1
|
Janes TA, Cardani S, Saini JK, Pagliardini S. Etonogestrel promotes respiratory recovery in an in vivo rat model of central chemoreflex impairment. Acta Physiol (Oxf) 2024; 240:e14093. [PMID: 38258900 DOI: 10.1111/apha.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
AIM The central CO2 chemoreflex is a vital component of respiratory control networks, providing excitatory drive during resting conditions and challenges to blood gas homeostasis. The retrotrapezoid nucleus is a crucial hub for CO2 chemosensitivity; its ablation or inhibition attenuates CO2 chemoreflexes and diminishes restful breathing. Similar phenotypes characterize certain hypoventilation syndromes, suggesting underlying retrotrapezoid nucleus impairment in these disorders. Progesterone stimulates restful breathing and CO2 chemoreflexes. However, its mechanisms and sites of actions remain unknown and the experimental use of synthetic progestins in patients and animal models have been met with mixed respiratory outcomes. METHODS We investigated whether acute or chronic administration of the progestinic drug, etonogestrel, could rescue respiratory chemoreflexes following selective lesion of the retrotrapezoid nucleus with saporin toxin. Adult female Sprague Dawley rats were grouped based on lesion size determined by the number of surviving chemosensitive neurons, and ventilatory responses were measured by whole body plethysmography. RESULTS Ventilatory responses to hypercapnia (but not hypoxia) were compromised in a lesion-dependent manner. Chronic etonogestrel treatment improved CO2 chemosensitivity selectively in rats with moderate lesion, suggesting that a residual number of chemosensitive neurons are required for etonogestrel-induced CO2 chemoreflex recovery. CONCLUSION This study provides new evidence for the use of progestins as respiratory stimulants under conditions of central hypoventilation and provides a new testable model for assessing the mechanism of action of progestins in the respiratory network.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Cardani
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jasmeen K Saini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Conde SV, Polotsky VY, Joseph V, Kinkead R. On the origins of sleep disordered breathing, cardiorespiratory and metabolic dysfunction: which came first, the chicken or the egg? J Physiol 2023; 601:5509-5525. [PMID: 36988138 PMCID: PMC10539476 DOI: 10.1113/jp284113] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Sleep disordered breathing (SDB) is a complex, sex specific and highly heterogeneous group of respiratory disorders. Nevertheless, sleep fragmentation and repeated fluctuations of arterial blood gases for several hours per night are at the core of the problem; together, they impose significant stress to the organism with deleterious consequences on physical and mental health. SDB increases the risk of obesity, diabetes, depression and anxiety disorders; however, the same health issues are risk factors for SDB. So, which came first, the chicken or the egg? What causes the appearance of the first significant apnoeic events during sleep? These are important questions because although moderate to severe SDB affects ∼500 million adults globally, we still have a poor understanding of the origins of the disease, and the main treatments (and animal models) focus on the symptoms rather than the cause. Because obesity, metabolic dysfunction and stress-related neurological disorders generally appear progressively, we discuss how the development of these diseases can lead to specific anatomical and non-anatomical traits of SDB in males and females while considering the impacts of sex steroids. In light of the growing evidence indicating that the carotid bodies are important sensors of key metabolic and endocrine signals associated with stress and dysmetabolism, we propose that these organs play a key role in the process.
Collapse
Affiliation(s)
- Silvia V. Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Vsevolod Y Polotsky
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vincent Joseph
- Département de Pédiatrie, Université Laval & Research Center of the Québec Heart and Lung Institute, Québec, QC. Canada
| | - Richard Kinkead
- Département de Pédiatrie, Université Laval & Research Center of the Québec Heart and Lung Institute, Québec, QC. Canada
| |
Collapse
|
3
|
Dearing C, Handa RJ, Myers B. Sex differences in autonomic responses to stress: implications for cardiometabolic physiology. Am J Physiol Endocrinol Metab 2022; 323:E281-E289. [PMID: 35793480 PMCID: PMC9448273 DOI: 10.1152/ajpendo.00058.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Chronic stress is a significant risk factor for negative health outcomes. Furthermore, imbalance of autonomic nervous system control leads to dysregulation of physiological responses to stress and contributes to the pathogenesis of cardiometabolic and psychiatric disorders. However, research on autonomic stress responses has historically focused on males, despite evidence that females are disproportionality affected by stress-related disorders. Accordingly, this mini-review focuses on the influence of biological sex on autonomic responses to stress in humans and rodent models. The reviewed literature points to sex differences in the consequences of chronic stress, including cardiovascular and metabolic disease. We also explore basic rodent studies of sex-specific autonomic responses to stress with a focus on sex hormones and hypothalamic-pituitary-adrenal axis regulation of cardiovascular and metabolic physiology. Ultimately, emerging evidence of sex differences in autonomic-endocrine integration highlights the importance of sex-specific studies to understand and treat cardiometabolic dysfunction.
Collapse
Affiliation(s)
- Carley Dearing
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
4
|
Martins FO, Conde SV. Gender Differences in the Context of Obstructive Sleep Apnea and Metabolic Diseases. Front Physiol 2022; 12:792633. [PMID: 34970158 PMCID: PMC8712658 DOI: 10.3389/fphys.2021.792633] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
The relationship between obstructive sleep apnea (OSA) and endocrine and metabolic disease is unequivocal. OSA, which is characterized by intermittent hypoxia and sleep fragmentation, leads to and exacerbates obesity, metabolic syndrome, and type 2 diabetes (T2D) as well as endocrine disturbances, such as hypothyroidism and Cushing syndrome, among others. However, this relationship is bidirectional with endocrine and metabolic diseases being considered major risk factors for the development of OSA. For example, polycystic ovary syndrome (PCOS), one of the most common endocrine disorders in women of reproductive age, is significantly associated with OSA in adult patients. Several factors have been postulated to contribute to or be critical in the genesis of dysmetabolic states in OSA including the increase in sympathetic activation, the deregulation of the hypothalamus-pituitary axis, the generation of reactive oxygen species (ROS), insulin resistance, alteration in adipokines levels, and inflammation of the adipose tissue. However, probably the alterations in the hypothalamus-pituitary axis and the altered secretion of hormones from the peripheral endocrine glands could play a major role in the gender differences in the link between OSA-dysmetabolism. In fact, normal sleep is also different between men and women due to the physiologic differences between genders, with sex hormones such as progesterone, androgens, and estrogens, being also connected with breathing pathologies. Moreover, it is very well known that OSA is more prevalent among men than women, however the prevalence in women increases after menopause. At the same time, the step-rise in obesity and its comorbidities goes along with mounting evidence of clinically important sex and gender differences. Metabolic and cardiovascular diseases, seen as a men's illness for decades, presently are more common in women than in men and obesity has a higher association with insulin-resistance-related risk factors in women than in men. In this way, in the present manuscript, we will review the major findings on the overall mechanisms that connect OSA and dysmetabolism giving special attention to the specific regulation of this relationship in each gender. We will also detail the gender-specific effects of hormone replacement therapies on metabolic control and sleep apnea.
Collapse
Affiliation(s)
- Fátima O Martins
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Sílvia V Conde
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Kinkead R, Gagnon M, Joseph V, Sériès F, Ambrozio-Marques D. Stress and Loss of Ovarian Function: Novel Insights into the Origins of Sex-Based Differences in the Manifestations of Respiratory Control Disorders During Sleep. Clin Chest Med 2021; 42:391-405. [PMID: 34353446 DOI: 10.1016/j.ccm.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The respiratory system of women and men develops and functions in distinct neuroendocrine milieus. Despite differences in anatomy and neural control, homeostasis of arterial blood gases is ensured in healthy individuals regardless of sex. This convergence in function differs from the sex-based differences observed in many respiratory diseases. Sleep-disordered breathing (SDB) results mainly from episodes of upper airway closure. This complex and multifactorial respiratory disorder shows significant sexual dimorphism in its clinical manifestations and comorbidities. Guided by recent progress from basic research, this review discusses the hypothesis that stress is necessary to reveal the sexual dimorphism of SDB.
Collapse
Affiliation(s)
- Richard Kinkead
- Department of Pediatrics, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5, Canada.
| | - Marianne Gagnon
- Department of Pediatrics, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5, Canada
| | - Vincent Joseph
- Department of Pediatrics, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5, Canada
| | - Frédéric Sériès
- Department of Medicine, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, Québec, Canada
| | - Danuzia Ambrozio-Marques
- Department of Pediatrics, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5, Canada
| |
Collapse
|
6
|
Joseph V, Laouafa S, Marcouiller F, Roussel D, Pialoux V, Bairam A. Progesterone decreases apnoea and reduces oxidative stress induced by chronic intermittent hypoxia in ovariectomized female rats. Exp Physiol 2020; 105:1025-1034. [PMID: 32196792 DOI: 10.1113/ep088430] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does progesterone reduce the effect of chronic intermittent hypoxia (CIH) on arterial blood pressure, respiratory control and oxidative stress in the central nervous system in ovariectomized rats? What is the main finding and its importance? Progesterone does not prevent the elevation of arterial blood pressure in rats exposed to CIH, but normalizes respiratory control, and reduces cerebral oxidative stress. This study draws focus to a potential role of progesterone and the consequences of sleep apnoea in menopausal women. ABSTRACT We tested the hypothesis that progesterone (Prog) reduces the effect of chronic intermittent hypoxia (CIH) on arterial blood pressure, respiratory chemoreflexes and oxidative stress in the central nervous system. Ovariectomized female rats were implanted with osmotic pumps delivering vehicle (Veh) or Prog (4 mg kg-1 day-1 ). Two weeks following the surgery, rats were exposed to room air (Air) or CIH (7 days, 10% O2 , 10 cycles h-1 , 8 h day-1 ). We studied three groups: Veh-Air, Veh-CIH and Prog-CIH. After the CIH exposures, we measured the mean arterial pressure (MAP; tail cuff) and assessed the frequency of apnoeas at rest and ventilatory responses to hypoxia and hypercapnia (whole body plethysmography). The activities of the pro-oxidant enzyme NADPH oxidase (NOX) and antioxidant enzymes superoxide dismutase (SOD; in mitochondrial and cytosolic fractions) and glutathione peroxidase (GPx), as well as the concentration of malondialdehyde (MDA), a marker of lipid peroxidation, were measured in brain cortex and brainstem samples. CIH exposure increased the MAP, the frequency of apnoeas, and the respiratory frequency response to hypoxia and hypercapnia. Prog did not prevent the CIH-induced elevation in MAP, but it reduced the CIH-induced frequency of apnoeas and increased hypoxic and hypercapnic ventilatory responses. In the brain cortex, CIH increased NOX activity, and decreased the cytosolic and mitochondrial SOD activities. These effects were prevented by Prog. NOX activity was increased by CIH in the brainstem, and this was also blocked by Prog. The study draws focus to the links between ovarian hormones and the consequences of sleep apnoea in women.
Collapse
Affiliation(s)
- Vincent Joseph
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Sofien Laouafa
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada.,University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, F-69622, France
| | - François Marcouiller
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Damien Roussel
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, F-69622, France
| | - Vincent Pialoux
- University of Lyon, Université Claude Bernard Lyon 1, LIBM EA 7424, Villeurbanne, 69622, France.,Institut Universitaire de France, Paris, France
| | - Aida Bairam
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Laouafa S, Roussel D, Marcouiller F, Soliz J, Gozal D, Bairam A, Joseph V. Roles of oestradiol receptor alpha and beta against hypertension and brain mitochondrial dysfunction under intermittent hypoxia in female rats. Acta Physiol (Oxf) 2019; 226:e13255. [PMID: 30635990 DOI: 10.1111/apha.13255] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
AIM Chronic intermittent hypoxia (CIH) induces systemic (hypertension) and central alterations (mitochondrial dysfunction underlying cognitive deficits). We hypothesized that agonists of oestradiol receptors (ER) α and β prevent CIH-induced hypertension and brain mitochondrial dysfunction. METHODS Ovariectomized female rats were implanted with osmotic pumps delivering vehicle (Veh), the ERα agonist propylpyraoletriol (PPT - 30 μg/kg/day) or the ERβ agonist diarylpropionitril (DPN - 100 μg/kg/day). Animals were exposed to CIH (21%-10% FI O2 - 10 cycles/hour - 8 hours/day - 7 days) or normoxia. Arterial blood pressure was measured after CIH or normoxia exposures. Mitochondrial respiration and H2 O2 production were measured in brain cortex with high-resolution respirometry, as well as activity of complex I and IV of the electron transport chain, citrate synthase, pyruvate, and lactate dehydrogenase (PDH and LDH). RESULTS Propylpyraoletriol but not DPN prevented the rise of arterial pressure induced by CIH. CIH exposures decreased O2 consumption, complex I activity, and increased H2 O2 production. CIH had no effect on citrate synthase activity, but decreased PDH activity and increased LDH activity indicating higher anaerobic glycolysis. Propylpyraoletriol and DPN treatments prevented all these alterations. CONCLUSIONS We conclude that in OVX female rats, the ERα agonist prevents from CIH-induced hypertension while both ERα and ERβ agonists prevent the brain mitochondrial dysfunction and metabolic switch induced by CIH. These findings may have implications for menopausal women suffering of sleep apnoea regarding hormonal therapy.
Collapse
Affiliation(s)
- Sofien Laouafa
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Damien Roussel
- CNRS, UMR 5023 Université Claude Bernard Lyon 1 Villeurbanne France
| | - François Marcouiller
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Jorge Soliz
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - David Gozal
- Department of Child Health University of Missouri School of Medicine Columbia Missouri
| | - Aida Bairam
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Vincent Joseph
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| |
Collapse
|
8
|
Schneider Gasser EM, Elliot-Portal E, Arias-Reyes C, Losantos-Ramos K, Khalid K, Ogunshola O, Soliz J. Developmental expression patterns of erythropoietin and its receptor in mouse brainstem respiratory regions. Respir Physiol Neurobiol 2019; 267:12-19. [PMID: 31154093 DOI: 10.1016/j.resp.2019.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
Erythropoietin (EPO) is a hypoxia-inducible hormone, classically known to enhance red blood cell production upon binding its receptor (EPOR) present on the surface of the erythroid progenitor cells. EPO and its receptor are also expressed in the central nervous system (CNS), exerting several non-hematopoietic actions. EPO also plays an important role in the control of breathing. In this review, we summarize the known physiological actions of EPO in the neural control of ventilation during postnatal development and at adulthood in rodents under normoxic and hypoxic conditions. Furthermore, we present the developmental expression patterns of EPO and EPORs in the brainstem, and with the use of in situ hybridization (ISH) and immunofluorescence techniques we provide original data showing that EPOR is abundantly present in specific brainstem nuclei associated with central chemosensitivity and control of ventilation in the ventrolateral medulla, mainly on somatostatin negative cells. Thus, we conclude that EPO signaling may act through glutamatergic neuron populations that are the primary source of rhythmic inspiratory excitatory drive. This work underlies the importance of EPO signaling in the central control of ventilation across development and adulthood and provides new insights on the expression of EPOR at the cellular level.
Collapse
Affiliation(s)
- Edith M Schneider Gasser
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Elizabeth Elliot-Portal
- Institut universitaire de cardiologie et de pneumologie de Québec, Centre Hospitalier Universitaire de Québec (CHUQ), Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Christian Arias-Reyes
- Institut universitaire de cardiologie et de pneumologie de Québec, Centre Hospitalier Universitaire de Québec (CHUQ), Faculty of Medicine, Université Laval, Québec, QC, Canada; Instituto de Biología Molecular y Biotecnología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Karen Losantos-Ramos
- Institut universitaire de cardiologie et de pneumologie de Québec, Centre Hospitalier Universitaire de Québec (CHUQ), Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Kasifa Khalid
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Omolara Ogunshola
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology (ZIHP), Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland
| | - Jorge Soliz
- Institut universitaire de cardiologie et de pneumologie de Québec, Centre Hospitalier Universitaire de Québec (CHUQ), Faculty of Medicine, Université Laval, Québec, QC, Canada; Instituto de Biología Molecular y Biotecnología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia.
| |
Collapse
|
9
|
Bairam A, Boukari R, Joseph V. Targeting progesterone receptors in newborn males and females: From the animal model to a new perspective for the treatment of apnea of prematurity? Respir Physiol Neurobiol 2019; 263:55-61. [DOI: 10.1016/j.resp.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/15/2019] [Accepted: 03/08/2019] [Indexed: 11/27/2022]
|
10
|
Joseph V, Uppari N, Kouchi H, De Bruyn C, Boukari R, Bairam A. Respiratory regulation by steroids in newborn rats: a sex-specific balance between allopregnanolone and progesterone receptors. Exp Physiol 2018; 103:276-290. [DOI: 10.1113/ep086716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/15/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Vincent Joseph
- Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Faculté de médicine; Université Laval; Québec Québec Canada
| | - NagaPraveena Uppari
- Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Faculté de médicine; Université Laval; Québec Québec Canada
| | - Hayet Kouchi
- Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Faculté de médicine; Université Laval; Québec Québec Canada
| | - Celia De Bruyn
- Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Faculté de médicine; Université Laval; Québec Québec Canada
| | - Ryma Boukari
- Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Faculté de médicine; Université Laval; Québec Québec Canada
| | - Aida Bairam
- Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Département de Pédiatrie, Faculté de médicine; Université Laval; Québec Québec Canada
| |
Collapse
|
11
|
Role of Estradiol Receptor Beta (ERβ) on Arterial Pressure, Respiratory Chemoreflex and Mitochondrial Function in Young and Aged Female Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:115-127. [DOI: 10.1007/978-3-319-91137-3_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Marques DA, de Carvalho D, da Silva GSF, Szawka RE, Anselmo-Franci JA, Bícego KC, Gargaglioni LH. Influence of estrous cycle hormonal fluctuations and gonadal hormones on the ventilatory response to hypoxia in female rats. Pflugers Arch 2017; 469:1277-1286. [PMID: 28660294 DOI: 10.1007/s00424-017-2022-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Sex hormones may influence many physiological processes. Recently, we demonstrated that hormonal fluctuations of cycling female rats do not affect respiratory parameters during hypercapnia. However, it is still unclear whether sex hormones and hormonal fluctuations that occur during the estrous cycle can affect breathing during a hypoxic challenge. Our study aimed to evaluate respiratory, metabolic, and thermal responses to hypoxia in female rats on different days of the estrous cycle (proestrus, estrus, metestrus, and diestrus) and in ovariectomized rats that received replacement with oil (OVX), estradiol (OVX + E2), or a combination of estradiol and progesterone (OVX + E2P). Ventilation (V E), tidal volume (V T), respiratory frequency (fR), oxygen consumption (VO2), and V E/VO2 were not different during the estrous cycle in normoxia or hypoxia. Body temperature (Tb) was higher during estrus, but decreased similarly in all groups during hypoxia. Compared with intact females in estrus, gonadectomized rats also had lower Tb in normoxia, but not in hypoxia. OVX rats experienced a significant drop in the ventilatory response to hypoxia, but hormonal replacement did not restore values to the levels of an intact animal. Our data demonstrate that the different phases of the estrous cycle do not alter ventilation during normoxia and hypoxia, but OVX animals display lower ventilatory responses to hypoxia compared with ovary-intact rats. Because estradiol and progesterone replacement did not cause significant differences in ventilation, our findings suggest that a yet-to-be-defined non-steroidal ovarian hormone is likely to stimulate the ventilatory responses to hypoxia in females.
Collapse
Affiliation(s)
- Danuzia A Marques
- Department of Animal Morphology and Physiology, São Paulo State University, UNESP FCAV at Jaboticabal, São Paulo, Brazil
| | | | - Glauber S F da Silva
- Department of Animal Morphology and Physiology, São Paulo State University, UNESP FCAV at Jaboticabal, São Paulo, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Janete A Anselmo-Franci
- Department of Morphology, Stomatology and Physiology, Dental School of Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, São Paulo State University, UNESP FCAV at Jaboticabal, São Paulo, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, São Paulo State University, UNESP FCAV at Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
13
|
Ovarian steroids act as respiratory stimulant and antioxidant against the causes and consequences of sleep-apnea in women. Respir Physiol Neurobiol 2017; 239:46-54. [DOI: 10.1016/j.resp.2017.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/19/2017] [Accepted: 01/29/2017] [Indexed: 12/22/2022]
|
14
|
Montrezor LH, de Carvalho D, Dias MB, Anselmo-Franci JA, Bícego KC, Gargaglioni LH. Hypoxic and hypercapnic ventilatory responses in rats with polycystic ovaries. Respir Physiol Neurobiol 2015; 217:17-24. [DOI: 10.1016/j.resp.2015.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/20/2015] [Accepted: 06/21/2015] [Indexed: 01/11/2023]
|
15
|
Bairam A, Uppari N, Mubayed S, Joseph V. An Overview on the Respiratory Stimulant Effects of Caffeine and Progesterone on Response to Hypoxia and Apnea Frequency in Developing Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:211-20. [DOI: 10.1007/978-3-319-18440-1_23] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Relative Contribution of Nuclear and Membrane Progesterone Receptors in Respiratory Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:261-7. [DOI: 10.1007/978-3-319-18440-1_30] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Potvin C, Rossignol O, Uppari N, Dallongeville A, Bairam A, Joseph V. Reduced hypoxic ventilatory response in newborn mice knocked-out for the progesterone receptor. Exp Physiol 2014; 99:1523-37. [DOI: 10.1113/expphysiol.2014.080986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Catherine Potvin
- Department of Pediatrics, CR-CHU de Québec; Université Laval; Québec Canada
| | - Orlane Rossignol
- Department of Pediatrics, CR-CHU de Québec; Université Laval; Québec Canada
| | | | | | - Aida Bairam
- Department of Pediatrics, CR-CHU de Québec; Université Laval; Québec Canada
| | - Vincent Joseph
- Department of Pediatrics, CR-CHU de Québec; Université Laval; Québec Canada
| |
Collapse
|
18
|
Marcouiller F, Boukari R, Laouafa S, Lavoie R, Joseph V. The nuclear progesterone receptor reduces post-sigh apneas during sleep and increases the ventilatory response to hypercapnia in adult female mice. PLoS One 2014; 9:e100421. [PMID: 24945655 PMCID: PMC4063764 DOI: 10.1371/journal.pone.0100421] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/27/2014] [Indexed: 01/25/2023] Open
Abstract
We tested the hypothesis that the nuclear progesterone receptor (nPR) is involved in respiratory control and mediates the respiratory stimulant effect of progesterone. Adult female mice carrying a mutation in the nPR gene (PRKO mice) and wild-type controls (WT) were implanted with an osmotic pump delivering vehicle or progesterone (4 mg/kg/day). The mice were instrumented with EEG and neck EMG electrodes connected to a telemetry transmitter. The animals were placed in a whole body plethysmograph 7 days after surgery to record ventilation, metabolic rate, EEG and neck EMGs for 4 consecutive hours. The animals were exposed to hypercapnia (5% CO2), hypoxia (12% O2) and hypoxic-hypercapnia (5% CO2+12% O2–5 min each) to assess chemoreflex responses. EEG and EMG signals were used to characterize vigilance states (e.g., wake, non-REM, and REM sleep). PRKO mice exhibited similar levels of minute ventilation during non-REM and REM sleep, and higher frequencies of sighs and post-sigh apneas during non-REM sleep compared to WT. Progesterone treatment increased minute ventilation and metabolic rate in WT and PRKO mice during non-REM sleep. In WT mice, but not in PRKO mice, the ventilation under hypercapnia and hypoxic hypercapnia was enhanced after progesterone treatment. We conclude that the nPR reduces apnea frequency during non-REM sleep and enhances chemoreflex responses to hypercapnia after progesterone treatment. These results also suggest that mechanisms other than nPR activation increase metabolic rate in response to progesterone treatment in adult female mice.
Collapse
Affiliation(s)
- François Marcouiller
- Department of Pediatrics and Research Centre CHU de Québec, Université Laval, Québec (QC), Canada
| | - Ryma Boukari
- Department of Pediatrics and Research Centre CHU de Québec, Université Laval, Québec (QC), Canada
| | - Sofien Laouafa
- Department of Pediatrics and Research Centre CHU de Québec, Université Laval, Québec (QC), Canada
| | - Raphaël Lavoie
- Department of Pediatrics and Research Centre CHU de Québec, Université Laval, Québec (QC), Canada
| | - Vincent Joseph
- Department of Pediatrics and Research Centre CHU de Québec, Université Laval, Québec (QC), Canada
- * E-mail:
| |
Collapse
|
19
|
Bairam A, Lumbroso D, Joseph V. Effect of progesterone on respiratory response to moderate hypoxia and apnea frequency in developing rats. Respir Physiol Neurobiol 2013; 185:515-25. [DOI: 10.1016/j.resp.2012.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 01/18/2023]
|
20
|
De Caro R, Macchi V, Sfriso MM, Porzionato A. Structural and neurochemical changes in the maturation of the carotid body. Respir Physiol Neurobiol 2013; 185:9-19. [DOI: 10.1016/j.resp.2012.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/16/2012] [Accepted: 06/08/2012] [Indexed: 02/07/2023]
|
21
|
Carroll JL, Kim I. Carotid chemoreceptor "resetting" revisited. Respir Physiol Neurobiol 2012; 185:30-43. [PMID: 22982216 DOI: 10.1016/j.resp.2012.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 12/16/2022]
Abstract
Carotid body (CB) chemoreceptors transduce low arterial O(2) tension into increased action potential activity on the carotid sinus nerves, which contributes to resting ventilatory drive, increased ventilatory drive in response to hypoxia, arousal responses to hypoxia during sleep, upper airway muscle activity, blood pressure control and sympathetic tone. Their sensitivity to O(2) is low in the newborn and increases during the days or weeks after birth to reach adult levels. This postnatal functional maturation of the CB O(2) response has been termed "resetting" and it occurs in every mammalian species studied to date. The O(2) environment appears to play a key role; the fetus develops in a low O(2) environment throughout gestation and initiation of CB "resetting" after birth is modulated by the large increase in arterial oxygen tension occurring at birth. Although numerous studies have reported age-related changes in various components of the O(2) transduction cascade, how the O(2) environment shapes normal CB prenatal development and postnatal "resetting" remains unknown. Viewing CB "resetting" as environment-driven (developmental) phenotypic plasticity raises important mechanistic questions that have received little attention. This review examines what is known (and not known) about mechanisms of CB functional maturation, with a focus on the role of the O(2) environment.
Collapse
Affiliation(s)
- John L Carroll
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, 1 Children's Way, Little Rock, AR 72202, United States.
| | | |
Collapse
|
22
|
Dose Dependent Effect of Progesterone on Hypoxic Ventilatory Response in Newborn Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 758:43-8. [DOI: 10.1007/978-94-007-4584-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
23
|
Joseph V, Behan M, Kinkead R. Sex, hormones, and stress: how they impact development and function of the carotid bodies and related reflexes. Respir Physiol Neurobiol 2012; 185:75-86. [PMID: 22781657 DOI: 10.1016/j.resp.2012.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 01/13/2023]
Abstract
Progesterone and corticosterone are key modulators of the respiratory control system. While progesterone is widely recognized as an important respiratory stimulant in adult and newborn animals, much remains to be described regarding the underlying mechanisms. We review the potential implication of nuclear and membrane progesterone receptors in adults and in newborns. This raises intriguing questions regarding the contribution of progesterone as a protective factor against some respiratory control disorders during early life. We then discuss our current understanding of the central integration of stressful stimuli and the responses they elicit. The fact that this system interacts with the respiratory control system, either because both share some common neural pathways in the brainstem and hypothalamus, or because corticosterone directly modulates the function of the respiratory control network, is a fascinating field of research that has emerged over the past few years. Finally, we review the short- and long-term consequences of disruption of stress circuitry during postnatal development on these systems.
Collapse
Affiliation(s)
- Vincent Joseph
- Department of Pediatrics, Université Laval, Québec, QC, Canada.
| | | | | |
Collapse
|
24
|
Joseph V, Niane LM, Bairam A. Antagonism of progesterone receptor suppresses carotid body responses to hypoxia and nicotine in rat pups. Neuroscience 2012; 207:103-9. [PMID: 22326965 PMCID: PMC3782486 DOI: 10.1016/j.neuroscience.2012.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 11/29/2022]
Abstract
We tested the hypothesis that antagonism of progesterone receptor (PR) in newborn rats alters carotid body and respiratory responses to hypoxia and nicotinic receptor agonists. Rats were treated with the PR antagonist mifepristone (daily oral gavage 40 μg/g/d) or vehicle between postnatal days 3 and 15. In 11-14-day-old rats, we used in vitro carotid body/carotid sinus nerve preparation and whole body plethysmography to assess the carotid body and ventilatory responses to hypoxia (65 mmHg in vitro, 10% O2 in vivo) and to nicotinic receptor agonists (as an excitatory modulator of carotid body activity-nicotine 100 μM for in vitro studies, and epibatidine 5 μg/kg, i.p., which mainly acts on peripheral nicotinic receptors, for in vivo studies). The carotid body responses to hypoxia and nicotine were drastically reduced by mifepristone. Compared with vehicle, mifepristone-treated rats had a reduced body weight. The ventilatory response to epibatidine was attenuated; however, the hypoxic ventilatory response was similar between vehicle and mifepristone-treated pups. Immunohistochemical staining revealed that mifepristone treatment did not change carotid body morphology. We conclude that PR activity is a critical factor ensuring proper carotid body function in newborn rats.
Collapse
Affiliation(s)
- V Joseph
- Department of Pediatrics, Laval University, Centre de Recherche (D0-711), Hôpital St.-François d'Assise, 10 rue de l'Espinay, QC, G1L 3L5, Canada.
| | | | | |
Collapse
|
25
|
Fournier S, Kinkead R, Joseph V. Influence of housing conditions from weaning to adulthood on the ventilatory, thermoregulatory, and endocrine responses to hypoxia of adult female rats. J Appl Physiol (1985) 2012; 112:1474-81. [PMID: 22323657 DOI: 10.1152/japplphysiol.01477.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Housing conditions affect animal physiology. We previously showed that the hypoxic ventilatory and thermoregulatory responses to hypoxia of adult male rats housed in triads during the juvenile period (postnatal day 21 to adulthood) were significantly reduced compared with animals housed in pairs. Because sex hormones influence development and responsiveness to environmental stressors, this study investigated the impact of housing on the respiratory and thermoregulatory physiology of female rats. Since neonatal stress attenuates the hypoxic ventilatory response (HVR) of female rats at adulthood, experiments were performed both on "control" (undisturbed) animals and rats subjected to neonatal maternal separation (NMS; 3 h/day, postnatal days 3-12). At adulthood, ventilatory activity was measured by whole body plethysmography under normoxic and hypoxic conditions [fraction of inspired oxygen (Fi(O(2))) = 0.12; 20 min]. The ventilatory and body temperature responses to hypoxia of female rats raised in triads were reduced compared with rats housed in pairs. Housing female rats in triads did not affect basal or hypoxic plasma corticosterone levels but did increase levels of estradiol significantly. We conclude that modest changes in housing conditions (pairs vs. triads) from weaning to adulthood does influence basic homeostatic functions such as temperature and respiratory regulation. Triad housing can reverse the manifestations of respiratory instability at adulthood induced by stressful neonatal treatments. This should raise awareness of the benefits of increasing social interactions in clinical settings but also caution researchers of the potential impact of such subtle changes on experimental protocols and interpretation of results.
Collapse
Affiliation(s)
- Sébastien Fournier
- Department of Pediatrics, Centre de Recherche Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada.
| | | | | |
Collapse
|
26
|
Sex-Specific Effects of Daily Gavage with a Mixed Progesterone and Glucocorticoid Receptor Antagonist on Hypoxic Ventilatory Response in Newborn Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 758:29-35. [DOI: 10.1007/978-94-007-4584-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Fournier S, Joseph V, Kinkead R. Influence of juvenile housing conditions on the ventilatory, thermoregulatory, and endocrine responses to hypoxia of adult male rats. J Appl Physiol (1985) 2011; 111:516-23. [DOI: 10.1152/japplphysiol.00370.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
“Extreme” housing conditions, such as isolation (single housing) or crowding, are stressful for rats, and their deleterious impact on behavior is well documented. To determine whether more subtle variations in housing can affect animal physiology, the present study tested the hypothesis that the hypoxic ventilatory response (HVR) of adult male rats housed in pairs during the juvenile period (postnatal day 21 to adulthood) does not differ from that of animals housed in triads. Because neonatal stress augments the neuroendocrine responsiveness to stress and HVR, experiments were performed both on “control” (undisturbed) animals and rats subjected to neonatal maternal separation (NMS; 3 h/day, postnatal days 3–12). At adulthood, ventilatory activity was measured by whole body plethysmography under normoxic and hypoxic conditions (inspired fraction of O2 = 0.12; 20 min). The ventilatory and body temperature responses to hypoxia of rats raised in triads were less than those of rats housed in pairs. For the HVR, however, the attenuation induced by triad housing was more important in NMS rats. Triad housing decreased “basal” plasma corticosterone, but increased estradiol and testosterone levels. Much like the HVR, housing-related decrease in corticosterone level was greater in NMS than control rats. We conclude that modest changes in housing conditions (pairs vs. triads) during the juvenile period can influence basic homeostatic functions, such as temperature, endocrine, and respiratory regulation. Housing conditions can influence (even eliminate) the manifestations of respiratory plasticity subsequent to deleterious neonatal treatments. Differences in neuroendocrine function likely contribute to these effects.
Collapse
Affiliation(s)
- Sébastien Fournier
- Department of Pediatrics, Centre de Recherche Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| | - Vincent Joseph
- Department of Pediatrics, Centre de Recherche Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| | - Richard Kinkead
- Department of Pediatrics, Centre de Recherche Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| |
Collapse
|
28
|
Gassmann M, Pfistner C, Doan VD, Vogel J, Soliz J. Impaired ventilatory acclimatization to hypoxia in female mice overexpressing erythropoietin: unexpected deleterious effect of estradiol in carotid bodies. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1511-20. [DOI: 10.1152/ajpregu.00205.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Apart from enhancing the production of red blood cells, erythropoietin (Epo) alters the ventilatory response when oxygen supply is reduced. We recently demonstrated that Epo's beneficial effect on the ventilatory response to acute hypoxia is sex dependent, with female mice being better able to cope with reduced oxygenation. In the present work, we hypothesized that ventilatory acclimatization to chronic hypoxia (VAH) in transgenic female mice (Tg6) harboring high levels of Epo in the brain and blood will also be improved compared with wild-type (WT) animals. Surprisingly, VAH was blunted in Tg6 female mice. To define whether this phenomenon had a central (brain stem respiratory centers) and/or peripheral (carotid bodies) origin, a bilateral transection of carotid sinus nerve (chemodenervation) was performed. This procedure allowed the analysis of the central response in the absence of carotid body information. Interestingly, chemodenervation restored the VAH in Tg6 mice, suggesting that carotid bodies were responsible for the blunted response. Coherently with this observation, the sensitivity to oxygen alteration in arterial blood (Dejour test) after chronic hypoxia was lower in transgenic carotid bodies compared with the WT control. As blunted VAH occurred in female but not male transgenic mice, the involvement of sex female steroids was obvious. Indeed, measurement of sexual female hormones revealed that the estradiol serum level was 4 times higher in transgenic mice Tg6 than in WT animals. While ovariectomy decreased VAH in WT females, this treatment restored VAH in Tg6 female mice. In line with this observation, injections of estradiol in ovariectomized Tg6 females dramatically reduced the VAH. We concluded that during chronic hypoxia, estradiol in carotid bodies suppresses the Epo-mediated elevation of ventilation. Considering the increased application of recombinant Epo for a variety of disorders, our data imply the need to take the patient's hormonal status into consideration.
Collapse
Affiliation(s)
- Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| | - Christine Pfistner
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| | - Van Diep Doan
- Unité de Recherche en Périnatalogie, Centre Hospitalier Universitaire de Québec, Hôpital Saint-François d'Assise, Département de Pédiatrie, Université Laval, Québec, Canada
| | - Johannes Vogel
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| | - Jorge Soliz
- Institute of Veterinary Physiology, Vetsuisse Faculty, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| |
Collapse
|
29
|
Niane L, Joseph V, Bairam A. Role of cholinergic-nicotinic receptors on hypoxic chemoreflex during postnatal development in rats. Respir Physiol Neurobiol 2009; 169:323-32. [DOI: 10.1016/j.resp.2009.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 11/28/2022]
|
30
|
Lumbroso D, Joseph V. Impaired acclimatization to chronic hypoxia in adult male and female rats following neonatal hypoxia. Am J Physiol Regul Integr Comp Physiol 2009; 297:R421-7. [PMID: 19494172 DOI: 10.1152/ajpregu.00068.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We tested the hypothesis that neonatal exposure to hypoxia alters acclimatization to chronic hypoxia later in life. Rat pups were exposed to normobaric hypoxia (12% O(2); nHx group) in a sealed chamber, or to normoxia (21% O(2); nNx group) from the day before birth to postnatal day 10. The animals were then raised in normal conditions until reaching 12 wk of age. At this age, we assessed ventilatory and hematological acclimatization to chronic hypoxia by exposing male and female nHx and nNx rats for 2 wk to 10% O(2). Minute ventilation, metabolic rate, hypoxic ventilatory response, hematocrit, and hemoglobin levels were measured both before and after acclimatization. We also quantified right ventricular hypertrophy as an index of pulmonary hypertension both before and after acclimatization. There was a significant effect of neonatal hypoxia that decreases ventilatory response (relative to metabolic rate, VE/VCO(2)) to acute hypoxia before acclimatization in males but not in females. nHx rats had an impaired acclimatization to chronic hypoxia characterized by altered respiratory pattern and elevated hematocrit and hemoglobin levels after acclimatization, in both males and females. Right ventricular hypertrophy was present before and after acclimatization in nHx rats, indicating that neonatal hypoxia results in pulmonary hypertension in adults. We conclude that neonatal hypoxia impairs acclimatization to chronic hypoxia in adults and may be a factor contributing to the establishment of chronic mountain sickness in humans living at high altitude.
Collapse
Affiliation(s)
- Delphine Lumbroso
- Department of Pediatrics, Laval University, Centre de Recherche, Hôpital St-François d'Assise, Quebec, Canada
| | | |
Collapse
|
31
|
Lefter R, Morency CE, Joseph V. Progesterone increases hypoxic ventilatory response and reduces apneas in newborn rats. Respir Physiol Neurobiol 2007; 156:9-16. [PMID: 17010680 DOI: 10.1016/j.resp.2006.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/17/2006] [Accepted: 08/21/2006] [Indexed: 11/26/2022]
Abstract
We hypothesized that progesterone may enhance the hypoxic ventilatory response and reduce the occurrence of apneas in newborn male rats. We studied 10-day-old rats chronically exposed to progesterone (Prog) or vehicle through the milk of lactating mothers. Respiratory and metabolic recordings were performed using whole body plethysmography under normoxia and during hypoxic exposure (10% O(2)--30 min). While progesterone did not alter baseline breathing and metabolic rate, it increased hypoxic ventilatory response particularly by limiting the magnitude of the ventilatory roll-off during the second phase of the hypoxic ventilatory response (i.e. following 5 min of exposure). In parallel, progesterone lowered the number of spontaneous apneas and drastically reduced the occurrence of post-sigh apneas during hypoxic exposure by limiting the time of the post-sigh expiratory pause. Following domperidone injection (used to block peripheral D2 dopamine receptor), minute ventilation increased in Veh pups and the number of spontaneous apneas decreased. These responses were not observed in Prog pups, suggesting that progesterone reduces peripheral dopaminergic inhibition on breathing. We conclude that progesterone is a potent stimulant of hypoxic ventilatory response in newborn rats and effectively reduces the occurrence of apneas.
Collapse
Affiliation(s)
- Raluca Lefter
- Department of Pediatrics, Laval University, Centre de Recherche (D0-711), Hôpital St.-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | | | | |
Collapse
|
32
|
Toyoshima K, Seta Y, Toyono T, Kataoka S. Immunohistochemical identification of cells expressing steroidogenic enzymes cytochrome P450scc and P450 aromatase in taste buds of rat circumvallate papillae. ACTA ACUST UNITED AC 2007; 70:215-24. [DOI: 10.1679/aohc.70.215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kuniaki Toyoshima
- Division of Oral Histology and Neurobiology, Department of Biosciences, Kyushu Dental College
| | - Yuji Seta
- Division of Oral Histology and Neurobiology, Department of Biosciences, Kyushu Dental College
| | - Takashi Toyono
- Division of Oral Histology and Neurobiology, Department of Biosciences, Kyushu Dental College
| | - Shinji Kataoka
- Division of Oral Histology and Neurobiology, Department of Biosciences, Kyushu Dental College
| |
Collapse
|