1
|
Li S, Shang D, Du Y, Li Y, Liu R. Epilepsy as the symptom of a spinocerebellar ataxia 13 in a patient presenting with a mutation in the KCNC3 gene. BMC Neurol 2023; 23:246. [PMID: 37365508 DOI: 10.1186/s12883-023-03304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The spinocerebellar ataxias (SCAs) refer to a diverse group of neurodegenerative illnesses that vary clinically and genetically. One of the rare subtypes within this group is SCA13, caused by mutations in the KCNC3 gene. Currently, the prevalence of SCA13 remains uncertain, with only a couple of cases being documented in the Chinese population. This study presented a case study of SCA13, where the patient exhibited clinical symptoms of epilepsy and ataxia. The confirmation of the diagnosis was done through Whole Exome Sequncing. CASE PRESENTATION Since childhood, the seventeen-year-old patient has not been capable of participating in numerous sporting activities and has experienced multiple episodes of unconsciousness within the last two years. The neurological evaluation showed a lack of coordination in the lower limbs. Cerebellar atrophy was detected through brain magnetic resonance imaging (MRI). The patient's gene detection results showed that they exhibit a heterozygous c.1268G > A mutation in the KCNC3 gene located at chr19:50826942. Antiepileptic treatment was promptly administered to the patient, and as a result, her epileptic seizures were resolved quickly. She has since remained free of seizures. After a one-year follow-up, there was no apparent improvement in the patient's health status except seizure free, which may have worsened. CONCLUSION The case study highlights the importance of actively combining cranial MRI with genetic detection in patients with ataxia of no known cause, particularly in children and young patients, to establish an possibly obvious detection. Patients who are young and have ataxia that is first accompanied by extrapyramidal and epilepsy syndromes should be aware of the potential of having SCA13.
Collapse
Affiliation(s)
- Shao Li
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, NO. 288, Middle Zhongzhou Road, Xigong Square, Luoyang, 471000, China.
| | - Dandan Shang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, NO. 288, Middle Zhongzhou Road, Xigong Square, Luoyang, 471000, China
| | - Yanjiao Du
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, NO. 288, Middle Zhongzhou Road, Xigong Square, Luoyang, 471000, China
| | - Yan Li
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, NO. 288, Middle Zhongzhou Road, Xigong Square, Luoyang, 471000, China
| | - Ruihua Liu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, NO. 288, Middle Zhongzhou Road, Xigong Square, Luoyang, 471000, China
| |
Collapse
|
2
|
Kv3 Channels Contribute to the Excitability of Subpopulations of Spinal Cord Neurons in Lamina VII. eNeuro 2022; 9:ENEURO.0510-21.2021. [PMID: 35058310 PMCID: PMC8868027 DOI: 10.1523/eneuro.0510-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022] Open
Abstract
Autonomic parasympathetic preganglionic neurons (PGNs) drive contraction of the bladder during micturition but remain quiescent during bladder filling. This quiescence is postulated to be because of recurrent inhibition of PGN by fast-firing adjoining interneurons. Here, we defined four distinct neuronal types within Lamina VII, where PGN are situated, by combining whole cell patch clamp recordings with k-means clustering of a range of electrophysiological parameters. Additional morphologic analysis separated these neuronal classes into parasympathetic preganglionic populations (PGN) and a fast-firing interneuronal population. Kv3 channels are voltage-gated potassium channels (Kv) that allow fast and precise firing of neurons. We found that blockade of Kv3 channels by tetraethylammonium (TEA) reduced neuronal firing frequency and isolated high-voltage-activated Kv currents in the fast-firing population but had no effect in PGN populations. Furthermore, Kv3 blockade potentiated the local and descending inhibitory inputs to PGN indicating that Kv3-expressing inhibitory neurons are synaptically connected to PGN. Taken together, our data reveal that Kv3 channels are crucial for fast and regulated neuronal output of a defined population that may be involved in intrinsic spinal bladder circuits that underpin recurrent inhibition of PGN.
Collapse
|
3
|
Zhang FX, Ge SN, Dong YL, Shi J, Feng YP, Li Y, Li YQ, Li JL. Vesicular glutamate transporter isoforms: The essential players in the somatosensory systems. Prog Neurobiol 2018; 171:72-89. [PMID: 30273635 DOI: 10.1016/j.pneurobio.2018.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 02/08/2023]
Abstract
In nervous system, glutamate transmission is crucial for centripetal conveyance and cortical perception of sensory signals of different modalities, which necessitates vesicular glutamate transporters 1-3 (VGLUT 1-3), the three homologous membrane-bound protein isoforms, to load glutamate into the presysnaptic vesicles. These VGLUTs, especially VGLUT1 and VGLUT2, selectively label and define functionally distinct neuronal subpopulations at each relay level of the neural hierarchies comprising spinal and trigeminal sensory systems. In this review, by scrutinizing each structure of the organism's fundamental hierarchies including dorsal root/trigeminal ganglia, spinal dorsal horn/trigeminal sensory nuclear complex, somatosensory thalamic nuclei and primary somatosensory cortex, we summarize and characterize in detail within each relay the neuronal clusters expressing distinct VGLUT protein/transcript isoforms, with respect to their regional distribution features (complementary distribution in some structures), axonal terminations/peripheral innervations and physiological functions. Equally important, the distribution pattern and characteristics of VGLUT1/VGLUT2 axon terminals within these structures are also epitomized. Finally, the correlation of a particular VGLUT isoform and its physiological role, disclosed thus far largely via studying the peripheral receptors, is generalized by referring to reports on global and conditioned VGLUT-knockout mice. Also, researches on VGLUTs relating to future direction are tentatively proposed, such as unveiling the elusive differences between distinct VGLUTs in mechanism and/or pharmacokinetics at ionic/molecular level, and developing VGLUT-based pain killers.
Collapse
Affiliation(s)
- Fu-Xing Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Shun-Nan Ge
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China; Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | - Yu-Lin Dong
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Juan Shi
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yu-Peng Feng
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yang Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China.
| | - Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
4
|
Yuan Y, Xie S, Darnell JC, Darnell AJ, Saito Y, Phatnani H, Murphy EA, Zhang C, Maniatis T, Darnell RB. Cell type-specific CLIP reveals that NOVA regulates cytoskeleton interactions in motoneurons. Genome Biol 2018; 19:117. [PMID: 30111345 PMCID: PMC6092797 DOI: 10.1186/s13059-018-1493-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/24/2018] [Indexed: 12/30/2022] Open
Abstract
Background Alternative RNA processing plays an essential role in shaping cell identity and connectivity in the central nervous system. This is believed to involve differential regulation of RNA processing in various cell types. However, in vivo study of cell type-specific post-transcriptional regulation has been a challenge. Here, we describe a sensitive and stringent method combining genetics and CLIP (crosslinking and immunoprecipitation) to globally identify regulatory interactions between NOVA and RNA in the mouse spinal cord motoneurons. Results We developed a means of undertaking motoneuron-specific CLIP to explore motoneuron-specific protein–RNA interactions relative to studies of the whole spinal cord in mouse. This allowed us to pinpoint differential RNA regulation specific to motoneurons, revealing a major role for NOVA in regulating cytoskeleton interactions in motoneurons. In particular, NOVA specifically promotes the palmitoylated isoform of the cytoskeleton protein Septin 8 in motoneurons, which enhances dendritic arborization. Conclusions Our study demonstrates that cell type-specific RNA regulation is important for fine tuning motoneuron physiology and highlights the value of defining RNA processing regulation at single cell type resolution. Electronic supplementary material The online version of this article (10.1186/s13059-018-1493-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Yuan
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Shirley Xie
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Jennifer C Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Andrew J Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Yuhki Saito
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Hemali Phatnani
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Elisabeth A Murphy
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.,Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.,Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA. .,Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
5
|
Kaczmarek LK, Zhang Y. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiol Rev 2017; 97:1431-1468. [PMID: 28904001 PMCID: PMC6151494 DOI: 10.1152/physrev.00002.2017] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
The intrinsic electrical characteristics of different types of neurons are shaped by the K+ channels they express. From among the more than 70 different K+ channel genes expressed in neurons, Kv3 family voltage-dependent K+ channels are uniquely associated with the ability of certain neurons to fire action potentials and to release neurotransmitter at high rates of up to 1,000 Hz. In general, the four Kv3 channels Kv3.1-Kv3.4 share the property of activating and deactivating rapidly at potentials more positive than other channels. Each Kv3 channel gene can generate multiple protein isoforms, which contribute to the high-frequency firing of neurons such as auditory brain stem neurons, fast-spiking GABAergic interneurons, and Purkinje cells of the cerebellum, and to regulation of neurotransmitter release at the terminals of many neurons. The different Kv3 channels have unique expression patterns and biophysical properties and are regulated in different ways by protein kinases. In this review, we cover the function, localization, and modulation of Kv3 channels and describe how levels and properties of the channels are altered by changes in ongoing neuronal activity. We also cover how the protein-protein interaction of these channels with other proteins affects neuronal functions, and how mutations or abnormal regulation of Kv3 channels are associated with neurological disorders such as ataxias, epilepsies, schizophrenia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Yalan Zhang
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
6
|
Cheng CF, Wang WC, Huang CY, Du PH, Yang JH, Tsaur ML. Coexpression of auxiliary subunits KChIP and DPPL in potassium channel Kv4-positive nociceptors and pain-modulating spinal interneurons. J Comp Neurol 2015; 524:846-73. [PMID: 26239200 DOI: 10.1002/cne.23876] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022]
Abstract
Subthreshold A-type K(+) currents (ISA s) have been recorded from the somata of nociceptors and spinal lamina II excitatory interneurons, which sense and modulate pain, respectively. Kv4 channels are responsible for the somatodendritic ISA s. Accumulative evidence suggests that neuronal Kv4 channels are ternary complexes including pore-forming Kv4 subunits and two types of auxiliary subunits: K(+) channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPPLs). Previous reports have shown Kv4.3 in a subset of nonpeptidergic nociceptors and Kv4.2/Kv4.3 in certain spinal lamina II excitatory interneurons. However, whether and which KChIP and DPPL are coexpressed with Kv4 in these ISA -expressing pain-related neurons is unknown. In this study we mapped the protein distribution of KChIP1, KChIP2, KChIP3, DPP6, and DPP10 in adult rat dorsal root ganglion (DRG) and spinal cord by immunohistochemistry. In the DRG, we found colocalization of KChIP1, KChIP2, and DPP10 in the somatic surface and cytoplasm of Kv4.3(+) nociceptors. KChIP3 appears in most Aβ and Aδ sensory neurons as well as a small population of peptidergic nociceptors, whereas DPP6 is absent in sensory neurons. In the spinal cord, KChIP1 is coexpressed with Kv4.3 in the cell bodies of a subset of lamina II excitatory interneurons, while KChIP1, KChIP2, and DPP6 are colocalized with Kv4.2 and Kv4.3 in their dendrites. Within the dorsal horn, besides KChIP3 in the inner lamina II and lamina III, we detected DPP10 in most projection neurons, which transmit pain signal to brain. The results suggest the existence of Kv4/KChIP/DPPL ternary complexes in ISA -expressing nociceptors and pain-modulating spinal interneurons.
Collapse
Affiliation(s)
- Chau-Fu Cheng
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Chen Wang
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Yi Huang
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hau Du
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jung-Hui Yang
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Meei-Ling Tsaur
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
7
|
Kv4 channels underlie A-currents with highly variable inactivation time courses but homogeneous other gating properties in the nucleus tractus solitarii. Pflugers Arch 2014; 467:789-803. [PMID: 24872163 DOI: 10.1007/s00424-014-1533-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/18/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
In the nucleus of the tractus solitarii (NTS), a large proportion of neurones express transient A-type potassium currents (I KA) having deep influence on the fidelity of the synaptic transmission of the visceral primary afferent inputs to second-order neurones. Up to now, the strong impact of I KA within the NTS was considered to result exclusively from its variation in amplitude, and its molecular correlate(s) remained unknown. In order to identify which Kv channels underlie I KA in NTS neurones, the gating properties and the pharmacology of this current were determined using whole cell patch clamp recordings in slices. Complementary information was brought by immunohistochemistry. Strikingly, two neurone subpopulations characterized by fast or slow inactivation time courses (respectively about 50 and 200 ms) were discriminated. Both characteristics matched those of the Kv4 channel subfamily. The other gating properties, also matching the Kv4 channel ones, were homogeneous through the NTS. The activation and inactivation occurred at membrane potentials around the threshold for generating action potentials, and the time course of recovery from inactivation was rapid. Pharmacologically, I KA in NTS neurones was found to be resistant to tetraethylammonium (TEA), sea anemone toxin blood-depressing substance (BDS) and dendrotoxin (DTX), whereas Androctonus mauretanicus mauretanicus toxin 3 (AmmTX3), a scorpion toxin of the α-KTX 15 family that has been shown to block all the members of the Kv4 family, inhibited 80 % of I KA irrespectively of its inactivation time course. Finally, immunohistochemistry data suggested that, among the Kv4 channel subfamily, Kv4.3 is the prevalent subunit expressed in the NTS.
Collapse
|
8
|
Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits. Brain Struct Funct 2014; 220:1421-36. [PMID: 24595534 PMCID: PMC4409642 DOI: 10.1007/s00429-014-0734-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 02/11/2014] [Indexed: 12/17/2022]
Abstract
Sensory information arising from the upper neck is important in the reflex control of posture and eye position. It has also been linked to the autonomic control of the cardiovascular and respiratory systems. Whiplash associated disorders (WAD) and cervical dystonia, which involve disturbance to the neck region, can often present with abnormalities to the oromotor, respiratory and cardiovascular systems. We investigated the potential neural pathways underlying such symptoms. Simulating neck afferent activity by electrical stimulation of the second cervical nerve in a working heart brainstem preparation (WHBP) altered the pattern of central respiratory drive and increased perfusion pressure. Tracing central targets of these sensory afferents revealed projections to the intermedius nucleus of the medulla (InM). These anterogradely labelled afferents co-localised with parvalbumin and vesicular glutamate transporter 1 indicating that they are proprioceptive. Anterograde tracing from the InM identified projections to brain regions involved in respiratory, cardiovascular, postural and oro-facial behaviours—the neighbouring hypoglossal nucleus, facial and motor trigeminal nuclei, parabrachial nuclei, rostral and caudal ventrolateral medulla and nucleus ambiguus. In brain slices, electrical stimulation of afferent fibre tracts lateral to the cuneate nucleus monosynaptically excited InM neurones. Direct stimulation of the InM in the WHBP mimicked the response of second cervical nerve stimulation. These results provide evidence of pathways linking upper cervical sensory afferents with CNS areas involved in autonomic and oromotor control, via the InM. Disruption of these neuronal pathways could, therefore, explain the dysphagic and cardiorespiratory abnormalities which may accompany cervical dystonia and WAD.
Collapse
|
9
|
Spinocerebellar ataxia-13 Kv3.3 potassium channels: arginine-to-histidine mutations affect both functional and protein expression on the cell surface. Biochem J 2013; 454:259-65. [PMID: 23734863 DOI: 10.1042/bj20130034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The voltage-gated potassium channel Kv3.3 is the causative gene of SCA13 (spinocerebellar ataxia type 13), an autosomal dominant neurological disorder. The four dominant mutations identified to date cause Kv3.3 channels to be non-functional or have altered gating properties in Xenopus oocytes. In the present paper, we report that SCA13 mutations affect functional as well as protein expression of Kv3.3 channels in a mammalian cell line. The reduced protein level of SCA13 mutants is caused by a shorter protein half-life, and blocking the ubiquitin-proteasome pathway increases the total protein of SCA13 mutants more than wild-type. SCA13 mutated amino acids are highly conserved, and the side chains of these residues play a critical role in the stable expression of Kv3.3 proteins. In addition, we show that mutant Kv3.3 protein levels could be partially rescued by treatment with the chemical chaperone TMAO (trimethylamine N-oxide) and to a lesser extent with co-expression of Kv3.1b. Thus our results suggest that amino acid side chains of SCA13 positions affect the protein half-life and/or function of Kv3.3, and the adverse effect on protein expression cannot be fully rescued.
Collapse
|
10
|
Grace KP, Hughes SW, Shahabi S, Horner RL. K+ channel modulation causes genioglossus inhibition in REM sleep and is a strategy for reactivation. Respir Physiol Neurobiol 2013; 188:277-88. [PMID: 23872455 DOI: 10.1016/j.resp.2013.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 12/23/2022]
Abstract
Rapid eye movement (REM) sleep is accompanied by periods of upper airway motor suppression that cause hypoventilation and obstructive apneas in susceptible individuals. A common idea has been that upper airway motor suppression in REM sleep is caused by the neurotransmitters glycine and γ-amino butyric acid (GABA) acting at pharyngeal motor pools to inhibit motoneuron activity. Data refute this as a workable explanation because blockade of this putative glycine/GABAergic mechanism releases pharyngeal motor activity in all states, and least of all in REM sleep. Here we summarize a novel motor-inhibitory mechanism that suppresses hypoglossal motor activity largely in REM sleep, this being a muscarinic receptor mechanism linked to G-protein-coupled inwardly rectifying potassium (GIRK) channels. We then outline how this discovery informs efforts to pursue therapeutic targets to reactivate hypoglossal motor activity throughout sleep via potassium channel modulation. One such target is the inwardly rectifying potassium channel Kir2.4 whose expression in the brain is almost exclusive to cranial motor nuclei.
Collapse
Affiliation(s)
- Kevin P Grace
- Departments of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | | | | | |
Collapse
|
11
|
Issa FA, Mock AF, Sagasti A, Papazian DM. Spinocerebellar ataxia type 13 mutation that is associated with disease onset in infancy disrupts axonal pathfinding during neuronal development. Dis Model Mech 2012; 5:921-9. [PMID: 22736459 PMCID: PMC3484873 DOI: 10.1242/dmm.010157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Spinocerebellar ataxia type 13 (SCA13) is an autosomal dominant disease caused by mutations in the Kv3.3 voltage-gated potassium (K+) channel. SCA13 exists in two forms: infant onset is characterized by severe cerebellar atrophy, persistent motor deficits and intellectual disability, whereas adult onset is characterized by progressive ataxia and progressive cerebellar degeneration. To test the hypothesis that infant- and adult-onset mutations have differential effects on neuronal development that contribute to the age at which SCA13 emerges, we expressed wild-type Kv3.3 or infant- or adult-onset mutant proteins in motor neurons in the zebrafish spinal cord. We characterized the development of CaP (caudal primary) motor neurons at ∼36 and ∼48 hours post-fertilization using confocal microscopy and 3D digital reconstruction. Exogenous expression of wild-type Kv3.3 had no significant effect on CaP development. In contrast, CaP neurons expressing the infant-onset mutation made frequent pathfinding errors, sending long, abnormal axon collaterals into muscle territories that are normally innervated exclusively by RoP (rostral primary) or MiP (middle primary) motor neurons. This phenotype might be directly relevant to infant-onset SCA13 because interaction with inappropriate synaptic partners might trigger cell death during brain development. Importantly, pathfinding errors were not detected in CaP neurons expressing the adult-onset mutation. However, the adult-onset mutation tended to increase the complexity of the distal axonal arbor. From these results, we speculate that infant-onset SCA13 is associated with marked changes in the development of Kv3.3-expressing cerebellar neurons, reducing their health and viability early in life and resulting in the withered cerebellum seen in affected children.
Collapse
Affiliation(s)
- Fadi A Issa
- Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095-1751, USA
| | | | | | | |
Collapse
|
12
|
Nowak A, Mathieson HR, Chapman RJ, Janzsó G, Yanagawa Y, Obata K, Szabo G, King AE. Kv3.1b and Kv3.3 channel subunit expression in murine spinal dorsal horn GABAergic interneurones. J Chem Neuroanat 2011; 42:30-8. [PMID: 21440618 PMCID: PMC3161392 DOI: 10.1016/j.jchemneu.2011.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 12/30/2022]
Abstract
GABAergic interneurones, including those within spinal dorsal horn, contain one of the two isoforms of the synthesizing enzyme glutamate decarboxylase (GAD), either GAD65 or GAD67. The physiological significance of these two GABAergic phenotypes is unknown but a more detailed anatomical and functional characterization may help resolve this issue. In this study, two transgenic Green Fluorescent Protein (GFP) knock-in murine lines, namely GAD65-GFP and GAD67-GFP (Δneo) mice, were used to profile expression of Shaw-related Kv3.1b and Kv3.3 K(+)-channel subunits in dorsal horn interneurones. Neuronal expression of these subunits confers specific biophysical characteristic referred to as 'fast-spiking'. Immuno-labelling for Kv3.1b or Kv3.3 revealed the presence of both of these subunits across the dorsal horn, most abundantly in laminae I-III. Co-localization studies in transgenic mice indicated that Kv3.1b but not Kv3.3 was associated with GAD65-GFP and GAD67-GFP immunopositive neurones. For comparison the distributions of Kv4.2 and Kv4.3 K(+)-channel subunits which are linked to an excitatory neuronal phenotype were characterized. No co-localization was found between GAD-GFP +ve neurones and Kv4.2 or Kv4.3. In functional studies to evaluate whether either GABAergic population is activated by noxious stimulation, hindpaw intradermal injection of capsaicin followed by c-fos quantification in dorsal horn revealed co-expression c-fos and GAD65-GFP (quantified as 20-30% of GFP +ve population). Co-expression was also detected for GAD67-GFP +ve neurones and capsaicin-induced c-fos but at a much reduced level of 4-5%. These data suggest that whilst both GAD65-GFP and GAD67-GFP +ve neurones express Kv3.1b and therefore may share certain biophysical traits, their responses to peripheral noxious stimulation are distinct.
Collapse
Affiliation(s)
- A Nowak
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kv3.3 immunoreactivity in the vestibular nuclear complex of the rat with focus on the medial vestibular nucleus: targeting of Kv3.3 neurones by terminals positive for vesicular glutamate transporter 1. Brain Res 2010; 1345:45-58. [PMID: 20471378 DOI: 10.1016/j.brainres.2010.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 11/24/2022]
Abstract
Kv3 voltage-gated K(+) channels are important in shaping neuronal excitability and are abundant in the CNS, with each Kv3 gene exhibiting a unique expression pattern. Mice lacking the gene encoding for the Kv3.3 subunit exhibit motor deficits. Furthermore, mutations in this gene have been linked to the human disease spinocerebellar ataxia 13, associated with cerebellar and extra-cerebellar symptoms such as imbalance and nystagmus. Kv subunit localisation is important in defining their functional roles and thus, we investigated the distribution of Kv3.3-immunoreactivity in the vestibular nuclear complex of rats with particular focus on the medial vestibular nucleus (MVN). Kv3.3-immunoreactivity was widespread in the vestibular nuclei and was detected in somata, dendrites and synaptic terminals. Kv3.3-immunoreactivity was observed in distinct neuronal populations and dual labelling with the neuronal marker NeuN revealed 28.5+/-1.9% of NeuN labelled MVN neurones were Kv3.3-positive. Kv3.3-immunoreactivity co-localised presynaptically with the synaptic vesicle marker SV2, parvalbumin, the vesicular glutamate transporter VGluT2 and the glycine transporter GlyT2. VGluT1 terminals were scarce within the MVN (2.5+/-1.1 per 50 microm(2)) and co-localisation was not observed. However, 85.4+/-9.4% of VGluT1 terminals targeted and enclosed Kv3.3-immunoreactive somata. Presynaptic Kv3.3 co-localisation with the GABAergic marker GAD67 was also not observed. Cytoplasmic GlyT2 labelling was observed in a subset of Kv3.3-positive neurones. Electron microscopy confirmed a pre- and post-synaptic distribution of the Kv3.3 protein. This study provides evidence supporting a role for Kv3.3 subunits in vestibular processing by regulating neuronal excitability pre- and post-synaptically.
Collapse
|
14
|
Beshore DC, Liverton NJ, McIntyre CJ, Claiborne CF, Libby B, Culberson JC, Salata JJ, Regan CP, Lynch JJ, Kiss L, Spencer RH, Kane SA, White RB, Yeh S, Hartman GD, Dinsmore CJ. Discovery of triarylethanolamine inhibitors of the Kv1.5 potassium channel. Bioorg Med Chem Lett 2010; 20:2493-6. [DOI: 10.1016/j.bmcl.2010.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/26/2010] [Accepted: 03/01/2010] [Indexed: 02/02/2023]
|
15
|
Doucet JR, Lenihan NM, May BJ. Commissural neurons in the rat ventral cochlear nucleus. J Assoc Res Otolaryngol 2009; 10:269-80. [PMID: 19172356 DOI: 10.1007/s10162-008-0155-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 12/30/2008] [Indexed: 11/30/2022] Open
Abstract
Commissural neurons connect the cochlear nucleus complexes of both ears. Previous studies have suggested that the neurons may be separated into two anatomical subtypes on the basis of percent apposition (PA); that is, the percentage of the soma apposed by synaptic terminals. The present study combined tract tracing with synaptic immunolabeling to compare the soma area, relative number, and location of Type I (low PA) and Type II (high PA) commissural neurons in the ventral cochlear nucleus (VCN) of rats. Confocal microscopic analysis revealed that 261 of 377 (69%) commissural neurons have medium-sized somata with Type I axosomatic innervation. The commissural neurons also showed distinct topographical distributions. The majority of Type I neurons were located in the small cell cap of the VCN, which serves as a nexus for regulatory pathways within the auditory brainstem. Most Type II neurons were found in the magnocellular core. This anatomical dichotomy should broaden current views on the function of the commissural pathway that stress the fast inhibitory interactions generated by Type II neurons. The more prevalent Type I neurons may underlie slow regulatory influences that enhance binaural processing or the recovery of function after injury.
Collapse
Affiliation(s)
- John R Doucet
- Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Traylor Research Building, Room 521, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
16
|
|
17
|
Abstract
The application of antibodies to living cells has the potential to modulate the function of specific proteins by virtue of their high specificity. This specificity has proven effective in determining the involvement of many proteins in neuronal function where specific agonists and antagonists do not exist, e.g. ion channel subunits. We discuss a way to utilise subunit specific antibodies to target individual channel subunits in electrophysiological experiments to determine functional roles within native neurones. Utilising this approach, we have investigated the role of the voltage-gated potassium channel Kv3.1b subunit within a region of the brainstem important in the regulation of autonomic function. We provide some useful control experiments in order to help validate this method. We conclude that antibodies can be extremely valuable in determining the functions of specific proteins in living neurones in neuroscience research.
Collapse
|
18
|
Dallas ML, Morris NP, Lewis DI, Deuchars SA, Deuchars J. Voltage-gated potassium currents within the dorsal vagal nucleus: inhibition by BDS toxin. Brain Res 2007; 1189:51-7. [PMID: 18048010 DOI: 10.1016/j.brainres.2007.10.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/19/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
Abstract
Voltage-gated potassium (Kv) channels are essential components of neuronal excitability. The Kv3.4 channel protein is widely distributed throughout the central nervous system (CNS), where it can form heteromeric or homomeric Kv3 channels. Electrophysiological studies reported here highlight a functional role for this channel protein within neurons of the dorsal vagal nucleus (DVN). Current clamp experiments revealed that blood depressing substance (BDS) and intracellular dialysis of an anti-Kv3.4 antibody prolonged the action potential duration. In addition, a BDS sensitive, voltage-dependent, slowly inactivating outward current was observed in voltage clamp recordings from DVN neurons. Electrical stimulation of the solitary tract evoked EPSPs and IPSPs in DVN neurons and BDS increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. This presynaptic modulation was action potential dependent as revealed by ongoing synaptic activity. Given the role of the Kv3 proteins in shaping neuronal excitability, these data highlight a role for homomeric Kv3.4 channels in spike timing and neurotransmitter release in low frequency firing neurons of the DVN.
Collapse
Affiliation(s)
- Mark L Dallas
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
19
|
Chang SY, Zagha E, Kwon ES, Ozaita A, Bobik M, Martone ME, Ellisman MH, Heintz N, Rudy B. Distribution of Kv3.3 potassium channel subunits in distinct neuronal populations of mouse brain. J Comp Neurol 2007; 502:953-72. [PMID: 17444489 DOI: 10.1002/cne.21353] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kv3.3 proteins are pore-forming subunits of voltage-dependent potassium channels, and mutations in the gene encoding for Kv3.3 have recently been linked to human disease, spinocerebellar ataxia 13, with cerebellar and extracerebellar symptoms. To understand better the functions of Kv3.3 subunits in brain, we developed highly specific antibodies to Kv3.3 and analyzed immunoreactivity throughout mouse brain. We found that Kv3.3 subunits are widely expressed, present in important forebrain structures but particularly prominent in brainstem and cerebellum. In forebrain and midbrain, Kv3.3 expression was often found colocalized with parvalbumin and other Kv3 subunits in inhibitory neurons. In brainstem, Kv3.3 was strongly expressed in auditory and other sensory nuclei. In cerebellar cortex, Kv3.3 expression was found in Purkinje and granule cells. Kv3.3 proteins were observed in axons, terminals, somas, and, unlike other Kv3 proteins, also in distal dendrites, although precise subcellular localization depended on cell type. For example, hippocampal dentate granule cells expressed Kv3.3 subunits specifically in their mossy fiber axons, whereas Purkinje cells of the cerebellar cortex strongly expressed Kv3.3 subunits in axons, somas, and proximal and distal, but not second- and third-order, dendrites. Expression in Purkinje cell dendrites was confirmed by immunoelectron microscopy. Kv3 channels have been demonstrated to rapidly repolarize action potentials and support high-frequency firing in various neuronal populations. In this study, we identified additional populations and subcellular compartments that are likely to sustain high-frequency firing because of the expression of Kv3.3 and other Kv3 subunits.
Collapse
Affiliation(s)
- Su Ying Chang
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|