1
|
Wang XL, Wang JX, Chen JL, Hao WY, Xu WZ, Xu ZQ, Jiang YT, Luo PQ, Chen Q, Li YH, Zhu GQ, Li XZ. Asprosin in the Paraventricular Nucleus Induces Sympathetic Activation and Pressor Responses via cAMP-Dependent ROS Production. Int J Mol Sci 2022; 23:ijms232012595. [PMID: 36293450 PMCID: PMC9604496 DOI: 10.3390/ijms232012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Asprosin is a newly discovered adipokine that is involved in regulating metabolism. Sympathetic overactivity contributes to the pathogenesis of several cardiovascular diseases. The paraventricular nucleus (PVN) of the hypothalamus plays a crucial role in the regulation of sympathetic outflow and blood pressure. This study was designed to determine the roles and underlying mechanisms of asprosin in the PVN in regulating sympathetic outflow and blood pressure. Experiments were carried out in male adult SD rats under anesthesia. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), and heart rate (HR) were recorded, and PVN microinjections were performed bilaterally. Asprosin mRNA and protein expressions were high in the PVN. The high asprosin expression in the PVN was involved in both the parvocellular and magnocellular regions according to immunohistochemical analysis. Microinjection of asprosin into the PVN produced dose-related increases in RSNA, MAP, and HR, which were abolished by superoxide scavenger tempol, antioxidant N-acetylcysteine (NAC), and NADPH oxidase inhibitor apocynin. The asprosin promoted superoxide production and increased NADPH oxidase activity in the PVN. Furthermore, it increased the cAMP level, adenylyl cyclase (AC) activity, and protein kinase A (PKA) activity in the PVN. The roles of asprosin in increasing RSNA, MAP, and HR were prevented by pretreatment with AC inhibitor SQ22536 or PKA inhibitor H89 in the PVN. Microinjection of cAMP analog db-cAMP into the PVN played similar roles with asprosin in increasing the RSNA, MAP, and HR, but failed to further augment the effects of asprosin. Pretreatment with PVN microinjection of SQ22536 or H89 abolished the roles of asprosin in increasing superoxide production and NADPH oxidase activity in the PVN. These results indicated that asprosin in the PVN increased the sympathetic outflow, blood pressure, and heart rate via cAMP–PKA signaling-mediated NADPH oxidase activation and the subsequent superoxide production.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Jun-Liu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Wen-Yuan Hao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Wen-Zhou Xu
- Department of Cardiology and Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Zhi-Qin Xu
- Department of Cardiology and Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Yu-Tong Jiang
- Department of Cardiology and Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Pei-Qi Luo
- Department of Cardiology and Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (G.-Q.Z.); (X.-Z.L.)
| | - Xiu-Zhen Li
- Department of Cardiology and Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Correspondence: (G.-Q.Z.); (X.-Z.L.)
| |
Collapse
|
2
|
Niewiadomska J, Gajek-Marecka A, Gajek J, Noszczyk-Nowak A. Biological Potential of Polyphenols in the Context of Metabolic Syndrome: An Analysis of Studies on Animal Models. BIOLOGY 2022; 11:biology11040559. [PMID: 35453758 PMCID: PMC9029039 DOI: 10.3390/biology11040559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023]
Abstract
Metabolic syndrome (MetS) is a disease that has a complex etiology. It is defined as the co-occurrence of several pathophysiological disorders, including obesity, hyperglycemia, hypertension, and dyslipidemia. MetS is currently a severe problem in the public health care system. As its prevalence increases every year, it is now considered a global problem among adults and young populations. The treatment of choice comprises lifestyle changes based mainly on diet and physical activity. Therefore, researchers have been attempting to discover new substances that could help reduce or even reverse the symptoms when added to food. These attempts have resulted in numerous studies. Many of them have investigated the bioactive potential of polyphenols as a "possible remedy", stemming from their antioxidative and anti-inflammatory effects and properties normalizing carbohydrate and lipid metabolism. Polyphenols may be supportive in preventing or delaying the onset of MetS or its complications. Additionally, the consumption of food rich in polyphenols should be considered as a supplement for antidiabetic drugs. To ensure the relevance of the studies on polyphenols' properties, mechanisms of action, and potential human health benefits, researchers have used laboratory animals displaying pathophysiological changes specific to MetS. Polyphenols or their plant extracts were chosen according to the most advantageous mitigation of pathological changes in animal models best reflecting the components of MetS. The present paper comprises an overview of animal models of MetS, and promising polyphenolic compounds whose bioactive potential, effect on metabolic pathways, and supplementation-related benefits were analyzed based on in vivo animal models.
Collapse
Affiliation(s)
- Joanna Niewiadomska
- Doctoral School of Wroclaw, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Correspondence:
| | | | - Jacek Gajek
- Department of Emergency Medical Service, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Agnieszka Noszczyk-Nowak
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
3
|
Li Y, Yu XJ, Xiao T, Chi HL, Zhu GQ, Kang YM. Nrf1 Knock-Down in the Hypothalamic Paraventricular Nucleus Alleviates Hypertension Through Intervention of Superoxide Production-Removal Balance and Mitochondrial Function. Cardiovasc Toxicol 2021; 21:472-489. [PMID: 33582931 DOI: 10.1007/s12012-021-09641-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022]
Abstract
Oxidative stress in the hypothalamic paraventricular nucleus (PVN) contributes greatly to the development of hypertension. The recombinant nuclear respiratory factor 1 (Nrf1) regulates the transcription of several genes related to mitochondrial respiratory chain function or antioxidant expression, and thus may be involved in the pathogenesis of hypertension. Here we show that in the two-kidney, one-clip (2K1C) hypertensive rats the transcription level of Nrf1 was elevated comparing to the normotensive controls. Knocking down of Nrf1 in the PVN of 2K1C rats can significantly reduce their blood pressure and level of plasma norepinephrine (NE). Analysis revealed significant reduction of superoxide production level in both whole cell and mitochondria, along with up-regulation of superoxide dismutase 1 (Cu/Zn-SOD), NAD(P)H: quinone oxidoreductase 1 (NQO1), thioredoxin-dependent peroxiredoxin 3 (Prdx3), cytochrome c (Cyt-c) and glutathione synthesis rate-limiting enzyme (glutamyl-cysteine ligase catalytic subunit (Gclc) and modifier subunit (Gclm)), and down-regulation of cytochrome c oxidase subunit VI c (Cox6c) transcription after Nrf1 knock-down. In addition, the reduced ATP production and elevated mitochondrial membrane potential in the PVN of 2K1C rats were reinstated with Nrf1 knock-down, together with restored expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitochondrial transcription factor A (Tfam), coiled-coil myosin-like BCL2-interacting protein (Beclin1), and Mitofusin 1 (Mfn1), which are related to the mitochondrial biogenesis, fusion, and autophagy. Together, the results indicate that the PVN Nrf1 is associated with the development of 2K1C-induced hypertension, and Nrf1 knock-down in the PVN can alleviate hypertension through intervention of mitochondrial function and restorement of the production-removal balance of superoxide.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Xiao-Jing Yu
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Tong Xiao
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Hong-Li Chi
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Yu-Ming Kang
- Key Laboratory of Environment and Genes Related To Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China.
| |
Collapse
|
4
|
Bovolini A, Garcia J, Andrade MA, Duarte JA. Metabolic Syndrome Pathophysiology and Predisposing Factors. Int J Sports Med 2020; 42:199-214. [PMID: 33075830 DOI: 10.1055/a-1263-0898] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors with high prevalence among adult populations and elevated costs for public health systems worldwide. Despite the lack of consensus regarding the syndrome definition and diagnosis criteria, it is characterized by the coexistence of risk factors such as abdominal obesity, atherogenic dyslipidemia, elevated blood pressure, a prothrombotic and pro-inflammatory state, insulin resistance (IR), and higher glucose levels, factors indubitably linked to an increased risk of developing chronic conditions, such as type 2 diabetes (T2D) and cardiovascular disease (CVD). The syndrome has a complex and multifaceted origin not fully understood; however, it has been strongly suggested that sedentarism and unbalanced dietary patterns might play a fundamental role in its development. The purpose of this review is to provide an overview from the syndrome epidemiology, costs, and main etiological traits from its relationship with unhealthy diet patterns and sedentary lifestyles.
Collapse
Affiliation(s)
| | - Juliana Garcia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real
| | | | - José Alberto Duarte
- CIAFEL Faculty of Sport, University of Porto, Porto.,University Institute of Health Sciences (IUCS), Rua Central de Gandra, 1317 4585-116 Gandra Paredes, Portugal
| |
Collapse
|
5
|
Gong J, Shen Y, Li P, Zhao K, Chen X, Li Y, Sheng Y, Zhou B, Kong X. Superoxide anions mediate the effects of angiotensin (1-7) analog, alamandine, on blood pressure and sympathetic activity in the paraventricular nucleus. Peptides 2019; 118:170101. [PMID: 31199949 DOI: 10.1016/j.peptides.2019.170101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
Microinjection of alamandine into the hypothalamic paraventricular nucleus (PVN) increased blood pressure and enhanced sympathetic activity. The aim of this study was to determine if superoxide anions modulate alamandine's effects in the PVN. Mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) were recorded in anaesthetized normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Microinjection of alamandine into the PVN increased MAP and RSNA in both WKY rats and SHRs, although to a greater extent in SHRs. These effects were blocked by pretreatment with an alamandine receptor (MrgD) antagonist D-Pro7-Ang-(1-7). Pretreatment with superoxide anion scavengers, tempol and tiron, and NADPH oxidase inhibitor apocynin (APO), also blocked the effects of alamandine on MAP and RSNA. In addition, pretreatment in the PVN with a superoxide dismutase (SOD) inhibitor diethyldithiocarbamic acid (DETC) potentiated the increases of MAP and RSNA induced by alamandine administration, with a greater response observed in SHRs. Superoxide anions and NADPH oxidase levels in the PVN were higher in SHRs than that in WKY rats. Alamandine treatment increased the levels of superoxide anions and NADPH oxidase in WKY and SHRs, however, with greater effect in SHRs. These alamandine-induced increases were inhibited by D-Pro7-Ang-(1-7) pretreatment in the PVN of both rats. These results demonstrate that superoxide anions in the PVN modulate alamandine-induced increases in blood pressure and sympathetic activity in both normotensive and hypertensive rats. Alamandine increases NADPH oxidase activity to induce superoxide anion production, which is mediated by the alamandine receptor.
Collapse
Affiliation(s)
- Juexiao Gong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Cardiology, the Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yihui Shen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuguan Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhui Sheng
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Bin Zhou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiangqing Kong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Conklin DJ, Schick S, Blaha MJ, Carll A, DeFilippis A, Ganz P, Hall ME, Hamburg N, O'Toole T, Reynolds L, Srivastava S, Bhatnagar A. Cardiovascular injury induced by tobacco products: assessment of risk factors and biomarkers of harm. A Tobacco Centers of Regulatory Science compilation. Am J Physiol Heart Circ Physiol 2019; 316:H801-H827. [PMID: 30707616 PMCID: PMC6483019 DOI: 10.1152/ajpheart.00591.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/09/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Although substantial evidence shows that smoking is positively and robustly associated with cardiovascular disease (CVD), the CVD risk associated with the use of new and emerging tobacco products, such as electronic cigarettes, hookah, and heat-not-burn products, remains unclear. This uncertainty stems from lack of knowledge on how the use of these products affects cardiovascular health. Cardiovascular injury associated with the use of new tobacco products could be evaluated by measuring changes in biomarkers of cardiovascular harm that are sensitive to the use of combustible cigarettes. Such cardiovascular injury could be indexed at several levels. Preclinical changes contributing to the pathogenesis of disease could be monitored by measuring changes in systemic inflammation and oxidative stress, organ-specific dysfunctions could be gauged by measuring endothelial function (flow-mediated dilation), platelet aggregation, and arterial stiffness, and organ-specific injury could be evaluated by measuring endothelial microparticles and platelet-leukocyte aggregates. Classical risk factors, such as blood pressure, circulating lipoproteins, and insulin resistance, provide robust estimates of risk, and subclinical disease progression could be followed by measuring coronary artery Ca2+ and carotid intima-media thickness. Given that several of these biomarkers are well-established predictors of major cardiovascular events, the association of these biomarkers with the use of new and emerging tobacco products could be indicative of both individual and population-level CVD risk associated with the use of these products. Differential effects of tobacco products (conventional vs. new and emerging products) on different indexes of cardiovascular injury could also provide insights into mechanisms by which they induce cardiovascular harm.
Collapse
Affiliation(s)
- Daniel J Conklin
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Suzaynn Schick
- Department of Medicine, University of California-San Francisco , San Francisco, California
| | - Michael J Blaha
- Ciccarone Center for the Prevention of Heart Disease, Department of Medicine, Johns Hopkins University , Baltimore, Maryland
| | - Alex Carll
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Andrew DeFilippis
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Peter Ganz
- Department of Medicine, University of California-San Francisco , San Francisco, California
| | - Michael E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center , Jackson, Mississippi
| | - Naomi Hamburg
- Department of Medicine/Cardiovascular Medicine, School of Medicine, Boston University , Boston, Massachusetts
| | - Tim O'Toole
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Lindsay Reynolds
- Department of Epidemiology and Prevention, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Sanjay Srivastava
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| |
Collapse
|
7
|
Moralez G, Jouett NP, Tian J, Zimmerman MC, Bhella P, Raven PB. Effect of centrally acting angiotensin converting enzyme inhibitor on the exercise-induced increases in muscle sympathetic nerve activity. J Physiol 2018; 596:2315-2332. [PMID: 29635787 PMCID: PMC6002210 DOI: 10.1113/jp274697] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS The arterial baroreflex's operating point pressure is reset upwards and rightwards from rest in direct relation to the increases in dynamic exercise intensity. The intraneural pathways and signalling mechanisms that lead to upwards and rightwards resetting of the operating point pressure, and hence the increases in central sympathetic outflow during exercise, remain to be identified. We tested the hypothesis that the central production of angiotensin II during dynamic exercise mediates the increases in sympathetic outflow and, therefore, the arterial baroreflex operating point pressure resetting during acute and prolonged dynamic exercise. The results identify that perindopril, a centrally acting angiotensin converting enzyme inhibitor, markedly attenuates the central sympathetic outflow during acute and prolonged dynamic exercise. ABSTRACT We tested the hypothesis that the signalling mechanisms associated with the dynamic exercise intensity related increases in muscle sympathetic nerve activity (MSNA) and arterial baroreflex resetting during exercise are located within the central nervous system. Participants performed three randomly ordered trials of 70° upright back-supported dynamic leg cycling after ingestion of placebo and two different lipid soluble angiotensin converting enzyme inhibitors (ACEi): perindopril (high lipid solubility), captopril (low lipid solubility). Repeated measurements of whole venous blood (n = 8), MSNA (n = 7) and arterial blood pressures (n = 14) were obtained at rest and during an acute (SS1) and prolonged (SS2) bout of steady state dynamic exercise. Arterial baroreflex function curves were modelled at rest and during exercise. Peripheral venous superoxide concentrations measured by electron spin resonance spectroscopy were elevated during exercise and were not altered by ACEi at rest (P ≥ 0.4) or during exercise (P ≥ 0.3). Baseline MSNA and mean arterial pressure were unchanged at rest (P ≥ 0.1; P ≥ 0.8, respectively). However, during both SS1 and SS2, the centrally acting ACEi perindopril attenuated MSNA compared to captopril and the placebo (P < 0.05). Arterial pressures at the operating point and threshold pressures were decreased with perindopril from baseline to SS1 with no further changes in the operating point pressure during SS2 under all three conditions. These data suggest that centrally acting ACEi is significantly more effective at attenuating the increase in the acute and prolonged exercise-induced increases in MSNA.
Collapse
Affiliation(s)
- Gilbert Moralez
- Institute for Cardiovascular and Metabolic DiseaseUniversity of North Texas Health Science CenterFort WorthTXUSA
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian Hospital Dallas and The University of Texas Southwestern Medical CenterDallasTXUSA
| | - Noah P. Jouett
- Institute for Cardiovascular and Metabolic DiseaseUniversity of North Texas Health Science CenterFort WorthTXUSA
| | - Jun Tian
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Paul Bhella
- Department of Cardiac Imaging at the John Peter Smith Health NetworkFort WorthTXUSA
- Department of Internal MedicineTCU and UNTHSC School of MedicineFort WorthTXUSA
| | - Peter B. Raven
- Institute for Cardiovascular and Metabolic DiseaseUniversity of North Texas Health Science CenterFort WorthTXUSA
| |
Collapse
|
8
|
Ren X, Zhang F, Zhao M, Zhao Z, Sun S, Fraidenburg DR, Tang H, Han Y. Angiotensin-(1-7) in Paraventricular Nucleus Contributes to the Enhanced Cardiac Sympathetic Afferent Reflex and Sympathetic Activity in Chronic Heart Failure Rats. Cell Physiol Biochem 2017; 42:2523-2539. [PMID: 28848201 PMCID: PMC6022399 DOI: 10.1159/000480214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/15/2017] [Indexed: 01/08/2023] Open
Abstract
Background/Aims Cardiac sympathetic afferent reflex (CSAR) enhancement contributes to exaggerated sympathetic activation in chronic heart failure (CHF). The current study aimed to investigate the roles of angiotensin (Ang)-(1-7) in CSAR modulation and sympathetic activation and Ang-(1-7) signaling pathway in paraventricular nucleus of CHF rats. Methods CHF was induced by coronary artery ligation. Responses of renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) to epicardial application of capsaicin were used to evaluate CSAR in rats with anesthesia. Results Ang-(1-7) increased RSNA, MAP, CSAR activity, cAMP level, NAD(P)H oxidase activity and superoxide anion level more significantly in CHF than in sham-operated rats, while Mas receptor antagonist A-779 had the opposite effects. Moreover, Ang-(1-7) augmented effects of Ang II in CHF rats. The effects of Ang-(1-7) were blocked by A-779, adenylyl cyclase inhibitor SQ22536, protein kinase A inhibitor Rp-cAMP, superoxide anion scavenger tempol and NAD(P)H oxidase inhibitor apocynin. Mas and AT1 receptor protein expressions, Ang-(1-7) and Ang II levels in CHF increased. Conclusions These results indicate that Ang-(1-7) in paraventricular nucleus enhances CSAR and sympathetic output not only by exerting its own effects but also by augmenting the effects of Ang II through Mas receptor in CHF. Endogenous Ang-(1-7)/Mas receptor activity contributes to CSAR enhancement and sympathetic activation in CHF, and NAD(P)H oxidase-derived superoxide anions and the cAMP-PKA signaling pathway are involved in mediating the effects of Ang-(1-7) in CHF.
Collapse
Affiliation(s)
- Xingsheng Ren
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Mingxia Zhao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Zhenzhen Zhao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China.,The first clinical medical college, Nanjing Medical University, Nanjing, China
| | - Shuo Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Dustin R Fraidenburg
- Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona, Tucson, Arizona, USA.,Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Haiyang Tang
- Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Ying Han
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Silencing salusin-β attenuates cardiovascular remodeling and hypertension in spontaneously hypertensive rats. Sci Rep 2017; 7:43259. [PMID: 28230187 PMCID: PMC5322393 DOI: 10.1038/srep43259] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/23/2017] [Indexed: 12/24/2022] Open
Abstract
Salusin-β is a bioactive peptide involved in vascular smooth muscle cell proliferation, vascular fibrosis and hypertension. The present study was designed to determine the effects of silencing salusin-β on hypertension and cardiovascular remodeling in spontaneously hypertensive rats (SHR). Thirteen-week-old male SHR and normotensive Wistar-Kyoto rats (WKY) were subjected to intravenous injection of PBS, adenoviral vectors encoding salusin-β shRNA (Ad-Sal-shRNA) or a scramble shRNA. Salusin-β levels in plasma, myocardium and mesenteric artery were increased in SHR. Silencing salusin-β had no significant effect on blood pressure in WKY, but reduced blood pressure in SHR. It reduced the ratio of left ventricle weight to body weight, cross-sectional areas of cardiocytes and perivascular fibrosis, and decreased the media thickness and the media/lumen ratio of arteries in SHR. Silencing salusin-β almost normalized plasma norepinephrine and angiotensin II levels in SHR. It prevented the upregulation of angiotensin II and AT1 receptors, and reduced the NAD(P)H oxidase activity and superoxide anion levels in myocardium and mesenteric artery of SHR. Knockdown of salusin-β attenuated cell proliferation and fibrosis in vascular smooth muscle cells from SHR. These results indicate that silencing salusin-β attenuates hypertension and cardiovascular remodeling in SHR.
Collapse
|
10
|
Ahmad A, Sattar MA, Rathore HA, Abdulla MH, Khan SA, Azam M, Abdullah NA, Johns EJ. Up Regulation of cystathione γ lyase and Hydrogen Sulphide in the Myocardium Inhibits the Progression of Isoproterenol-Caffeine Induced Left Ventricular Hypertrophy in Wistar Kyoto Rats. PLoS One 2016; 11:e0150137. [PMID: 26963622 PMCID: PMC4786159 DOI: 10.1371/journal.pone.0150137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/09/2016] [Indexed: 01/19/2023] Open
Abstract
Hydrogen sulphide (H2S) is an emerging molecule in many cardiovascular complications but its role in left ventricular hypertrophy (LVH) is unknown. The present study explored the effect of exogenous H2S administration in the regression of LVH by modulating oxidative stress, arterial stiffness and expression of cystathione γ lyase (CSE) in the myocardium. Animals were divided into four groups: Control, LVH, Control-H2S and LVH-H2S. LVH was induced by administering isoprenaline (5mg/kg, every 72 hours, S/C) and caffeine in drinking water (62mg/L) for 2 weeks. Intraperitoneal NaHS, 56μM/kg/day for 5 weeks, was given as an H2S donor. Myocardial expression of Cystathione γ lyase (CSE) mRNA was quantified using real time polymerase chain reaction (qPCR).There was a 3 fold reduction in the expression of myocardial CSE mRNA in LVH but it was up regulated by 7 and 4 fold in the Control-H2S and LVH-H2S myocardium, respectively. Systolic blood pressure, mean arterial pressure, pulse wave velocity were reduced (all P<0.05) in LVH-H2S when compared to the LVH group. Heart, LV weight, myocardial thickness were reduced while LV internal diameter was increased (all P<0.05) in the LVH-H2S when compared to the LVH group. Exogenous administration of H2S in LVH increased superoxide dismutase, glutathione and total antioxidant capacity but significantly reduced (all P<0.05) plasma malanodialdehyde in the LVH-H2S compared to the LVH group. The renal cortical blood perfusion increased by 40% in LVH-H2S as compared to the LVH group. Exogenous administration of H2S suppressed the progression of LVH which was associated with an up regulation of myocardial CSE mRNA/ H2S and a reduction in pulse wave velocity with a blunting of systemic hemodynamic. This CSE/H2S pathway exhibits an antihypertrophic role by antagonizing the hypertrophic actions of angiotensin II(Ang II) and noradrenaline (NA) but attenuates oxidative stress and improves pulse wave velocity which helps to suppress LVH. Exogenous administration of H2S augmented the reduced renal cortical blood perfusion in the LVH state.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- School of Pharmaceutical Sciences, UniversitiSains Malaysia, Penang, Malaysia
| | - Munavvar A. Sattar
- School of Pharmaceutical Sciences, UniversitiSains Malaysia, Penang, Malaysia
| | - Hassaan A. Rathore
- School of Pharmaceutical Sciences, UniversitiSains Malaysia, Penang, Malaysia
| | | | - Safia A. Khan
- School of Pharmaceutical Sciences, UniversitiSains Malaysia, Penang, Malaysia
| | - Maleeha Azam
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Nor A. Abdullah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Edward J. Johns
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Shinohara K, Kishi T, Hirooka Y, Sunagawa K. Circulating angiotensin II deteriorates left ventricular function with sympathoexcitation via brain angiotensin II receptor. Physiol Rep 2015; 3:3/8/e12514. [PMID: 26290529 PMCID: PMC4562594 DOI: 10.14814/phy2.12514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sympathoexcitation contributes to the progression of heart failure. Activation of brain angiotensin II type 1 receptors (AT1R) causes central sympathoexcitation. Thus, we assessed the hypothesis that the increase in circulating angiotensin II comparable to that reported in heart failure model affects cardiac function through the central sympathoexcitation via activating AT1R in the brain. In Sprague-Dawley rats, the subcutaneous infusion of angiotensin II for 14 days increased the circulating angiotensin II level comparable to that reported in heart failure model rats after myocardial infarction. In comparison with the control, angiotensin II infusion increased 24 hours urinary norepinephrine excretion, and systolic blood pressure. Angiotensin II infusion hypertrophied left ventricular (LV) without changing chamber dimensions while increased end-diastolic pressure. The LV pressure–volume relationship indicated that angiotensin II did not impact on the end-systolic elastance, whereas significantly increased end-diastolic elastance. Chronic intracerebroventricular infusion of AT1R blocker, losartan, attenuated these angiotensin II-induced changes. In conclusion, circulating angiotensin II in heart failure is capable of inducing sympathoexcitation via in part AT1R in the brain, subsequently leading to LV diastolic dysfunction.
Collapse
Affiliation(s)
- Keisuke Shinohara
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Department of Cardiovascular Regulation and Therapeutics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kenji Sunagawa
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
12
|
Chen WW, Xiong XQ, Chen Q, Li YH, Kang YM, Zhu GQ. Cardiac sympathetic afferent reflex and its implications for sympathetic activation in chronic heart failure and hypertension. Acta Physiol (Oxf) 2015; 213:778-94. [PMID: 25598170 DOI: 10.1111/apha.12447] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 10/22/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
Persistent excessive sympathetic activation greatly contributes to the pathogenesis of chronic heart failure (CHF) and hypertension. Cardiac sympathetic afferent reflex (CSAR) is a sympathoexcitatory reflex with positive feedback characteristics. Humoral factors such as bradykinin, adenosine and reactive oxygen species produced in myocardium due to myocardial ischaemia stimulate cardiac sympathetic afferents and thereby reflexly increase sympathetic activity and blood pressure. The CSAR is enhanced in myocardial ischaemia, CHF and hypertension. The enhanced CSAR at least partially contributes to the sympathetic activation and pathogenesis of these diseases. Nucleus of the solitary tract (NTS), hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla are the most important central sites involved in the modulation and integration of the CSAR. Angiotensin II, AT1 receptors and NAD(P)H oxidase-derived superoxide anions pathway in the PVN are mainly responsible for the enhanced CSAR in CHF and hypertension. Central angiotensin-(1-7), nitric oxide, endothelin, intermedin, hydrogen peroxide and several other signal molecules are involved in regulating CSAR. Blockade of the CSAR shows beneficial effects in CHF and hypertension. This review focuses on the anatomical and physiological basis of the CSAR, the interaction of CSAR with baroreflex and chemoreflex, and the role of enhanced CSAR in the pathogenesis of CHF and hypertension.
Collapse
Affiliation(s)
- W.-W. Chen
- Department of Physiology; Key Laboratory of Cardiovascular Disease and Molecular Intervention; Nanjing Medical University; Nanjing Jiangsu China
| | - X.-Q. Xiong
- Department of Physiology; Key Laboratory of Cardiovascular Disease and Molecular Intervention; Nanjing Medical University; Nanjing Jiangsu China
| | - Q. Chen
- Department of Pathophysiology; Nanjing Medical University; Nanjing Jiangsu China
| | - Y.-H. Li
- Department of Pathophysiology; Nanjing Medical University; Nanjing Jiangsu China
| | - Y.-M. Kang
- Department of Physiology and Pathophysiology; Cardiovascular Research Center; Xi'an Jiaotong University School of Medicine; Xi'an China
| | - G.-Q. Zhu
- Department of Physiology; Key Laboratory of Cardiovascular Disease and Molecular Intervention; Nanjing Medical University; Nanjing Jiangsu China
| |
Collapse
|
13
|
Li C, Liu Y, Xie Z, Lu Q, Luo S. Stigmasterol protects against Ang II-induced proliferation of the A7r5 aortic smooth muscle cell-line. Food Funct 2015; 6:2266-72. [DOI: 10.1039/c5fo00031a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Excessive proliferation of vascular smooth muscle cells is a crucial event in the pathogenesis of several cardiovascular diseases, including atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Biochemistry and Molecular Biology
- Guangdong Pharmaceutical College
- Guangzhou
- China
| | - Yang Liu
- Department of Biochemistry and Molecular Biology
- Guangdong Pharmaceutical College
- Guangzhou
- China
| | - Zhe Xie
- Department of Biochemistry and Molecular Biology
- Guangdong Pharmaceutical College
- Guangzhou
- China
| | - Qun Lu
- Department of Biochemistry and Molecular Biology
- Guangdong Pharmaceutical College
- Guangzhou
- China
| | - Shaohong Luo
- Department of Biochemistry and Molecular Biology
- Guangdong Pharmaceutical College
- Guangzhou
- China
| |
Collapse
|
14
|
Pro-inflammatory cytokines in paraventricular nucleus mediate the cardiac sympathetic afferent reflex in hypertension. Auton Neurosci 2014; 186:54-61. [DOI: 10.1016/j.autneu.2014.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/02/2014] [Accepted: 10/10/2014] [Indexed: 02/07/2023]
|
15
|
Sun HJ, Zhou H, Feng XM, Gao Q, Ding L, Tang CS, Zhu GQ, Zhou YB. Superoxide anions in the paraventricular nucleus mediate cardiac sympathetic afferent reflex in insulin resistance rats. Acta Physiol (Oxf) 2014; 212:267-82. [PMID: 25307720 DOI: 10.1111/apha.12405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/26/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022]
Abstract
AIM Cardiac sympathetic afferent reflex (CSAR) participates in sympathetic over-excitation. Superoxide anions and angiotensin II (Ang II) mechanisms are associated with sympathetic outflow and CSAR in the paraventricular nucleus (PVN). This study was designed to investigate whether PVN superoxide anions mediate CSAR and Ang II-induced CSAR enhancement response in fructose-induced insulin resistance (IR) rats. METHODS CSAR was evaluated with the changes of renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to the epicardial application of capsaicin (CAP) in anaesthetized rats. RESULTS Compared with Control rats, IR rats showed that CSAR, PVN NAD(P)H oxidase activity, superoxide anions, malondialdehyde (MDA), Ang II and AT1 receptor levels were significantly increased, whereas PVN superoxide dismutase (SOD) and catalase (CAT) activities were decreased. In Control and IR rats, PVN microinjection of superoxide anions scavengers tempol, tiron and PEG-SOD (an analogue of endogenous superoxide dismutase) or inhibition of PVN NAD(P)H oxidase with apocynin caused significant reduction of CSAR, respectively, but DETC (a superoxide dismutase inhibitor) strengthened the CSAR. PVN pre-treatment with tempol abolished, whereas DETC potentiated, Ang II-induced CSAR enhancement response. Moreover, PVN pre-treatment with tempol or losartan prevented superoxide anions increase caused by Ang II in IR rats. CONCLUSION PVN superoxide anions mediate CSAR and Ang II-induced CSAR response in IR rats. In IR state, increased NAD(P)H oxidase activity and decreased SOD and CAT activities in the PVN promote superoxide anions increase to involve in CSAR enhancement. Ang II may increase NAD(P)H oxidase activity via AT1 receptor to induce superoxide anion production.
Collapse
Affiliation(s)
- H.-J. Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - H. Zhou
- Laboratory Center for Basic Medical Sciences; Nanjing Medical University; Nanjing China
| | - X.-M. Feng
- Clinical Laboratory of Luyi Xian People's Hospital; Zhoukou China
| | - Q. Gao
- Laboratory Center for Basic Medical Sciences; Nanjing Medical University; Nanjing China
| | - L. Ding
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - C.-S. Tang
- Key Laboratory of Molecular Cardiovascular Science; Ministry of Education; Beijing China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - Y.-B. Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| |
Collapse
|
16
|
Mousa TM, Schiller AM, Zucker IH. Disruption of cardiovascular circadian rhythms in mice post myocardial infarction: relationship with central angiotensin II receptor expression. Physiol Rep 2014; 2:2/11/e12210. [PMID: 25413327 PMCID: PMC4255816 DOI: 10.14814/phy2.12210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Angiotensin II (Ang II) is well known to participate in the abnormal autonomic cardiovascular control that occurs during the development of chronic heart failure (CHF). Disrupted cardiovascular circadian rhythm in CHF is also well accepted; however, the mechanisms underlying and the role of central Ang II type 1 receptors (AT1R) and oxidative stress in mediating such changes are not clear. In a post myocardial infarction (MI) CHF mouse model we investigated the circadian rhythm for mean arterial pressure (MAP), heart rate (HR), and baroreflex sensitivity (BRS) following MI. The cardiovascular parameters represent the middle 6‐h averages during daytime (6:00–18:00) and nighttime (18:00–6:00). HR increased with the severity of CHF reaching its maximum by 12 weeks post‐MI; loss of circadian HR and BRS rhythms were observed as early as 4 weeks post‐MI in conjunction with a significant blunting of the BRS and an upregulation in the AT1R and gp91phox proteins in the brainstem. Loss of MAP circadian rhythm was observed 8 weeks post‐MI. Circadian AT1R expression was demonstrated in sham animals but was lost 8 weeks following MI. Losartan reduced AT1R expression in daytime (1.18 ± 0.1 vs. 0.85 ± 0.1; P < 0.05) with a trend toward a reduction in the AT1R mRNA expression in the nighttime (1.2 ± 0.1 vs. 1.0 ± 0.1; P > 0.05) but failed to restore circadian variability. The disruption of circadian rhythm for HR, MAP and BRS along with the upregulation of AT1 and gp91phox suggests a possible role for central oxidative stress as a mediator of circadian cardiovascular parameters in the post‐MI state. Increases in central angiotenisn II signaling provide a driving force for sympatho‐excitation in heart failure. In this study, we show a loss of circadian variability in angiotensin type 1 receptor expression in the brainstem of mice post myocardial infarction. These changes correlate with a loss of cardiovascular circadian variability. These data suggest that sympatho‐ excitation may be increased in the post‐MI state at times when sympathetic outflow is normally reduced.
Collapse
Affiliation(s)
- Tarek M Mousa
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Alicia M Schiller
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
17
|
The effect of orexin-A on cardiac dysfunction mediated by NADPH oxidase-derived superoxide anion in ventrolateral medulla. PLoS One 2013; 8:e69840. [PMID: 23922819 PMCID: PMC3724905 DOI: 10.1371/journal.pone.0069840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/12/2013] [Indexed: 02/07/2023] Open
Abstract
Hypocretin/orexin-producing neurons, located in the perifornical region of the lateral hypothalamus area (LHA) and projecting to the brain sites of rostral ventrolateral medulla (RVLM), involve in the increase of sympathetic activity, thereby regulating cardiovascular function. The current study was designed to test the hypothesis that the central orexin-A (OXA) could be involved in the cardiovascular dysfunction of acute myocardial infarction (AMI) by releasing NAD(P)H oxidase-derived superoxide anion (O2 (-)) generation in RVLM, AMI rat model established by ligating the left anterior descending (LAD) coronary artery to induce manifestation of cardiac dysfunction, monitored by the indicators as heart rate (HR), heart rate variability (HRV), mean arterial pressure (MAP) and left intraventricular pressure. The results showed that the expressions of OXA in LHA and orexin 1 receptor (OX1R) increased in RVLM of AMI rats. The double immunofluorescent staining indicated that OX1R positive cells and NAD(P)H oxidative subunit gp91phox or p47phox-immunoreactive (IR) cells were co-localized in RVLM. Microinjection of OXA into the cerebral ventricle significantly increased O2 (-) production and mRNA expression of NAD(P)H oxidase subunits when compared with aCSF-treated ones. Exogenous OXA administration in RVLM produced pressor and tachycardiac effects. Furthermore, the antagonist of OX1R and OX2R (SB-408124 and TCS OX2 29, respectively) or apocynin (APO), an inhibitor of NAD(P)H oxidase, partly abolished those cardiovascular responses of OXA. HRV power spectral analysis showed that exogenous OXA led to decreased HF component of HRV and increased LF/HF ratio in comparison with aCSF, which suggested that OXA might be related to sympathovagal imbalance. As indicated by the results, OXA might participate in the central regulation of cardiovascular activities by disturbing the sympathovagal balance in AMI, which could be explained by the possibility that OXR and NAD(P)H-derived O2 (-) in RVLM mediates OXA-induced cardiovascular responses.
Collapse
|
18
|
Li P, Zhang F, Zhou YB, Cui BP, Han Y. Superoxide anions modulate the effects of angiotensin-(1–7) in the rostral ventrolateral medulla on cardiac sympathetic afferent reflex and sympathetic activity in rats. Neuroscience 2012; 223:388-98. [DOI: 10.1016/j.neuroscience.2012.07.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/28/2012] [Accepted: 07/19/2012] [Indexed: 11/15/2022]
|
19
|
Different role of oxidative stress in paraventricular nucleus and rostral ventrolateral medulla in cardiovascular regulation in awake spontaneously hypertensive rats. J Hypertens 2012; 30:1758-65. [DOI: 10.1097/hjh.0b013e32835613d7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Chen AD, Xiong XQ, Gan XB, Zhang F, Zhou YB, Gao XY, Han Y. Endothelin-1 in paraventricular nucleus modulates cardiac sympathetic afferent reflex and sympathetic activity in rats. PLoS One 2012; 7:e40748. [PMID: 22815806 PMCID: PMC3398005 DOI: 10.1371/journal.pone.0040748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/12/2012] [Indexed: 02/01/2023] Open
Abstract
Background Cardiac sympathetic afferent reflex (CSAR) is a positive-feedback, sympathoexcitatory reflex. Paraventricular nucleus (PVN) is an important component of the central neurocircuitry of the CSAR. The present study is designed to determine whether endothelin-1 (ET-1) in the PVN modulates the CSAR and sympathetic activity, and whether superoxide anions are involved in modulating the effects of ET-1 in the PVN in rats. Methodology/Principal Findings In anaesthetized Sprague–Dawley rats with cervical vagotomy and sinoaortic denervation, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The CSAR was evaluated by the responses of the RSNA and MAP to epicardial application of capsaicin. Microinjection of ET-1 into the bilateral PVN dose-dependently enhanced the CSAR, increased the baseline RSNA and MAP. The effects of ET-1 were blocked by PVN pretreatment with the ETA receptor antagonist BQ-123. However, BQ-123 alone had no significant effects on the CSAR, the baseline RSNA and MAP. Bilateral PVN pretreatment with either superoxide anion scavenger tempol or polyethylene glycol-superoxide dismutase (PEG-SOD) inhibited the effects of ET-1 on the CSAR, RSNA and MAP. Microinjection of ET-1 into the PVN increased the superoxide anion level in the PVN, which was abolished by PVN pretreatment with BQ-123. Epicardial application of capsaicin increased superoxide anion level in PVN which was further enhanced by PVN pretreatment with ET-1. Conclusions Exogenous activation of ETA receptors with ET-1 in the PVN enhances the CSAR, increases RSNA and MAP. Superoxide anions in PVN are involved in the effects of ET-1 in the PVN.
Collapse
Affiliation(s)
- Ai-Dong Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiao-Qing Xiong
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xian-Bing Gan
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xing-Ya Gao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ying Han
- Department of Physiology, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
21
|
Abstract
Excess body weight is a major risk factor for cardiovascular disease, increasing the risk of hypertension, hyperglycaemia and dyslipidaemia, recognized as the metabolic syndrome. Adipose tissue acts as an endocrine organ by producing various signalling cytokines called adipokines (including leptin, free fatty acids, tumour necrosis factor-α, interleukin-6, C-reactive protein, angiotensinogen and adiponectin). A chronic dysregulation of certain adipokines can have deleterious effects on insulin signalling. Chronic sympathetic overactivity is also known to be present in central obesity, and recent findings demonstrate the consequence of an elevated sympathetic outflow to organs such as the heart, kidneys and blood vessels. Chronic sympathetic nervous system overactivity can also contribute to a further decline of insulin sensitivity, creating a vicious cycle that may contribute to the development of the metabolic syndrome and hypertension. The cause of this overactivity is not clear, but may be driven by certain adipokines. The purpose of this review is to summarize how obesity, notably central or visceral as observed in the metabolic syndrome, leads to adipokine expression contributing to changes in insulin sensitivity and overactivity of the sympathetic nervous system.
Collapse
Affiliation(s)
- Michael M Smith
- Department of Human Physiology, University of Oregon, Eugene, OR 97403-1240, USA
| | | |
Collapse
|
22
|
Valenti VE, De Abreu LC, Sato MA, Fonseca FLA, Riera ARP, Ferreira C. Catalase inhibition into the fourth cerebral ventricle affects bradycardic parasympathetic response to increase in arterial pressure without changing the baroreflex. J Integr Neurosci 2012; 10:1-14. [PMID: 21425479 DOI: 10.1142/s0219635211002580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 12/14/2010] [Indexed: 11/18/2022] Open
Abstract
Exogenous catalase influences neural control of cardiovascular system; however, we do not know yet if its inhibition into the fourth cerebral ventricle (4(th) V) influences baroreflex regulation. We evaluated the effects of central catalase inhibition on baroreflex in conscious Wistar rats. We used males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into 4(th) V. The femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. After basal MAP and HR recordings, the baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 μg/kg, bolus) and a depressor dose of sodium nitroprusside (SNP, 50 μg/kg, bolus). Baroreflex was evaluated before 5, 15, 30 and 60 minutes after 3-amino-1, 2, 4-triazole (ATZ, 0.001 g/100 μL) injection into the 4(th) V. Vehicle treatment did not change baroreflex responses. ATZ attenuated bradycardic peak and reduced HR range at 30 minutes. ATZ into the 4(th) V reduced bradycardic and tachycardic reflex responses to increase and decrease MAP, respectively (p<0.05) 30 minutes after its microinjection without significantly changing the basal MAP and HR. In conclusion, central catalase inhibition influenced the highest parasympathetic response to MAP increase in conscious Wistar rats without change baroreflex gain.
Collapse
Affiliation(s)
- Vitor E Valenti
- Departamento de Medicina, Disciplina de Cardiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 715 - Térreo 04039-032 São Paulo, SP, Brasil.
| | | | | | | | | | | |
Collapse
|
23
|
Gan XB, Duan YC, Xiong XQ, Li P, Cui BP, Gao XY, Zhu GQ. Inhibition of cardiac sympathetic afferent reflex and sympathetic activity by baroreceptor and vagal afferent inputs in chronic heart failure. PLoS One 2011; 6:e25784. [PMID: 21991351 PMCID: PMC3185007 DOI: 10.1371/journal.pone.0025784] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/09/2011] [Indexed: 11/19/2022] Open
Abstract
Background Cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation and angiotensin II (Ang II) in paraventricular nucleus (PVN) augments the CSAR in vagotomized (VT) and baroreceptor denervated (BD) rats with chronic heart failure (CHF). This study was designed to determine whether it is true in intact (INT) rats with CHF and to determine the effects of cardiac and baroreceptor afferents on the CSAR and sympathetic activity in CHF. Methodology/Principal Findings Sham-operated (Sham) or coronary ligation-induced CHF rats were respectively subjected to BD+VT, VT, cardiac sympathetic denervation (CSD) or INT. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded, and the CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Either CSAR or the responses of RSNA, MAP and CSAR to Ang II in PVN were enhanced in CHF rats treated with BD+VT, VT or INT. Treatment with VT or BD+VT potentiated the CSAR and the CSAR responses to Ang II in both Sham and CHF rats. Treatment with CSD reversed the capsaicin-induced RSNA and MAP changes and the CSAR responses to Ang II in both Sham and CHF rats, and reduced the RSNA and MAP responses to Ang II only in CHF rats. Conclusions The CSAR and the CSAR responses to Ang II in PVN are enhanced in intact CHF rats. Baroreceptor and vagal afferent activities inhibit CSAR and the CSAR responses to Ang II in intact Sham and CHF rats.
Collapse
Affiliation(s)
- Xian-Bing Gan
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yang-Can Duan
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Department of Medical Ultrasound, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiao-Qing Xiong
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Peng Li
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Bai-Ping Cui
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xing-Ya Gao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Guo-Qing Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
24
|
Xu Y, Gao Q, Gan XB, Chen L, Zhang L, Zhu GQ, Gao XY. Endogenous hydrogen peroxide in paraventricular nucleus mediates sympathetic activation and enhanced cardiac sympathetic afferent reflex in renovascular hypertensive rats. Exp Physiol 2011; 96:1282-92. [PMID: 21890522 DOI: 10.1113/expphysiol.2011.059733] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An enhancement of the cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation in renovascular hypertension. Angiotensin II in the paraventricular nucleus (PVN) augments the CSAR and increases sympathetic outflow and blood pressure. The present study aimed to determine whether endogenous hydrogen peroxide in the PVN mediated the enhanced CSAR, sympathetic activity and the effects of angiotensin II in the PVN in renovascular hypertension induced by the two-kidney, one-clip method (2K1C) in rats. At the end of the fourth week, the rats underwent sino-aortic and vagal denervation under general anaesthesia with urethane and α-chloralose. Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The CSAR was evaluated by the RSNA response to epicardial application of bradykinin. Microinjection of polyethylene glycol-catalase (PEG-CAT), an analogue of endogenous catalase, into the PVN decreased the RSNA and MAP and abolished the CSAR in both sham-operated and 2K1C rats. Microinjection into the PVN of the catalase inhibitor, aminotriazole, increased the RSNA and MAP and enhanced the CSAR. The effects of PEG-CAT or aminotriazole were greater in 2K1C rats than in sham-operated animals. The effects of angiotensin II in the PVN were abolished by pretreatment with PEG-CAT in both sham-operated and 2K1C rats; however, aminotriazole failed to potentiate the effects of angiotensin II. The catalase activity was decreased but the H(2)O(2) levels were increased in the PVN of 2K1C rats. These results indicate that endogenous H(2)O(2) in the PVN not only mediates the enhanced sympathetic activity and CSAR, but also the effects of angiotensin II in the PVN in renovascular hypertensive rats.
Collapse
Affiliation(s)
- Yao Xu
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Effects of serotonin depletion on behavior and neuronal oxidative stress status in rat: relevance for anxiety and affective disorders. Adv Med Sci 2011; 55:289-96. [PMID: 20934963 DOI: 10.2478/v10039-010-0035-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE We lesioned the hypothalamic paraventricular nucleus (PVN) of male Wistar rats using two different doses (8μg/3μl and 16μg/3μl) of 5,7-dihydroxytryptamine (5,7-DHT) and then animals were subjected to a battery of behavioral tests designed to assess anxiety and memory formation. Further, we were interested to know whether this lesion would result in neuronal oxidative stress and also if there is a correlation between the behavioral response to this lesion and brain oxidative stress. MATERIAL/METHODS Behavioral tests included elevated plus maze, used to assess exploration/anxiety status and radial armmaze, used for determining spatial short-term and reference memory errors. Regarding the oxidative stress, we measured the extent of some lipid peroxidation products like malondialdehyde and defense enzymes such as superoxide dismutase and glutathione peroxidase. RESULTS 5,7-DHT lesioned rats spent more time in the open arms of the elevated maze compared to sham-operated rats, suggesting that the lesion significantly diminished anxiety-like behavior. Also, short-term memory was significantly impaired, as shown by the working memory errors in radial arm-maze task. Further analyses revealed that the 5,7-DHT lesion did not result in a significant change of reference memory errors. Regarding the oxidative stress, no significant modification of both superoxide dismutase and glutathione peroxidase specific activities from the temporal lobe were observed. However, the malondiadehyde level was significantly increased, suggesting pro-oxidant effects. Also, the linear regression between the working memory errors vs. malondiadehyde resulted in significant correlations. CONCLUSION 5,7 DHT lesion of the PVN affects behavioral performance via interactions with systems governing novel and/or fear-evoking situations and also by increasing neuronal oxidative stress.
Collapse
|
26
|
Han Y, Yuan N, Zhang SJ, Gao J, Shi Z, Zhou YB, Gao XY, Zhu GQ. c-Src in paraventricular nucleus modulates sympathetic activity and cardiac sympathetic afferent reflex in renovascular hypertensive rats. Pflugers Arch 2011; 461:437-46. [PMID: 21340460 DOI: 10.1007/s00424-011-0932-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/23/2010] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
Enhanced cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation in renovascular hypertension. The study was to determine whether c-Src in paraventricular nucleus (PVN) is involved in the enhanced CSAR and sympathetic activation in hypertensive rats induced by two-kidney one-clip (2K1C). At the end of the fourth week after 2K1C surgery, renal sympathetic nerve activity (RSNA) was recorded in anesthetized rats with baroreceptor denervation and vagotomy. The CSAR was evaluated by the RSNA response to epicardial application of capsaicin. In the PVN, c-Src activity was higher in 2K1C rats than sham-operated (Sham) rats while c-Src expression was not. Epicardial application of capsaicin or PVN microinjection of angiotensin II (Ang II) increased c-Src activity more in 2K1C than Sham rats. PVN microinjection of selective Src family kinase inhibitor 4-Amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazol [3,4-D] pyrimidine (PP2) or 2,3-Dihydro-N,N-dimethyl-2-oxo-3-[(4,5,6,7-tetrahydro-1 H-indol-2-yl)methylene]-1 H-indole-5-sulfonamide (SU6656) abolished the CSAR and decreased RSNA more in 2K1C than Sham rats. The Ang II-induced RSNA and CSAR enhancement was abolished by PP2 or SU6656 pretreatment in 2K1C and Sham rats. NAD(P)H oxidase activity and superoxide anion level in PVN were higher in 2K1C rats, which was attenuated by PP2 but increased by epicardial application of capsaicin or PVN microinjection of Ang II. The effects of capsaicin or Ang II were abolished by PP2. These results indicate that c-Src in the PVN is involved in the enhanced CSAR and sympathetic activation in renovascular hypertension, and mediates the excitatory effects of Ang II in the PVN on the CSAR and sympathetic activity via NAD(P)H oxidase-derived generation of superoxide anions.
Collapse
Affiliation(s)
- Ying Han
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Xu B, Chen WW, Fan ZD, Han Y, Xiong XQ, Gao XY, Zhu GQ. Responses of neurons in paraventricular nucleus to activation of cardiac afferents and acute myocardial ischaemia in rats. Exp Physiol 2011; 96:295-304. [DOI: 10.1113/expphysiol.2010.055475] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Infanger DW, Cao X, Butler SD, Burmeister MA, Zhou Y, Stupinski JA, Sharma RV, Davisson RL. Silencing nox4 in the paraventricular nucleus improves myocardial infarction-induced cardiac dysfunction by attenuating sympathoexcitation and periinfarct apoptosis. Circ Res 2010; 106:1763-74. [PMID: 20413786 DOI: 10.1161/circresaha.109.213025] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Myocardial infarction (MI)-induced heart failure is characterized by central nervous system-driven sympathoexcitation and deteriorating cardiac function. The paraventricular nucleus (PVN) of the hypothalamus is a key regulator of sympathetic nerve activity and is implicated in heart failure. Redox signaling in the PVN and other central nervous system sites is a primary mechanism of neuro-cardiovascular regulation, and excessive oxidant production by activation of NADPH oxidases (Noxs) is implicated in some neuro-cardiovascular diseases. OBJECTIVE We tested the hypothesis that Nox-mediated redox signaling in the PVN contributes to MI-induced sympathoexcitation and cardiac dysfunction in mice. METHODS AND RESULTS Real-time PCR revealed that Nox4 was the most abundantly expressed Nox in PVN under basal conditions. Coronary arterial ligation (MI) caused a selective upregulation of this homolog compared to Nox1 and Nox2. Adenoviral gene transfer of Nox4 (AdsiNox4) to PVN (bilateral) attenuated MI-induced superoxide formation in this brain region (day 14) to the same level as that produced by PVN-targeted gene transfer of cytoplasmic superoxide dismutase (AdCu/ZnSOD). MI mice treated with AdsiNox4 or AdCu/ZnSOD in the PVN showed marked improvement in cardiac function as assessed by echocardiography and left ventricular hemodynamic analysis. This was accompanied by significantly diminished sympathetic outflow and apoptosis in the periinfarct region of the heart. CONCLUSIONS These results suggest that MI causes dysregulation of Nox4-mediated redox signaling in the PVN, which leads to sympathetic overactivation and a decline in cardiac function. Targeted inhibition of oxidant signaling in the PVN could provide a novel treatment for MI-induced heart failure.
Collapse
Affiliation(s)
- David W Infanger
- Professor of Molecular Physiology, Biomedical Sciences and Cell and Developmental Biology, Cornell University, T9-014 Veterinary Research Tower, Ithaca, NY 14853-6401, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Valenti VE, Abreu LCD, Sato MA, Ferreira C. ATZ (3-amino-1,2,4-triazole) injected into the fourth cerebral ventricle influences the Bezold-Jarisch reflex in conscious rats. Clinics (Sao Paulo) 2010; 65:1339-43. [PMID: 21340224 PMCID: PMC3020346 DOI: 10.1590/s1807-59322010001200018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/08/2010] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Many studies have investigated the importance of oxidative stress on the cardiovascular system. In this study we evaluated the effects of central catalase inhibition on cardiopulmonary reflex in conscious Wistar rats. METHODS Male Wistar rats were implanted with a stainless steel guide cannula in the fourth cerebral ventricle. The femoral artery and vein were cannulated for mean arterial pressure and heart rate measurement and for drug infusion, respectively. After basal mean arterial pressure and heart rate recordings, the cardiopulmonary reflex was tested with a dose of phenylbiguanide (PBG, 8 μg/kg, bolus). Cardiopulmonary reflex was evaluated before and μ l15 minutes after 1.0 μl 3-amino-1,2,4-triazole (ATZ, 0.01 g/100 μl)0.01 g/100 μl) injection into the fourth cerebral ventricle. Vehicle treatment did not change cardiopulmonary reflex responses. RESULTS Central ATZ significantly increased hypotensive responses without influencing the bradycardic reflex. CONCLUSION ATZ injected into the fourth cerebral ventricle increases sympathetic inhibition but does not change the parasympathetic component of the cardiopulmonary reflex in conscious Wistar rats.
Collapse
Affiliation(s)
- Vitor E Valenti
- Departamento de Medicina, Disciplina de Cardiologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
30
|
Zhong MK, Gao J, Zhang F, Xu B, Fan ZD, Wang W, Zhu GQ. Reactive oxygen species in rostral ventrolateral medulla modulate cardiac sympathetic afferent reflex in rats. Acta Physiol (Oxf) 2009; 197:297-304. [PMID: 19645750 DOI: 10.1111/j.1748-1716.2009.02026.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM The aim of the present study was to investigate whether reactive oxygen species (ROS) in rostral ventrolateral medulla (RVLM) modulate cardiac sympathetic afferent reflex (CSAR) and the enhanced CSAR response caused by microinjection of angiotensin II (Ang II) into the paraventricular nucleus (PVN). METHODS Under urethane and alpha-chloralose anaesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in sinoaortic-denervated and cervical-vagotomized rats. The CSAR was evaluated by the RSNA response to epicardial application of capsaicin (1.0 nmol). RESULTS Bilateral RVLM microinjection of tempol (a superoxide anion scavenger) or polyethylene glycol-superoxide dismutase (PEG-SOD, an analogue of endogenous superoxide dismutase) attenuated the CSAR, but did not cause significant change in baseline RSNA and MAP. NAD(P)H oxidase inhibitors apocynin or phenylarsine oxide (PAO) also showed similar effects, but SOD inhibitor diethyldithio-carbamic acid (DETC) enhanced the CSAR and baseline RSNA, and increased the baseline MAP. Bilateral PVN microinjection of Ang II (0.3 nmol) enhanced the CSAR and increased RSNA and MAP, which was inhibited by the pre-treatment with RVLM administration of tempol, PEG-SOD, apocynin or PAO. The pre-treatment with DETC in the RVLM only showed a tendency in potentiating the CSAR response of Ang II in the PVN, but significantly potentiated the RSNA and MAP responses of Ang II. CONCLUSION These results suggest that the NAD(P)H oxidase-derived ROS in the RVLM modulate the CSAR. The ROS in the RVLM is necessary for the enhanced CSAR response caused by Ang II in the PVN.
Collapse
Affiliation(s)
- M-K Zhong
- Department of Physiology, Nanjing Medical University, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Chan SHH, Wu CA, Wu KLH, Ho YH, Chang AYW, Chan JYH. Transcriptional upregulation of mitochondrial uncoupling protein 2 protects against oxidative stress-associated neurogenic hypertension. Circ Res 2009; 105:886-96. [PMID: 19762685 DOI: 10.1161/circresaha.109.199018] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Mitochondrial uncoupling proteins (UCPs) belong to a superfamily of mitochondrial anion transporters that uncouple ATP synthesis from oxidative phosphorylation and mitigates mitochondrial reactive oxygen species production. OBJECTIVE We assessed the hypothesis that UCP2 participates in central cardiovascular regulation by maintaining reactive oxygen species homeostasis in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons that maintain vasomotor tone located. We also elucidated the molecular mechanisms that underlie transcriptional upregulation of UCP2 in response to oxidative stress in RVLM. METHODS AND RESULTS In Sprague-Dawley rats, transcriptional upregulation of UCP2 in RVLM by rosiglitazone, an activator of its transcription factor peroxisome proliferator-activated receptor (PPAR)gamma, reduced mitochondrial hydrogen peroxide level in RVLM and systemic arterial pressure. Oxidative stress induced by microinjection of angiotensin II into RVLM augmented UCP2 mRNA or protein expression in RVLM, which was antagonized by comicroinjection of NADPH oxidase inhibitor (diphenyleneiodonium chloride), superoxide dismutase mimetic (tempol), or p38 mitogen-activated protein kinase inhibitor (SB203580) but not by extracellular signal-regulated kinase 1/2 inhibitor (U0126). Angiotensin II also induced phosphorylation of the PPARgamma coactivator, PPARgamma coactivator (PGC)-1alpha, and an increase in formation of PGC-1alpha/PPARgamma complexes in a p38 mitogen-activated protein kinase-dependent manner. Intracerebroventricular infusion of angiotensin II promoted an increase in mitochondrial hydrogen peroxide production in RVLM and chronic pressor response, which was potentiated by gene knockdown of UCP2 but blunted by rosiglitazone. CONCLUSIONS These results suggest that transcriptional upregulation of mitochondrial UCP2 in response to an elevation in superoxide plays an active role in feedback regulation of reactive oxygen species production in RVLM and neurogenic hypertension associated with chronic oxidative stress.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Nucleus of solitary tract mediates cardiac sympathetic afferent reflex in rats. Pflugers Arch 2009; 459:1-9. [DOI: 10.1007/s00424-009-0699-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/27/2009] [Accepted: 07/03/2009] [Indexed: 02/07/2023]
|
33
|
Wei SG, Zhang ZH, Yu Y, Felder RB. Systemically administered tempol reduces neuronal activity in paraventricular nucleus of hypothalamus and rostral ventrolateral medulla in rats. J Hypertens 2009; 27:543-50. [PMID: 19330914 DOI: 10.1097/hjh.0b013e3283200442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Systemic administration of the superoxide scavenger tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) reduces blood pressure (BP), heart rate (HR) and sympathetic nerve activity in normotensive and hypertensive animals. The global nature of the depressor response to tempol suggests an inhibitory influence on cardiovascular presympathetic regions of the brain. This study examined several possible mechanisms for such an effect. METHODS AND RESULTS In urethane anesthetized rats, as expected, intravenous tempol (120 microg mol/kg) reduced mean arterial pressure, HR and renal sympathetic nerve activity (RSNA). Concomitant central neuronal recordings revealed reduced spontaneous discharge (spikes/s) of neurons in the paraventricular nucleus of hypothalamus (from 2.9 +/- 0.4 to 0.8+/- 0.2) and the rostral ventrolateral medulla (RVLM; from 9.8 +/- 0.5 to 7.2 +/-0.4), two cardiovascular and autonomic regions of the brain. Baroreceptor-denervated rats had exaggerated sympathetic and cardiovascular responses. Pretreatment with the hydroxyl radical scavenger dimethyl sulfoxide (intravenous) attenuated the tempol-induced decreases in BP, HR and RSNA, but the nitric oxide synthesis inhibitor NG-nitro-L-arginine methyl ester (intravenous or intracerebroventricular) had no effect. CONCLUSION These findings suggest that systemically administered tempol acts upon neurons in paraventricular nucleus and RVLM to reduce BP, HR and RSNA, perhaps by reducing the influence of reactive oxygen species in those regions. The arterial baroreflex modulates the depressor responses to tempol. These central mechanisms must be considered in interpreting data from studies using systemically administered tempol to assess the role of reactive oxygen species in cardiovascular regulation.
Collapse
Affiliation(s)
- Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
34
|
Zhu GQ, Xu Y, Zhou LM, Li YH, Fan LM, Wang W, Gao XY, Chen Q. Enhanced cardiac sympathetic afferent reflex involved in sympathetic overactivity in renovascular hypertensive rats. Exp Physiol 2009; 94:785-94. [DOI: 10.1113/expphysiol.2008.046565] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Wilcox CS, Pearlman A. Chemistry and antihypertensive effects of tempol and other nitroxides. Pharmacol Rev 2009; 60:418-69. [PMID: 19112152 DOI: 10.1124/pr.108.000240] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nitroxides can undergo one- or two-electron reduction reactions to hydroxylamines or oxammonium cations, respectively, which themselves are interconvertible, thereby providing redox metabolic actions. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) is the most extensively studied nitroxide. It is a cell membrane-permeable amphilite that dismutates superoxide catalytically, facilitates hydrogen peroxide metabolism by catalase-like actions, and limits formation of toxic hydroxyl radicals produced by Fenton reactions. It is broadly effective in detoxifying these reactive oxygen species in cell and animal studies. When administered intravenously to hypertensive rodent models, tempol caused rapid and reversible dose-dependent reductions in blood pressure in 22 of 26 studies. This was accompanied by vasodilation, increased nitric oxide activity, reduced sympathetic nervous system activity at central and peripheral sites, and enhanced potassium channel conductance in blood vessels and neurons. When administered orally or by infusion over days or weeks to hypertensive rodent models, it reduced blood pressure in 59 of 68 studies. This was accompanied by correction of salt sensitivity and endothelial dysfunction and reduced agonist-evoked oxidative stress and contractility of blood vessels, reduced renal vascular resistance, and increased renal tissue oxygen tension. Thus, tempol is broadly effective in reducing blood pressure, whether given by acute intravenous injection or by prolonged administration, in a wide range of rodent models of hypertension.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Kidney and Vascular Disorder Center, Georgetown University, Washington, DC 20007, USA.
| | | |
Collapse
|
36
|
Long-term administration of tempol attenuates postinfarct ventricular dysfunction and sympathetic activity in rats. Pflugers Arch 2009; 458:247-57. [DOI: 10.1007/s00424-008-0627-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/04/2008] [Accepted: 12/11/2008] [Indexed: 10/21/2022]
|
37
|
Bai Y, Jabbari B, Ye S, Campese VM, Vaziri ND. Regional expression of NAD(P)H oxidase and superoxide dismutase in the brain of rats with neurogenic hypertension. Am J Nephrol 2008; 29:483-92. [PMID: 19047792 DOI: 10.1159/000178817] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/29/2008] [Indexed: 01/28/2023]
Abstract
BACKGROUND Single injection of small quantities of phenol into the kidney cortex causes hypertension which is mediated by renal afferent sympathetic pathway activation. This phenomenon can be prevented by superoxide dismutase (SOD) infusion in the lateral ventricle, suggesting the role of superoxide (O(2)(-).) in noradrenergic control of arterial pressure. Since NAD(P)H oxidase is a major source of O(2)(-)., we tested the hypothesis that hypertension in this model may be associated with upregulation of NAD(P)H oxidase in relevant regions of brain. METHODS NAD(P)H oxidase subunits, mitochondrial (MnSOD) and cytoplasmic (CuZnSOD) SOD were measured in rats 4 weeks after injection of phenol or saline in the left kidney cortex. RESULTS Phenol-injected rats exhibited hypertension, upregulation of gp91(phox), p22(phox), p47(phox) and p67(phox) in the medulla, gp91(phox) and p22(phox) in pons and gp91(phox) in hypothalamus. This was associated with upregulation of MnSOD with little change in CuZnSOD. CONCLUSIONS Chronic hypertension in phenol-injected rats is associated with upregulation of NAD(P)H oxidase and hence increased O(2)(-). production capacity in the key regions of the brain involved in regulation of blood pressure. Since reactive oxygen species can intensify central noradrenergic activity, the observed maladaptive changes may contribute to the genesis and maintenance of the associated hypertension.
Collapse
Affiliation(s)
- Yongli Bai
- Division of Nephrology and Hypertension, University of California-Irvine, 101 The City Drive, Orange, CA 92868, USA
| | | | | | | | | |
Collapse
|
38
|
Zhong MK, Shi Z, Zhou LM, Gao J, Liao ZH, Wang W, Gao XY, Zhu GQ. Regulation of cardiac sympathetic afferent reflex by GABAAand GABABreceptors in paraventricular nucleus in rats. Eur J Neurosci 2008; 27:3226-32. [DOI: 10.1111/j.1460-9568.2008.06261.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Zhong MK, Duan YC, Chen AD, Xu B, Gao XY, De W, Zhu GQ. Paraventricular nucleus is involved in the central pathway of cardiac sympathetic afferent reflex in rats. Exp Physiol 2008; 93:746-53. [PMID: 18281391 DOI: 10.1113/expphysiol.2007.041632] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our previous studies have shown that angiotensin II and reactive oxygen species in the paraventricular nucleus (PVN) modulate the cardiac sympathetic afferent reflex (CSAR). The present study was designed to demonstrate more conclusively that the PVN is an important component of the central neurocircuitry of the CSAR. In anaesthetized Sprague-Dawley rats with sinoaortic denervation and cervical vagotomy, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were continuously recorded. The CSAR was evaluated by the response of the RSNA to epicardial application of bradykinin or capsaicin. Bilateral microinjection of the anaesthetic, lignocaine, into the PVN abolished the CSAR without significant effects on the baseline RSNA and MAP, while l-glutamate, which excites the neurons in the PVN, enhanced the CSAR and increased the baseline RSNA and MAP. Bilateral electrolytic lesions of the PVN irreversibly abolished the CSAR without significant effects on the baseline RSNA and MAP. Bilateral selective lesions of the neurons in the PVN with kainic acid induced rapid and great increases in both RSNA and MAP which returned to nearly normal levels in 60 min. At the 90th minute after kainic acid, epicardial application of bradykinin or capsaicin failed to induce the CSAR. These results indicate that inhibition or lesion of the PVN abolishes the CSAR, but excitation of the neurons in the PVN enhances the CSAR, suggesting that the PVN is an important component of the central neurocircuitry of the CSAR.
Collapse
Affiliation(s)
- Ming-Kui Zhong
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Han Y, Shi Z, Zhang F, Yu Y, Zhong MK, Gao XY, Wang W, Zhu GQ. Reactive oxygen species in the paraventricular nucleus mediate the cardiac sympathetic afferent reflex in chronic heart failure rats. Eur J Heart Fail 2007; 9:967-73. [PMID: 17719272 DOI: 10.1016/j.ejheart.2007.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/28/2007] [Accepted: 07/11/2007] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine whether reactive oxygen species (ROS) in the paraventricular nucleus (PVN) mediate both the cardiac sympathetic afferent reflex (CSAR) and angiotensin II-induced CSAR enhancement in chronic heart failure (CHF) rats. CSAR was evaluated from the responses of renal sympathetic nerve activity (RSNA) to epicardial application of bradykinin. In both CHF and sham-operated rats, PVN microinjection of the superoxide anion scavengers tempol or tiron almost abolished the CSAR, but the superoxide dismutase inhibitor DETC potentiated the CSAR. PVN pretreatment with tempol or tiron abolished, whereas DETC augmented, the angiotensin II-induced CSAR enhancement. In CHF rats, superoxide anion and malondialdehyde (MDA) levels in the PVN were increased, but were normalized by the AT(1) receptor antagonist losartan. PVN microinjection of tempol decreased superoxide anion and MDA levels, but epicardial application of bradykinin or PVN microinjection of angiotensin II increased superoxide anion and MDA to higher levels in CHF rats than in sham-operated rats. These results indicate that ROS in the PVN mediates the CSAR and the effect of angiotensin II in the PVN on the CSAR in both CHF and sham-operated rats. Increased ROS in the PVN are involved in the enhanced CSAR in CHF.
Collapse
Affiliation(s)
- Ying Han
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yu Y, Zhong MK, Li J, Sun XL, Xie GQ, Wang W, Zhu GQ. Endogenous hydrogen peroxide in paraventricular nucleus mediating cardiac sympathetic afferent reflex and regulating sympathetic activity. Pflugers Arch 2007; 454:551-7. [PMID: 17387509 DOI: 10.1007/s00424-007-0256-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/01/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
We previously reported that reactive oxygen species (ROS) in paraventricular nucleus (PVN) mediated cardiac sympathetic afferent reflex (CSAR). The present study investigated the role of endogenous hydrogen peroxide (H(2)O(2)), a ROS, in the PVN in mediating the CSAR and regulating sympathetic activity. The CSAR was evaluated by the response of renal sympathetic nerve activity (RSNA) to epicardial application of bradykinin (BK) in rats. Bilateral microinjection of polyethylene glycol-catalase (PEG-CAT, an analogue of endogenous catalase) or polyethylene glycol-superoxide dismutase (PEG-SOD, an analogue of endogenous superoxide dismutase) into the PVN abolished the CSAR, decreased baseline RSNA and mean arterial pressure (MAP). Moreover, pretreatment with PEG-CAT or PEG-SOD blocked the enhanced CSAR and RSNA responses induced by exogenous angiotensin II (Ang II) in the PVN. Aminotriazole (ATZ, a catalase inhibitor) alone potentiated the CSAR, increased RSNA and MAP, but failed to augment the Ang II-induced CSAR enhancement responses. Pretreated with PEG-SOD, ATZ still increased baseline RSNA and MAP but inhibited the CSAR and Ang II-induced CSAR and RSNA enhancement responses. These results suggested that endogenous H(2)O(2) in the PVN mediated both the CSAR and Ang II-induced CSAR enhancement responses. H(2)O(2) in the PVN were involved in regulating sympathetic activity and arterial pressure.
Collapse
Affiliation(s)
- Yang Yu
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA.
| |
Collapse
|
43
|
Zhang Y, Yu Y, Zhang F, Zhong MK, Shi Z, Gao XY, Wang W, Zhu GQ. NAD(P)H oxidase in paraventricular nucleus contributes to the effect of angiotensin II on cardiac sympathetic afferent reflex. Brain Res 2006; 1082:132-41. [PMID: 16519880 DOI: 10.1016/j.brainres.2006.01.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 01/26/2006] [Accepted: 01/28/2006] [Indexed: 11/15/2022]
Abstract
We previously reported that reactive oxygen species (ROS) in paraventricular nucleus (PVN) modulated cardiac sympathetic afferent reflex (CSAR) and mediated the effect of angiotensin II (Ang II) in the PVN on the CSAR. In the present study, we investigated whether the NAD(P)H oxidase in the PVN was a key source of ROS which modulated the CSAR and contributed to the effect of Ang II on the CSAR. In anesthetized rats with sinoaortic denervation and vagotomy, renal sympathetic nerve activity (RSNA) and arterial pressure were recorded. The CSAR was evaluated by the RSNA response to epicardial application of bradykinin (BK). The NAD(P)H oxidase activity in the PVN was measured with lucigenin-enhanced chemiluminescent method. Microinjection of the NAD(P)H oxidase inhibitor, either apocynin (1.0 nmol) or phenylarsine oxide (PAO, 1.0 nmol), into the PVN significantly inhibited the CSAR. Microinjection of Ang II (0.3 nmol) into the PVN significantly augmented the CSAR. The effects of Ang II were not only abolished by pretreatment with either apocynin or PAO in the PVN but also partially inhibited by xanthine oxidase inhibitor allopurinol. Either epicardial application of BK or microinjection of Ang II into the PVN significantly increased NAD(P)H oxidase activity in the PVN. The effect of Ang II on NAD(P)H oxidase activity was abolished by pretreatment with AT(1) receptor antagonist losartan in the PVN. These findings suggested that NAD(P)H oxidase in the PVN was a major source of the ROS in modulating the CSAR, and the NAD(P)H oxidase contributes to the effect of Ang II on the CSAR.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | |
Collapse
|