly, despite an increase in sleep, dbh mutant zebrafish have a reduced arousal threshold. These phenotypes are also observed in zebrafish treated with small molecules that inhibit NE signaling, suggesting that they are caused by the lack of NE. Using genetic overexpression of hypocretin (Hcrt) and optogenetic activation of hcrt-expressing neurons, we also find that NE is important for Hcrt-induced arousal. These results establish a role for endogenous NE in promoting arousal and indicate that NE is a critical downstream effector of Hcrt neurons. DOI:http://dx.doi.org/10.7554/eLife.07000.001 Although the neural circuits that regulate sleep and wakefulness have yet to be fully identified, the importance of at least two brain regions is well established. These are the hypothalamus, a structure deep within the brain that controls a number of basic activities including hunger, thirst and sleep; and the brainstem, which connects the brain with the spinal cord. Specific neurons within the hypothalamus and brainstem regulate the sleep–wake cycle by signaling to one another using chemicals called neurotransmitters and neuropeptides. Throughout the day, some hypothalamic neurons release a neuropeptide called hypocretin, which helps maintain wakefulness. Hypocretin acts on neurons within the brainstem and causes them to release other neurotransmitters that promote wakefulness. However, the identity of these molecules is unclear. One candidate is norepinephrine. Drugs that enhance the effects of norepinephrine increase wakefulness, whereas those that block norepinephrine signaling promote sleep. Despite this, mice that have been genetically modified to lack the enzyme that produces norepinephrine exhibit relatively normal sleep. This may be because in mammals, norepinephrine also has important roles outside the brain, thus complicating the effects of this genetic modification on behavior. Alternatively, while zebrafish that lack norepinephrine are healthy, mice containing this modification die early in development. Treating these mice with a specific drug allows them to survive, but might affect their behavior. To clarify the role of norepinephrine and its interaction with hypocretin, Singh, Oikonomou and Prober created a new animal model by genetically modifying zebrafish. In contrast to mice, zebrafish that were unable to make norepinephrine slept more than normal fish, although they were also lighter sleepers and were more prone to being startled. A genetic modification that increases hypocretin signaling induces insomnia; Singh, Oikonomou and Prober found that this occurs only in animals with normal levels of norepinephrine. Thus, these experiments indicate that hypocretin does indeed promote wakefulness though norepinephrine. The work of Singh, Oikonomou and Prober has clarified the role of norepinephrine in regulating the sleep–wake cycle. These findings could help in the development of drugs that target the neurons that make hypocretin, which may improve treatments for sleep disorders. DOI:http://dx.doi.org/10.7554/eLife.07000.002
Collapse
Affiliation(s)
- Chanpreet Singh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Grigorios Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - David A Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
20
|
Ibrahim BM, Abdel-Rahman AA. A pivotal role for enhanced brainstem Orexin receptor 1 signaling in the central cannabinoid receptor 1-mediated pressor response in conscious rats. Brain Res 2015; 1622:51-63. [PMID: 26096126 DOI: 10.1016/j.brainres.2015.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 01/02/2023]
Abstract
Orexin receptor 1 (OX1R) signaling is implicated in cannabinoid receptor 1 (CB1R) modulation of feeding. Further, our studies established the dependence of the central CB1R-mediated pressor response on neuronal nitric oxide synthase (nNOS) and extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylation in the RVLM. Here, we tested the novel hypothesis that brainstem orexin-A/OX1R signaling plays a pivotal role in the central CB1R-mediated pressor response. Our multiple labeling immunofluorescence findings revealed co-localization of CB1R, OX1R and the peptide orexin-A within the C1 area of the rostral ventrolateral medulla (RVLM). Activation of central CB1R following intracisternal (i.c.) WIN55,212-2 (15μg/rat) in conscious rats caused significant increases in BP and orexin-A level in RVLM neuronal tissue. Additional studies established a causal role for orexin-A in the central CB1R-mediated pressor response because (i) selective blockade of central CB1R (AM251, 30μg/rat; i.c.) abrogated WIN55,212-2-evoked increases in RVLM orexin-A level, (ii) the selective OX1R antagonist SB-408124 (10nmol/rat; i.c.) attenuated orexin-A (3nmol/rat; i.c.) or WIN55,212-2 (15μg/rat; i.c.)-evoked pressor response while selective CB1R blockade (AM251) had no effect on orexin-A (3nmol/rat; i.c.)-evoked pressor response, (iii) direct CB1R activation in the RVLM (WIN55,212-2; 0.1μg/rat) increased RVLM orexin-A and BP. Finally, SB-408124 attenuated WIN55,212-2-evoked increases in RVLM nNOS and ERK1/2 phosphorylation and BP. Our findings suggest that orexin-A/OX1R dependent activation of the RVLM nNOS/ERK1/2 cascade is essential neurochemical mechanism for the central CB1R-mediated pressor response in conscious rats.
Collapse
Affiliation(s)
- Badr Mostafa Ibrahim
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27858, United States
| | - Abdel A Abdel-Rahman
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27858, United States.
| |
Collapse
|
21
|
Chitravanshi VC, Kawabe K, Sapru HN. GABA and glycine receptors in the nucleus ambiguus mediate tachycardia elicited by chemical stimulation of the hypothalamic arcuate nucleus. Am J Physiol Heart Circ Physiol 2015; 309:H174-84. [PMID: 25957221 DOI: 10.1152/ajpheart.00801.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/01/2015] [Indexed: 02/07/2023]
Abstract
We have previously reported that stimulation of the hypothalamic arcuate nucleus (ARCN) by microinjections of N-methyl-d-aspartic acid (NMDA) elicits tachycardia, which is partially mediated via inhibition of vagal inputs to the heart. The neuronal pools and neurotransmitters in them mediating tachycardia elicited from the ARCN have not been identified. We tested the hypothesis that the tachycardia elicited from the ARCN may be mediated by inhibitory neurotransmitters in the nucleus ambiguus (nAmb). Experiments were done in urethane-anesthetized, artificially ventilated, male Wistar rats. In separate groups of rats, unilateral and bilateral microinjections of muscimol (1 mM), gabazine (0.01 mM), and strychnine (0.5 mM) into the nAmb significantly attenuated tachycardia elicited by unilateral microinjections of NMDA (10 mM) into the ARCN. Histological examination of the brains showed that the microinjections sites were within the targeted nuclei. Retrograde anatomic tracing from the nAmb revealed direct bilateral projections from the ARCN and hypothalamic paraventricular nucleus to the nAmb. The results of the present study suggest that tachycardia elicited by stimulation of the ARCN by microinjections of NMDA is mediated via GABAA and glycine receptors located in the nAmb.
Collapse
Affiliation(s)
- Vineet C Chitravanshi
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Kazumi Kawabe
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Hreday N Sapru
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
22
|
Involvement of the orexin system in sympathetic nerve regulation. Biochem Biophys Res Commun 2015; 460:1076-81. [DOI: 10.1016/j.bbrc.2015.03.157] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 03/27/2015] [Indexed: 11/19/2022]
|
23
|
High on food: the interaction between the neural circuits for feeding and for reward. ACTA ACUST UNITED AC 2015; 10:165-176. [PMID: 29750082 DOI: 10.1007/s11515-015-1348-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hunger, mostly initiated by a deficiency in energy, induces food seeking and intake. However, the drive toward food is not only regulated by physiological needs, but is motivated by the pleasure derived from ingestion of food, in particular palatable foods. Therefore, feeding is viewed as an adaptive motivated behavior that involves integrated communication between homeostatic feeding circuits and reward circuits. The initiation and termination of a feeding episode are instructed by a variety of neuronal signals, and maladaptive plasticity in almost any component of the network may lead to the development of pathological eating disorders. In this review we will summarize the latest understanding of how the feeding circuits and reward circuits in the brain interact. We will emphasize communication between the hypothalamus and the mesolimbic dopamine system and highlight complexities, discrepancies, open questions and future directions for the field.
Collapse
|
24
|
Abstract
Background:Up to now, many “immunoactive” brain areas have been identified, such a hypothalamic nuclei, brain reward system; but the nucleus ambiguous (Amb), a nucleus nervi vagis of medulla oblongata, was less well studied in neuroimmunomodulation.Methods:In order to obtain more profound comprehension and more knowledge on Amb, we studied the effect of acute electrical stimulation of Amb on thymus and spleen activity in rat. A stimulator was applied to stimulate the Amb of the anaesthetic rats using the parameter at 100μAx5ms x100 Hz every 1s for 1 min. The levels of TGF-β and thymosin-β4 mRNA in thymus, the release of IL-2 and IL-6 at splenocyte in vitro and splenic lymphocyte proliferation were measured at hour 0.5,1,2,3 following the electrical stimulation.Results:The results showed that concanavalin A (Con A)-induced splenic lymphocyte proliferation and the release of IL-2 and IL-6 were all significantly enhanced at 0.5, 1, and 2 h following effective Amb stimulation as compared to in the control group. However, as compared to in the control group, the levels of TGF-β and thymosin-β4 mRNA in the thymus were both remarkably reduced at 0.5, 1, and 2 h following effective Amb stimulation.Conclusions:These findings reveal that the Amb participates in the modulation of animal immune functions.
Collapse
|
25
|
López JM, Sanz-Morello B, González A. Organization of the orexin/hypocretin system in the brain of two basal actinopterygian fishes, the cladistians Polypterus senegalus and Erpetoichthys calabaricus. Peptides 2014; 61:23-37. [PMID: 25169954 DOI: 10.1016/j.peptides.2014.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 01/12/2023]
Abstract
Cladistians are primitive actinopterygian fishes mostly neglected in neuroanatomical studies. In the present study, the detailed neuroanatomical distribution of orexin (hypocretin)-like immunoreactive (OX-ir) cell bodies and fibers was analyzed in the brain of two species representative of the two extant genera of cladistians. Antibodies against mammalian orexin-A and orexin-B peptides were used. Simultaneous detection of orexins with neuropeptide Y (NPY), tyrosine hydroxylase (TH), and serotonin (5-HT) was used to establish accurately the topography of the orexin system and to evaluate the possible interactions with NPY and monoaminergic systems. A largely common pattern of OX-ir distribution in the two cladistian species was observed. Most OX-ir cells were located in the suprachiasmatic nucleus and tuberal hypothalamus, whereas scarce cells were observed in the posterior tubercle. In addition, a population of OX-ir cells was found in the preoptic area only in Polypterus and some cells also contained TH. The observed widespread distribution of OX-ir fibers was especially abundant in the retrobulbar area, subpallial areas, preoptic area, suprachiasmatic nucleus, tuberal hypothalamic area, prethalamus, thalamus, pretectum, optic tectum, and tegmentum. Low innervation was found in relation to monoaminergic cell groups, whereas a high NPY innervation was observed in all OX-ir cell groups. These relationships would represent the anatomical substrate for the functional interdependence between these systems. The organization of the orexin system in cladistians revealed a pattern largely consistent with those reported for all studied groups of vertebrates, suggesting that the primitive organization of this peptidergic system occurred in the common ancestor of gnathostome vertebrates.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | - Berta Sanz-Morello
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain.
| |
Collapse
|
26
|
Messina G, Dalia C, Tafuri D, Monda V, Palmieri F, Dato A, Russo A, De Blasio S, Messina A, De Luca V, Chieffi S, Monda M. Orexin-A controls sympathetic activity and eating behavior. Front Psychol 2014; 5:997. [PMID: 25250003 PMCID: PMC4157463 DOI: 10.3389/fpsyg.2014.00997] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/21/2014] [Indexed: 12/13/2022] Open
Abstract
It is extremely important for the health to understand the regulatory mechanisms of energy expenditure. These regulatory mechanisms play a central role in the pathogenesis of body weight alteration. The hypothalamus integrates nutritional information derived from all peripheral organs. This region of the brain controls hormonal secretions and neural pathways of the brainstem. Orexin-A is a hypothalamic neuropeptide involved in the regulation of feeding behavior, sleep-wakefulness rhythm, and neuroendocrine homeostasis. This neuropeptide is involved in the control of the sympathetic activation, blood pressure, metabolic status, and blood glucose level. This minireview focuses on relationship between the sympathetic nervous system and orexin-A in the control of eating behavior and energy expenditure. The “thermoregulatory hypothesis” of food intake is analyzed, underlining the role played by orexin-A in the control of food intake related to body temperature. Furthermore, the paradoxical eating behavior induced orexin-A is illustrated in this minireview.
Collapse
Affiliation(s)
- Giovanni Messina
- Section of Human Physiology and Clinical Dietetic Service, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Carmine Dalia
- Section of Human Physiology and Clinical Dietetic Service, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Domenico Tafuri
- Faculty of Motor Sciences, Parthenope University of Naples Naples, Italy
| | - Vincenzo Monda
- Section of Human Physiology and Clinical Dietetic Service, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Filomena Palmieri
- Section of Human Physiology and Clinical Dietetic Service, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Amelia Dato
- Section of Human Physiology and Clinical Dietetic Service, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Angelo Russo
- Section of Human Physiology and Clinical Dietetic Service, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Saverio De Blasio
- Section of Human Physiology and Clinical Dietetic Service, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Antonietta Messina
- Section of Human Physiology and Clinical Dietetic Service, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Vincenzo De Luca
- Department of Psychiatry, University of Toronto Toronto, ON, Canada
| | - Sergio Chieffi
- Section of Human Physiology and Clinical Dietetic Service, Department of Experimental Medicine, Second University of Naples Naples, Italy
| | - Marcellino Monda
- Section of Human Physiology and Clinical Dietetic Service, Department of Experimental Medicine, Second University of Naples Naples, Italy
| |
Collapse
|
27
|
Hypothalamic orexin-A (hypocretin-1) neuronal projections to the vestibular complex and cerebellum in the rat. Brain Res 2014; 1579:20-34. [PMID: 25017945 DOI: 10.1016/j.brainres.2014.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/24/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022]
Abstract
Immunohistochemistry combined with retrograde tract-tracing techniques were used to investigate the distribution of orexin-A (OX-A)- and OX-A receptor-like (OX1) immunoreactivity within the vestibular complex and cerebellum, and the location of hypothalamic OX-A neurons sending axonal projections to these regions in the Wistar rat. OX-A immunoreactive fibers and presumptive terminals were found throughout the medial (MVe) and lateral (LVe) vestibular nuclei. Light fiber labeling was also observed in the spinal and superior vestibular nuclei. Within the cerebellum, dense fiber and presumptive terminal labeling was observed in the medial cerebellar nucleus (Med; fastigial nucleus), with less dense labeling in the interposed (Int) and lateral cerebellar nuclei (Lat; dentate nucleus). A few scattered OX-A immunoreactive fibers were also observed throughout the cortex of the paraflocculus. OX1-like immunoreactivity was found densely concentrated within LVe, moderate in MVe, and scattered within the spinal and superior vestibular nuclei. Within the cerebellum, OX1-like immunoreactivity was also observed densely within Med and in the dorsolateral aspects of Int. Additionally, OX1 like-labeling was found in Lat, and within the granular layer of the caudal paraflocculus cerebellar cortex. Fluorogold (FG) microinjected into these vestibular and cerebellar regions resulted in retrogradely labeled neurons throughout the ipsilateral hypothalamus. Retrogradely labeled neurons containing OX-A like immunoreactivity were observed dorsal and caudal to the anterior hypothalamic nucleus and extending laterally into the lateral hypothalamic area, with the largest number clustered around the dorsal aspects of the fornix in the perifornical area. A few FG OX-A like-immunoreactive neurons were also observed scattered throughout the dorsomedial, and posterior hypothalamic nuclei. These data indicate that axons from OX-A neurons terminate within the vestibular complex and deep cerebellar nuclei of the cerebellum and although the function of these pathways is unknown, they likely represent pathways by which hypothalamic OX-A containing neurons co-ordinate vestibulo-cerebellar motor and autonomic functions associated with ingestive behaviors.
Collapse
|
28
|
Matott M, Ciarlone G, Putnam R, Dean J. Normobaric hyperoxia (95% O2) stimulates CO2-sensitive and CO2-insensitive neurons in the caudal solitary complex of rat medullary tissue slices maintained in 40% O2. Neuroscience 2014; 270:98-122. [DOI: 10.1016/j.neuroscience.2014.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 12/13/2022]
|
29
|
Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol 2014; 220:T25-46. [PMID: 24222039 DOI: 10.1530/joe-13-0398] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alterations in adequate energy balance maintenance result in serious metabolic disturbances such as obesity. In mammals, this complex process is orchestrated by multiple and distributed neuronal circuits. Hypothalamic and brainstem neuronal circuits are critically involved in the sensing of circulating and local factors conveying information about the energy status of the organism. The integration of these signals culminates in the generation of specific and coordinated physiological responses aimed at regulating energy balance through the modulation of appetite and energy expenditure. In this article, we review current knowledge on the homeostatic regulation of energy balance, emphasizing recent advances in mouse genetics, electrophysiology, and optogenetic techniques that have greatly contributed to improving our understanding of this central process.
Collapse
Affiliation(s)
- Marc Schneeberger
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain Department of Endocrinology and Nutrition, School of Medicine, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | | | | |
Collapse
|
30
|
Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure. Neuroscience 2013; 250:599-613. [PMID: 23912034 DOI: 10.1016/j.neuroscience.2013.07.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/03/2023]
Abstract
Experiments were done to investigate whether hypothalamic hypocretin-1 (hcrt-1; orexin-A) neurons that sent axonal projections to cardiovascular responsive sites in the nucleus of the solitary tract (NTS) co-expressed leucine-enkephalin (L-Enk), and to determine the effects of co-administration of hcrt-1 and D-Ala2,D-Leu5-Enkephalin (DADL) into NTS on mean arterial pressure (MAP) and heart rate. In the first series, in the Wistar rat the retrograde tract-tracer fluorogold (FG) was microinjected (50nl) into caudal NTS sites at which L-glutamate (0.25 M; 10 nl) elicited decreases in MAP and where fibers hcrt-1 immunoreactive fibers were observed that also contained L-Enk immunoreactivity. Of the number of hypothalamic hcrt-1 immunoreactive neurons identified ipsilateral to the NTS injection site (1207 ± 78), 32.3 ± 2.3% co-expressed L-Enk immunoreactivity and of these, 2.6 ± 1.1% were retrogradely labeled with FG. Hcrt-1/L-Enk neurons projecting to NTS were found mainly within the perifornical region. In the second series, the region of caudal NTS found to contain axons that co-expressed hcrt-1 and L-Enk immunoreactivity was microinjected with a combination of hcrt-1 and DADL in α-chloralose anesthetized Wistar rats. Microinjection of DADL into NTS elicited depressor and bradycardia responses similar to those elicited by microinjection of hcrt-1. An hcrt-1 injection immediately after the DADL injection elicited an almost twofold increase in the magnitude of the depressor and bradycardia responses compared to those elicited by hcrt-1 alone. Prior injections of the non-specific opioid receptor antagonist naloxone or the specific opioid δ-receptor antagonist ICI 154,129 significantly attenuated the cardiovascular responses to the combined hcrt-1-DADL injections. Taken together, these data suggest that activation of hypothalamic-opioidergic neuronal systems contribute to the NTS hcrt-1 induced cardiovascular responses, and that this descending hypothalamo-medullary pathway may represent the anatomical substrate by which hcrt-1/L-Enk neurons function in the coordination of autonomic-cardiovascular responses during different behavioral states.
Collapse
|
31
|
Chitravanshi VC, Kawabe K, Sapru HN. Mechanisms of cardiovascular actions of urocortins in the hypothalamic arcuate nucleus of the rat. Am J Physiol Heart Circ Physiol 2013; 305:H182-91. [PMID: 23686711 DOI: 10.1152/ajpheart.00138.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The presence of urocortins (UCNs) and corticotropin-releasing factor (CRF) receptors has been reported in the hypothalamic arcuate nucleus (ARCN). We have previously reported that UCNs are involved in central cardiovascular regulation. Based on this information, we hypothesized that the ARCN may be one of the sites where UCNs exert their central cardiovascular actions. Experiments were done in artificially ventilated, adult male Wistar rats anesthetized with urethane. Unilateral microinjections (30 nl) of UCN1 (0.12-2 mM) elicited decreases in mean arterial pressure (MAP) and heart rate (HR). Maximum cardiovascular responses were elicited by a 1 mM concentration of UCN1. Microinjections of UCN2 and UCN3 (1 mM each) into the ARCN elicited similar decreases in MAP and HR. UCN1 was used as a prototype for the other experiments described below. HR responses elicited by UCN1 were significantly attenuated by bilateral vagotomy. Prior microinjections of NBI-27914 (CRF-1 receptor antagonist) and astressin (CRF-1 receptor and CRF-2 receptor antagonist) (1 mM each) into the ARCN significantly attenuated the cardiovascular responses elicited by UCN1 microinjections at the same site. Microinjections of UCN1 into the ARCN decreased efferent renal sympathetic nerve activity. It was concluded that microinjections of UCN1, UCN2, and UCN3 into the ARCN elicited decreases in MAP and HR. Decreases in MAP, HR, and renal sympathetic nerve activity elicited by UCN1 microinjections into the ARCN were mediated via CRF receptors. Bradycardic responses to UCN1 were mediated via the activation of vagus nerves, and decreases in MAP may be mediated via decreases in sympathetic nerve activity.
Collapse
Affiliation(s)
- Vineet C Chitravanshi
- Department of Neurological Surgery, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | |
Collapse
|
32
|
Nemoto T, Toyoshima-Aoyama F, Ueda Y, Ohba T, Yanagita T, Watanabe H, Shirasaka T, Tsuneyoshi I, Ishida Y, Hirota K, Sawaguchi A, Murakami M. Involvement of the orexin system in adrenal sympathetic regulation. Pharmacology 2013; 91:250-8. [PMID: 23635422 DOI: 10.1159/000350391] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/26/2013] [Indexed: 11/19/2022]
Abstract
Orexin (hypocretin) is a neuropeptide secreted from hypothalamic neurons that is known to be activated during motivated behaviors and active waking. Presently, our knowledge of orexin is mainly limited to the central nervous system, and the involvement of the orexin system in peripheral tissues has received little attention. In the present study, we analyzed the existence of the orexin system in the adrenal medulla, which is part of the sympathetic nervous system. Orexin and its receptors are expressed in the bovine adrenal medulla. Orexins stimulated intracellular calcium changes and epinephrine release from cultured bovine adrenal medullary cells. Applied orexin decreased expression of prepro-orexin, orexin receptor-1 and orexin receptor-2, suggesting negative feedback regulation in the adrenal gland. Our results indicate involvement of the orexin system in the sympathetic regulation of the adrenal medulla.
Collapse
Affiliation(s)
- Takayuki Nemoto
- Department of Pharmacology, Graduate School of Medicine, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sapru HN. Role of the hypothalamic arcuate nucleus in cardiovascular regulation. Auton Neurosci 2012; 175:38-50. [PMID: 23260431 DOI: 10.1016/j.autneu.2012.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 02/07/2023]
Abstract
Recently the hypothalamic arcuate nucleus (Arc) has been implicated in cardiovascular regulation. Both pressor and depressor responses can be elicited by the chemical stimulation of the Arc. The direction of cardiovascular responses (increase or decrease) elicited from the Arc depends on the baseline blood pressure. The pressor responses are mediated via increase in sympathetic nerve activity and involve activation of the spinal ionotropic glutamate receptors. Arc-stimulation elicits tachycardic responses which are mediated via inhibition of vagal input and excitation of sympathetic input to the heart. The pathways within the brain mediating the pressor and tachycardic responses elicited from the Arc have not been delineated. The depressor responses to the Arc-stimulation are mediated via the hypothalamic paraventricular nucleus (PVN). Gamma aminobutyric acid type A receptors, neuropeptide Y1 receptors, and opiate receptors in the PVN mediate the depressor responses elicited from the Arc. Some circulating hormones (e.g., leptin and insulin) may reach the Arc via the leaky blood-brain barrier and elicit their cardiovascular effects. Although the Arc is involved in mediating the cardiovascular responses to intravenously injected angiotensin II and angiotensin-(1-12), these effects may not be due to leakage of these peptides across the blood-brain barrier in the Arc; instead, circulating angiotensins may act on neurons in the SFO and mediate cardiovascular actions via the projections of SFO neurons to the Arc. Cardiovascular responses elicited by acupuncture have been reported to be mediated by direct and indirect projections of the Arc to the RVLM.
Collapse
Affiliation(s)
- Hreday N Sapru
- Department of Neurological Surgery, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| |
Collapse
|
34
|
Grill HJ, Hayes MR. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab 2012; 16:296-309. [PMID: 22902836 PMCID: PMC4862653 DOI: 10.1016/j.cmet.2012.06.015] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/20/2012] [Accepted: 06/08/2012] [Indexed: 02/07/2023]
Abstract
This Review highlights the processing and integration performed by hindbrain nuclei, focusing on the inputs received by nucleus tractus solitarius (NTS) neurons. These inputs include vagally mediated gastrointestinal satiation signals, blood-borne energy-related hormonal and nutrient signals, and descending neural signals from the forebrain. We propose that NTS (and hindbrain neurons, more broadly) integrate these multiple energy status signals and issue-output commands controlling the behavioral, autonomic, and endocrine responses that collectively govern energy balance. These hindbrain-mediated controls are neuroanatomically distributed; they involve endemic hindbrain neurons and circuits, hindbrain projections to peripheral circuits, and projections to and from midbrain and forebrain nuclei.
Collapse
Affiliation(s)
- Harvey J Grill
- Graduate Group of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
35
|
Region- and sex-specific changes in CART mRNA in rat hypothalamic nuclei induced by forced swim stress. Brain Res 2012; 1479:62-71. [PMID: 22960117 DOI: 10.1016/j.brainres.2012.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 01/22/2023]
Abstract
Cocaine and amphetamine regulated transcript (CART) mRNA and peptides are highly expressed in the paraventricular (PVN), dorsomedial (DMH) and arcuate (ARC) nuclei of the hypothalamus. It has been suggested that these nuclei regulate the hypothalamic-pituitary-adrenal (HPA) axis, autonomic nervous system activity, and feeding behavior. Our previous studies showed that forced swim stress augmented CART peptide expression significantly in whole hypothalamus of male rats. In another study, forced swim stress increased the number of CART-immunoreactive cells in female PVN, whereas no effect was observed in male PVN or in the ARC nucleus of either sex. In the present study, we evaluated the effect of forced swim stress on CART mRNA expression in PVN, DMH and ARC nuclei in both male and female rats. Twelve male (stressed and controls, n=6 each) and 12 female (stressed and controls, n=6 each) Sprague-Dawley rats were used. Control animals were only handled, whereas forced swim stress procedure was applied to the stressed groups. Brains were dissected and brain sections containing PVN, DMH and ARC nuclei were prepared. CART mRNA levels were determined by in situ hybridization. In male rats, forced swim stress upregulated CART mRNA expression in DMH and downregulated it in the ARC. In female rats, forced swim stress increased CART mRNA expression in PVN and DMH, whereas a decrease was observed in the ARC nucleus. Our results show that forced swim stress elicits region- and sex-specific changes in CART mRNA expression in rat hypothalamus that may help in explaining some of the effects of stress.
Collapse
|
36
|
Flak JN, Solomon MB, Jankord R, Krause EG, Herman JP. Identification of chronic stress-activated regions reveals a potential recruited circuit in rat brain. Eur J Neurosci 2012; 36:2547-55. [PMID: 22789020 DOI: 10.1111/j.1460-9568.2012.08161.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic stress induces presynaptic and postsynaptic modifications in the paraventricular nucleus of the hypothalamus that are consistent with enhanced excitatory hypothalamo-pituitary-adrenocortical (HPA) axis drive. The brain regions mediating these molecular modifications are not known. We hypothesized that chronic variable stress (CVS) tonically activates stress-excitatory regions that interact with the paraventricular nucleus of the hypothalamus, culminating in stress facilitation. In order to identify chronically activated brain regions, ΔFosB, a documented marker of tonic neuronal activation, was assessed in known stress regulatory limbic and brainstem sites. Four experimental groups were included: CVS, repeated restraint (RR) (control for HPA habituation), animals weight-matched (WM) to CVS animals (control for changes in circulating metabolic factors due to reduced weight gain), and non-handled controls. CVS, (but not RR or WM) induced adrenal hypertrophy, indicating that sustained HPA axis drive only occurred in the CVS group. CVS (but not RR or WM) selectively increased the number of FosB/ΔFosB nuclei in the nucleus of the solitary tract, posterior hypothalamic nucleus, and both the infralimbic and prelimbic divisions of the medial prefrontal cortex, indicating an involvement of these regions in chronic drive of the HPA axis. Increases in FosB/ΔFosB-immunoreactive cells were observed following both RR and CVS in the other regions (e.g. the dorsomedial hypothalamus), suggesting activation by both habituating and non-habituating stress conditions. The data suggest that unpredictable stress uniquely activates interconnected cortical, hypothalamic, and brainstem nuclei, potentially revealing the existence of a recruited circuitry mediating chronic drive of brain stress effector systems.
Collapse
Affiliation(s)
- Jonathan N Flak
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Psychiatry North, Building E, 2nd Floor, 2170 East Galbraith Road, Cincinnati, OH 45237-0506, USA
| | | | | | | | | |
Collapse
|
37
|
Korim WS, Ferreira-Neto ML, Pedrino GR, Pilowsky PM, Cravo SL. Interaction of medullary P2 and glutamate receptors mediates the vasodilation in the hindlimb of rat. Purinergic Signal 2012; 8:715-28. [PMID: 22576313 DOI: 10.1007/s11302-012-9318-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/24/2012] [Indexed: 12/20/2022] Open
Abstract
In the nucleus tractus solitarii (NTS) of rats, blockade of extracellular ATP breakdown to adenosine reduces arterial blood pressure (AP) increases that follow stimulation of the hypothalamic defense area (HDA). The effects of ATP on NTS P2 receptors, during stimulation of the HDA, are still unclear. The aim of this study was to determine whether activation of P2 receptors in the NTS mediates cardiovascular responses to HDA stimulation. Further investigation was taken to establish if changes in hindlimb vascular conductance (HVC) elicited by electrical stimulation of the HDA, or activation of P2 receptors in the NTS, are relayed in the rostral ventrolateral medulla (RVLM); and if those responses depend on glutamate release by ATP acting on presynaptic terminals. In anesthetized and paralyzed rats, electrical stimulation of the HDA increased AP and HVC. Blockade of P2 or glutamate receptors in the NTS, with bilateral microinjections of suramin (10 mM) or kynurenate (50 mM) reduced only the evoked increase in HVC by 75 % or more. Similar results were obtained with the blockade combining both antagonists. Blockade of P2 and glutamate receptors in the RVLM also reduced the increases in HVC to stimulation of the HDA by up to 75 %. Bilateral microinjections of kynurenate in the RVLM abolished changes in AP and HVC to injections of the P2 receptor agonist α,β-methylene ATP (20 mM) into the NTS. The findings suggest that HDA-NTS-RVLM pathways in control of HVC are mediated by activation of P2 and glutamate receptors in the brainstem in alerting-defense reactions.
Collapse
Affiliation(s)
- Willian Seiji Korim
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | | | | | | | | |
Collapse
|
38
|
Basken JN, Connor NP, Ciucci MR. Effect of aging on ultrasonic vocalizations and laryngeal sensorimotor neurons in rats. Exp Brain Res 2012; 219:351-61. [PMID: 22562586 DOI: 10.1007/s00221-012-3096-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 04/12/2012] [Indexed: 12/21/2022]
Abstract
While decline in vocal quality is prevalent in an aging population, the underlying neurobiological mechanisms contributing to age-related dysphonia are unknown and difficult to study in humans. Development of an animal model appears critical for investigating this issue. Using an established aging rat model, we evaluated if 50-kHz ultrasonic vocalizations in 10, 32-month-old (old) Fischer 344/Brown Norway rats differed from those in 10, 9-month-old (young adult) rats. The retrograde tracer, Cholera Toxin β, was injected to the thyroarytenoid muscle to determine if motoneuron loss in the nucleus ambiguus was associated with age. Results indicated that older rats had vocalizations with diminished acoustic complexity as demonstrated by reduced bandwidth, intensity, and peak frequency, and these changes were dependent on the type of 50-kHz vocalization. Simple calls of old rats had reduced bandwidth, peak frequency, and intensity while frequency-modulated calls of old rats had reduced bandwidth and intensity. Surprisingly, one call type, step calls, had increased duration in the aged rats. These findings reflect phonatory changes observed in older humans. We also found significant motoneuron loss in the nucleus ambiguus of aged rats, which suggests that motoneuron loss may be a contributing factor to decreased complexity and quality of ultrasonic vocalizations. These findings suggest that a rat ultrasonic phonation model may be useful for studying age-related changes in vocalization observed in humans.
Collapse
Affiliation(s)
- Jaime N Basken
- Department of Communicative Disorders, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
39
|
Abstract
The orexin peptides and their two receptors are involved in multiple physiological processes, including energy homeostasis, arousal, stress and reward. Higher signaling of the orexin peptides at the orexin receptors (OXR) protects against obesity, but it is less clear how their activation in different brain regions contributes to this behavioral output. This review summarizes the evidence available for a role of central OXR in energy homeostasis and their contribution to obesity. A detailed analysis of anatomical, cellular and behavioral evidence shows that modulation of energy homeostasis by the OXR is largely dependent upon anatomical and cellular context. It also shows that obesity resistance provided by activation of the OXR is distributed across multiple brain sites with site-specific actions. We suggest that understanding the role of the OXR in the development of obesity requires considering both specific mechanisms within brain regions and interactions of orexinergic input between multiple sites.
Collapse
|
40
|
Chartrel N, Alonzeau J, Alexandre D, Jeandel L, Alvear-Perez R, Leprince J, Boutin J, Vaudry H, Anouar Y, Llorens-Cortes C. The RFamide neuropeptide 26RFa and its role in the control of neuroendocrine functions. Front Neuroendocrinol 2011; 32:387-97. [PMID: 21530572 DOI: 10.1016/j.yfrne.2011.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/07/2011] [Accepted: 04/09/2011] [Indexed: 10/18/2022]
Abstract
Identification of novel neuropeptides and their cognate G protein-coupled receptors is essential for a better understanding of neuroendocrine regulations. The RFamide peptides represent a family of regulatory peptides that all possess the Arg-Phe-NH2 motif at their C-terminus. In mammals, seven RFamide peptides encoded by five distinct genes have been characterized. The present review focuses on 26RFa (or QRFP) which is the latest member identified in this family. 26RFa is present in all vertebrate phyla and its C-terminal domain (KGGFXFRF-NH2), which is responsible for its biological activity, has been fully conserved during evolution. 26RFa is the cognate ligand of the orphan G protein-coupled receptor GPR103 that is also present from fish to human. In all vertebrate species studied so far, 26RFa-expressing neurons show a discrete localization in the hypothalamus, suggesting important neuroendocrine activities for this RFamide peptide. Indeed, 26RFa plays a crucial role in the control of feeding behavior in mammals, birds and fish. In addition, 26RFa up-regulates the gonadotropic axis in mammals and fish. Finally, evidence that the 26RFa/GPR103 system regulates steroidogenesis, bone formation, nociceptive transmission and arterial blood pressure has also been reported. Thus, 26RFa appears to act as a key neuropeptide in vertebrates controlling vital neuroendocrine functions. The pathophysiological implication of the 26RFa/GPR103 system in human is totally unknown and some fields of investigation are proposed.
Collapse
Affiliation(s)
- Nicolas Chartrel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IFRMP23, University of Rouen, 76821 Mont-Saint-Aignan Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Arakawa H, Chitravanshi VC, Sapru HN. The hypothalamic arcuate nucleus: a new site of cardiovascular action of angiotensin-(1-12) and angiotensin II. Am J Physiol Heart Circ Physiol 2010; 300:H951-60. [PMID: 21186269 DOI: 10.1152/ajpheart.01144.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothalamic arcuate nucleus (ARCN) has been reported to play a significant role in cardiovascular regulation. It has been hypothesized that the ARCN may be one of the sites of cardiovascular actions of angiotensins (ANGs). Experiments were carried out in urethane-anesthetized, artificially ventilated, adult male Wistar rats. The ARCN was identified by microinjections of N-methyl-d-aspartic acid (NMDA; 10 mM). Microinjections (50 nl) of ANG-(1-12) (1 mM) into the ARCN elicited increases in mean arterial pressure (MAP), heart rate (HR), and greater splanchnic nerve activity (GSNA). The tachycardic responses to ANG-(1-12) were attenuated by bilateral vagotomy. The cardiovascular responses elicited by ANG-(1-12) were attenuated by microinjections of ANG II type 1 receptor (AT(1)R) antagonists but not ANG type 2 receptor (AT(2)R) antagonist. Combined inhibition of ANG-converting enzyme (ACE) and chymase in the ARCN abolished ANG-(1-12)-induced responses. Microinjections of ANG II (1 mM) into the ARCN also increased MAP and HR. Inhibition of ARCN by microinjections of muscimol (1 mM) attenuated the pressor and tachycardic responses to intravenously administered ANG-(1-12) and ANG II (300 pmol/kg each). These results indicated that 1) microinjections of ANG-(1-12) into the ARCN elicited increases in MAP, HR, and GSNA; 2) HR responses were mediated via both sympathetic and vagus nerves; 3) AT(1)Rs, but not AT(2)Rs, in the ARCN mediated ANG-(1-12)-induced responses; 4) both ACE and chymase were needed to convert ANG-(1-12) to ANG II in the ARCN; and 5) ARCN plays a role in mediating the cardiovascular responses to circulating ANGs.
Collapse
Affiliation(s)
- Hideki Arakawa
- Department of Neurological Surgery, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
42
|
Puskás N, Papp RS, Gallatz K, Palkovits M. Interactions between orexin-immunoreactive fibers and adrenaline or noradrenaline-expressing neurons of the lower brainstem in rats and mice. Peptides 2010; 31:1589-97. [PMID: 20434498 DOI: 10.1016/j.peptides.2010.04.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 11/16/2022]
Abstract
Orexins are expressed in neurons of the dorsolateral hypothalamus and their axons widely distribute throughout the central nervous system. The noradrenergic cell groups of the lower brainstem belong to the targets of these orexin projections. Double immunostainings for orexin and phenylethanolamine N-methyltransferase (PNMT), as well as orexin and tyrosine hydroxylase (TH) were applied to demonstrate the orexinergic innervation of catecholamine cell groups in the lower brainstem of the mouse and the rat. In various densities, networks of orexin-positive fibers and terminals were present on neurons of each adrenaline (C1, C2, C3) and noradrenaline (locus coeruleus, A1, A2, A4, A5 and A7) cell groups. The most dense networks of orexin fibers and terminals were detected in the locus coeruleus, the subcoeruleus area, and in the nucleus of the solitary tract. By using confocal microscope to analyze triple immunostainings we could detect that about two-third of the orexin-PNMT or orexin-TH immunopositive close contacts contained synaptophysin (a presynapse-specific protein) in the C1, C2 and C3 adrenaline, or in the A1, A2 noradrenaline cell groups, respectively. Orexin-immunopositive axons in the C1, C2, as well as A1, A2 and A6 cell groups have been examined by an electron microscope. Relatively few asymmetrical (excitatory) synaptic contacts could be demonstrated between PNMT- or TH-positive dendrites and orexin terminals, although the vast majority of orexin-positive axons was located in juxtaposition to PNMT- or TH-positive neurons.
Collapse
Affiliation(s)
- Nela Puskás
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and Hungarian Academy of Sciences, Tűzoltó utca 58, 1094 Budapest, Hungary
| | | | | | | |
Collapse
|
43
|
Domínguez L, Morona R, Joven A, González A, López JM. Immunohistochemical localization of orexins (hypocretins) in the brain of reptiles and its relation to monoaminergic systems. J Chem Neuroanat 2010; 39:20-34. [DOI: 10.1016/j.jchemneu.2009.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 12/01/2022]
|
44
|
Nakamura T, Bhatt S, Sapru HN. Cardiovascular responses to hypothalamic arcuate nucleus stimulation in the rat: role of sympathetic and vagal efferents. Hypertension 2009; 54:1369-75. [PMID: 19884562 DOI: 10.1161/hypertensionaha.109.140715] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Experiments were carried out in urethane-anesthetized, artificially ventilated, adult male Wistar rats. Microinjections (50 nL) of N-methyl-d-aspartic acid (1, 5, and 10 mmol/L), but not artificial cerebrospinal fluid, into the hypothalamic arcuate nucleus (ARCN) elicited increases in mean arterial pressure (5.7+/-0.5, 13.2+/-1.4, and 17.3+/-1.1 mm Hg, respectively) and heart rate (24.3+/-4.3, 49.3+/-5.2, and 75.2+/-8.0 bpm, respectively). ARCN stimulation was accomplished by microinjections of a maximally effective concentration of N-methyl-d-aspartic acid (10 mmol/L). The tachycardic responses to the ARCN stimulation were significantly attenuated after bilateral vagotomy. Intrathecal injections of ionotropic glutamate receptor (iGLUR) antagonists completely blocked pressor responses to the ARCN stimulation, whereas the tachycardic responses were significantly attenuated but not abolished. Intrathecal injections of iGLUR antagonists at T9 to T10, combined with bilateral vagotomy, completely blocked the tachycardic responses to ARCN stimulation. ARCN stimulation with N-methyl-d-aspartic acid elicited increased activities of the greater splanchnic nerve (91.7+/-14.8%) and the renal nerve (109.3+/-13%). Intrathecal injections of iGLURs at T9 to T10 blocked the increase in the greater splanchnic nerve activity in response to ARCN stimulation. These results indicate the following: (1) the chemical stimulation of the ARCN elicits increases in mean arterial pressure, greater splanchnic nerve and renal nerve activity, and heart rate; (2) the increases in mean arterial pressure and sympathetic nerve activity are mediated via the activation of spinal cord iGLURs; and (3) the increases in heart rate are mediated via the activation of spinal cord iGLURs and decreases in vagal input to the heart.
Collapse
Affiliation(s)
- Takeshi Nakamura
- Department of Neurological Surgery, MSB H-586, UMDNJ-New Jersey Medical School, 185 South Orange Ave, Newark, NJ 07103, USA
| | | | | |
Collapse
|
45
|
Hirasawa M, Parsons MP, Alberto CO. Interaction between orexins and the mesolimbic system for overriding satiety. Rev Neurosci 2009; 18:383-93. [PMID: 19544624 DOI: 10.1515/revneuro.2007.18.5.383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In North American society, it is all too common for the intake of calories to outweigh an individual's energy demands. Such over-consumption where high-energy foods are readily available undoubtedly contributes to the growing problem of obesity. Palatable food stimulates brain circuits similar to those that mediate behavioral responses to drugs of abuse, which may underlie the continuation of food intake long after energy requirements are met. Among the brain areas implicated in reward and food intake, the lateral hypothalamus (LH) has long been recognized as a common region involved in both. It has been suggested that orexin neurons that are expressed exclusively within and adjacent to the LH comprise a major cellular substrate for the functioning of the LH. Here, we review the idea that the orexin neuropeptides play a key role in the rewarding aspects of food intake through interactions with both peripheral and central signals reflecting current energy stores as well as the classic reward pathway--the mesolimbic dopamine system. Furthermore, a possible heterogeneity of orexin neurons is discussed. Uncovering orexin's role in food reinforcement may provide insight into hyperphagia and obesity. In addition, the idea that food intake and substance abuse involve similar brain circuitry suggests potential for a single treatment aiding both obesity and addiction.
Collapse
Affiliation(s)
- Michiru Hirasawa
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada.
| | | | | |
Collapse
|
46
|
Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle. Neuroscience 2009; 162:501-24. [PMID: 19426785 DOI: 10.1016/j.neuroscience.2009.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 04/13/2009] [Accepted: 05/02/2009] [Indexed: 11/20/2022]
Abstract
The present study investigated the central connections of motor neurons innervating the thyroarytenoid laryngeal muscle that is active in swallowing, respiration and vocalization. In both intact and sympathectomized rats, the pseudorabies virus (PRV) was inoculated into the muscle. After initial infection of laryngomotor neurons in the ipsilateral loose division of the nucleus ambiguus (NA) by 3 days post-inoculation, PRV spread to the ipsilateral compact portion of the NA, the central and intermediate divisions of the nucleus tractus solitarii, the Botzinger complex, and the parvicellular reticular formation by 4 days. Infection was subsequently expanded to include the ipsilateral granular and dysgranular parietal insular cortex, the ipsilateral medial division of the central nucleus of the amygdala, the lateral, paraventricular, ventrolateral and medial preoptic nuclei of the hypothalamus (generally bilaterally), the lateral periaqueductal gray, the A7 and oral and caudal pontine nuclei. At the latest time points sampled post-inoculation (5 days), infected neurons were identified in the ipsilateral agranular insular cortex, the caudal parietal insular cortex, the anterior cingulate cortex, and the contralateral motor cortex. In the amygdala, infection had spread to the lateral central nucleus and the parvicellular portion of the basolateral nucleus. Hypothalamic infection was largely characterized by an increase in the number of infected cells in earlier infected regions though the posterior, dorsomedial, tuberomammillary and mammillary nuclei contained infected cells. Comparison with previous connectional data suggests PRV followed three interconnected systems originating in the forebrain; a bilateral system including the ventral anterior cingulate cortex, periaqueductal gray and ventral respiratory group; an ipsilateral system involving the parietal insular cortex, central nucleus of the amygdala and parvicellular reticular formation, and a minor contralateral system originating in motor cortex. Hypothalamic innervation involved several functionally specific nuclei. Overall, the data imply complex CNS control over the multi-functional thyroarytenoid muscle.
Collapse
|
47
|
López JM, Domínguez L, Moreno N, González A. Comparative immunohistochemical analysis of the distribution of orexins (hypocretins) in the brain of amphibians. Peptides 2009; 30:873-87. [PMID: 19428764 DOI: 10.1016/j.peptides.2009.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
The orexins (hypocretins) are peptides found primarily in neurons of the hypothalamus of all vertebrates. Many differences were reported about the precise location of orexin containing cells and their projections throughout the brain in different species. However, there are few direct cross-species comparisons. Previous studies in anuran amphibians have also reported notable species differences. We examined and directly compared the distribution of orexinergic neurons and fibers within the brains of representatives of the three amphibian orders, anurans, urodeles and gymnophionans. Simultaneous detection of orexins and tyrosine hydroxylase was used to assess the precise location of the orexins in the brain and to evaluate the possible influence of the orexin system on the catecholaminergic cell groups. Although some differences were noted, a common pattern for the distribution of orexins in amphibians was observed. In all species, most immunoreactive neurons were observed in the suprachiasmatic nucleus, whereas the cells in the preoptic area and the tuberal region were more variable. Orexin immunoreactive fibers in the brain of all species included abundant fibers throughout the preoptic area and hypothalamus, whereas moderate amounts of fibers were present in the pallium, striatum, septum, thalamus, optic tectum, torus semicircularis, rhombencephalon and spinal cord. The use of double immunohistochemistry in amphibians revealed orexinergic innervation in dopaminergic and noradrenergic cell groups, such as the midbrain tegmentum, locus coeruleus and nucleus of the solitary tract, as was previously reported in mammals.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
48
|
Abstract
Orexin A (OXA) and orexin B were originally isolated as hypothalamic peptides regulating sleep, wakefulness and feeding. However, growing evidence suggests that orexins have major functions also in the peripheral tissues. Central orexigenic pathways originating from medulla activate the hypothalamus-pituitary axis and can influence the sympathetic tone. Orexins and their receptors are widely dispersed throughout the intestine, where orexin receptors are regulated by the nutritional status, affect insulin secretion and intestinal motility. Although the primary source of the peptide has not been elucidated, OXA is detected in plasma and its level varies in response to the metabolic state. In this review, we focus on the current knowledge on peripheral functions of orexins and discuss possible endocrine, paracrine and neurocrine roles.
Collapse
Affiliation(s)
- M V Heinonen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | |
Collapse
|
49
|
Su J, Lei Z, Zhang W, Ning H, Ping J. Distribution of orexin B and its relationship with GnRH in the pig hypothalamus. Res Vet Sci 2008; 85:315-23. [PMID: 18255106 DOI: 10.1016/j.rvsc.2007.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 11/28/2007] [Accepted: 12/11/2007] [Indexed: 11/30/2022]
Abstract
Increasing evidence suggests that orexins--hypothalamic neuropeptides--act as neurotransmitters or neuromediators in the brain, regulating autonomic and neuroendocrine functions. Orexins are closely associated with gonadotropin-releasing hormone (GnRH) neurons in the preoptic area and alter luteinizing hormone (LH) release, suggesting that they regulate reproduction. Here, we investigated the distribution of orexin B (immunohistochemical technique) and the relationship between orexin B and GnRH containing fibres and neurons in the pig hypothalamus using double immunofluorescence and laser-scanning confocal microscopy. Orexin B immunoreactive neurons were mainly localized in the perifornical area (PeF), dorsomedial hypothalamic nucleus (DMH), zona incerta (ZI) and the posterior hypothalamic area (PH), with a sparser distribution in the preoptic and anterior hypothalamic area. Immunoreactive fibres were distributed throughout the central nervous system. Approximately 30% GnRH neurons were in close contact with orexin B immunoreactive fibres, among these approximately 6% of GnRH neurons co-localized with orexin B perikarya in the region between the caudal preoptic area and the anterior hypothalamic area. Orexin B may regulate reproduction by altering LH release in the hypothalamus.
Collapse
Affiliation(s)
- Juan Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | | | | | | | | |
Collapse
|
50
|
Silveyra P, Lux-Lantos V, Libertun C. Both orexin receptors are expressed in rat ovaries and fluctuate with the estrous cycle: effects of orexin receptor antagonists on gonadotropins and ovulation. Am J Physiol Endocrinol Metab 2007; 293:E977-85. [PMID: 17638707 DOI: 10.1152/ajpendo.00179.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orexins are peptides controlling feeding, sleep, and neuroendocrine functions. They are synthesized by the hypothalamus with projections throughout the brain. Orexins and their orexin 1 (OX(1)) and orexin 2 receptors (OX(2)) are present outside the central nervous system. Here the expression of preproorexin (PPO), OX(1), and OX(2) was studied in rat ovaries. PPO, OX(1), and OX(2) were determined by quantitative real-time RT-PCR in ovaries of cycling Sprague-Dawley rats on all days of the cycle. Serum hormones and food consumption were determined. Ovarian OX(1) and OX(2) expression was then studied after ovulation blockade with Cetrorelix or Nembutal. Finally, proestrous rats were treated at 1400 and 1900 with a selective OX(1) antagonist (SB-334867-A) and/or a selective OX(2) antagonist (JNJ-10397049), and hormone levels, ovulation, and ovarian histology were studied. Both receptors' expression increased in the ovary between 1700 and 2300 of proestrus exclusively, in coincidence with hormone peaks, but not with the dark-light cycle or food intake. PPO was not detected. Cetrorelix or Nembutal prevented the increases of OX(1) and OX(2) while blunting gonadotropin peaks. SB-334867-A and JNJ-10397049, alone or combined, decreased serum gonadotropins and reduced ova number the following morning; ovaries showed a bloody (hyperemic and/or hemorrhagic) reaction with more preovulatory follicles and less corpora lutea. Here we demonstrate for the first time an increased ovarian expression of both OX(1) and OX(2), only during proestrous afternoon, and its hormone dependence but not dependence on the dark-light cycle. Two new receptor antagonists reduced proestrous gonadotropins and/or ova number while producing ovarian structural changes.
Collapse
Affiliation(s)
- Patricia Silveyra
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Argentina
| | | | | |
Collapse
|