1
|
Shen Y, Gong Y, Ruan Y, Chen Z, Xu C. Secondary Epileptogenesis: Common to See, but Possible to Treat? Front Neurol 2021; 12:747372. [PMID: 34938259 PMCID: PMC8686764 DOI: 10.3389/fneur.2021.747372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023] Open
Abstract
Secondary epileptogenesis is a common phenomenon in epilepsy, characterized by epileptiform discharges from the regions outside the primary focus. It is one of the major reasons for pharmacoresistance and surgical failure. Compared with primary epileptogenesis, the mechanism of secondary epileptogenesis is usually more complex and diverse. In this review, we aim to summarize the characteristics of secondary epileptogenesis from both clinical and laboratory studies in a historical view. Mechanisms of secondary epileptogenesis in molecular, cellular, and circuity levels are further presented. Potential treatments targeting the process are discussed as well. At last, we highlight the importance of circuitry studies, which would further illustrate precise treatments of secondary epileptogenesis in the future.
Collapse
Affiliation(s)
- Yujia Shen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Ábrahám H, Molnár JE, Sóki N, Gyimesi C, Horváth Z, Janszky J, Dóczi T, Seress L. Etiology-related Degree of Sprouting of Parvalbumin-immunoreactive Axons in the Human Dentate Gyrus in Temporal Lobe Epilepsy. Neuroscience 2020; 448:55-70. [PMID: 32931846 DOI: 10.1016/j.neuroscience.2020.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/22/2020] [Accepted: 09/05/2020] [Indexed: 11/16/2022]
Abstract
In the present study, we examined parvalbumin-immunoreactive cells and axons in the dentate gyrus of surgically resected tissues of therapy-resistant temporal lobe epilepsy (TLE) patients with different etiologies. Based on MRI results, five groups of patients were formed: (1) hippocampal sclerosis (HS), (2) malformation of cortical development, (3) malformation of cortical development + HS, (4) tumor-induced TLE, (5) patients with negative MRI result. Four control samples were also included in the study. Parvalbumin-immunoreactive cells were observed mostly in subgranular location in the dentate hilus in controls, in tumor-induced TLE, in malformation of cortical development and in MR-negative cases. In patients with HS, significant decrease in the number of hilar parvalbumin-immunoreactive cells and large numbers of ectopic parvalbumin-containing neurons were detected in the dentate gyrus' molecular layer. The ratio of ectopic/normally-located cells was significantly higher in HS than in other TLE groups. In patients with HS, robust sprouting of parvalbumin-immunoreactive axons were frequently visible in the molecular layer. The extent of sprouting was significantly higher in TLE patients with HS than in other groups. Strong sprouting of parvalbumin-immunoreactive axons were frequently observed in patients who had childhood febrile seizure. Significant correlation was found between the level of sprouting of axons and the ratio of ectopic/normally-located parvalbumin-containing cells. Electron microscopy demonstrated that sprouted parvalbumin-immunoreactive axons terminate on proximal and distal dendritic shafts as well as on dendritic spines of granule cells. Our results indicate alteration of target profile of parvalbumin-immunoreactive neurons in HS that contributes to the known synaptic remodeling in TLE.
Collapse
Affiliation(s)
- Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary.
| | - Judit E Molnár
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| | - Noémi Sóki
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| | - Csilla Gyimesi
- Department of Neurology, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - Zsolt Horváth
- Department of Neurosurgery, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - József Janszky
- Department of Neurology, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - Tamás Dóczi
- Department of Neurosurgery, University of Pécs Medical School, Rét u. 2., Pécs 7623, Hungary
| | - László Seress
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Szigeti u 12., Pécs 7624, Hungary
| |
Collapse
|
3
|
Le Duigou C, Savary E, Morin-Brureau M, Gomez-Dominguez D, Sobczyk A, Chali F, Milior G, Kraus L, Meier JC, Kullmann DM, Mathon B, de la Prida LM, Dorfmuller G, Pallud J, Eugène E, Clemenceau S, Miles R. Imaging pathological activities of human brain tissue in organotypic culture. J Neurosci Methods 2018; 298:33-44. [PMID: 29427611 DOI: 10.1016/j.jneumeth.2018.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Insights into human brain diseases may emerge from tissue obtained after operations on patients. However techniques requiring transduction of transgenes carried by viral vectors cannot be applied to acute human tissue. NEW METHOD We show that organotypic culture techniques can be used to maintain tissue from patients with three different neurological syndromes for several weeks in vitro. Optimized viral vector techniques and promoters for transgene expression are described. RESULTS Region-specific differences in neuronal form, firing pattern and organization as well as pathological activities were maintained over 40-50 days in culture. Both adeno-associated virus and lentivirus based vectors were persistently expressed from ∼10 days after application, providing 30-40 days to exploit genetically expressed constructs. Different promoters, including hSyn, e/hSyn, CMV and CaMKII, provided cell-type specific transgene expression. The Ca probe GCaMP let us explore epileptogenic synchrony and a FRET-based probe was used to follow activity of the kinase mTORC1. COMPARISON WITH EXISTING METHODS The use of a defined culture medium, with low concentrations of amino acids and no growth factors, permitted organotypic culture of tissue from humans aged 3-62 years. Epileptic activity was maintained and excitability changed relatively little until ∼6 weeks in culture. CONCLUSIONS Characteristic morphology and region-specific neuronal activities are maintained in organotypic culture of tissue from patients diagnosed with mesial temporal lobe epilepsy, cortical dysplasia and cortical glioblastoma. Viral vector techniques permit expression of probes for long-term measurements of multi-cellular activity and intra-cellular signaling.
Collapse
Affiliation(s)
- Caroline Le Duigou
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France.
| | - Etienne Savary
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France.
| | - Mélanie Morin-Brureau
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France
| | - Daniel Gomez-Dominguez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, E-28002, Spain
| | - André Sobczyk
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France
| | - Farah Chali
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France
| | - Giampaolo Milior
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France
| | - Larissa Kraus
- Cell Physiology, Technische Universität Braunschweig, Braunschweig, Germany; Charite Universitätsmedizin, Clinical and Experimental Epileptology, Berlin, Germany; Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Jochen C Meier
- Cell Physiology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Bertrand Mathon
- Neurochirurgie, AP-HP, GH Pitie-Salpêtrière-Charles Foix, Paris, 75013, France
| | | | - Georg Dorfmuller
- Neurochirurgie, Fondation Ophtalmologique Rothschild, 75019, Paris, France
| | - Johan Pallud
- Neurochirurgie, Hôpital Sainte-Anne, Paris Descartes University, IMA-BRAIN, Inserm, U894 Centre de Psychiatrie et Neurosciences, Paris, 75014, France
| | - Emmanuel Eugène
- Inserm U839, UPMC Univ Paris 6, Institut du Fer-à-Moulin, Paris, 75005, France
| | - Stéphane Clemenceau
- Neurochirurgie, AP-HP, GH Pitie-Salpêtrière-Charles Foix, Paris, 75013, France
| | - Richard Miles
- Cortex & Epilepsie, Inserm U1127, CNRS UMR7225, UPMC Univ Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France, France.
| |
Collapse
|
4
|
Jaffe DB, Brenner R. A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. J Neurophysiol 2018; 119:1506-1520. [PMID: 29357445 DOI: 10.1152/jn.00385.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gain of a neuron, the number and frequency of action potentials triggered in response to a given amount of depolarizing injection, is an important behavior underlying a neuron's function. Variations in action potential waveform can influence neuronal discharges by the differential activation of voltage- and ion-gated channels long after the end of a spike. One component of the action potential waveform, the afterhyperpolarization (AHP), is generally considered an inhibitory mechanism for limiting firing rates. In dentate gyrus granule cells (DGCs) expressing fast-gated BK channels, large fast AHPs (fAHP) are paradoxically associated with increased gain. In this article, we describe a mechanism for this behavior using a computational model. Hyperpolarization provided by the fAHP enhances activation of a dendritic inward current (a T-type Ca2+ channel is suggested) that, in turn, boosts rebound depolarization at the soma. The model suggests that the fAHP may both reduce Ca2+ channel inactivation and, counterintuitively, enhance its activation. The magnitude of the rebound depolarization, in turn, determines the activation of a subsequent, slower inward current (a persistent Na+ current is suggested) limiting the interspike interval. Simulations also show that the effect of AHP on gain is also effective for physiologically relevant stimulation; varying AHP amplitude affects interspike interval across a range of "noisy" stimulus frequency and amplitudes. The mechanism proposed suggests that small fAHPs in DGCs may contribute to their limited excitability. NEW & NOTEWORTHY The afterhyperpolarization (AHP) is canonically viewed as a major factor underlying the refractory period, serving to limit neuronal firing rate. We recently reported that enhancing the amplitude of the fast AHP (fAHP) in a relatively slowly firing neuron (vs. fast spiking neurons) expressing fast-gated BK channels augments neuronal excitability. In this computational study, we present a novel, quantitative hypothesis for how varying the amplitude of the fAHP can, paradoxically, influence a subsequent spike tens of milliseconds later.
Collapse
Affiliation(s)
- David B Jaffe
- Department of Biology, UTSA Neurosciences Institute, University of Texas at San Antonio , San Antonio, Texas
| | - Robert Brenner
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
5
|
Abstract
This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models.
Collapse
Affiliation(s)
- Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany
| | - Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock 18057, Germany
| |
Collapse
|
6
|
Dieni S, Nestel S, Sibbe M, Frotscher M, Hellwig S. Distinct synaptic and neurochemical changes to the granule cell-CA3 projection in Bassoon mutant mice. Front Synaptic Neurosci 2015; 7:18. [PMID: 26557085 PMCID: PMC4615824 DOI: 10.3389/fnsyn.2015.00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/05/2015] [Indexed: 01/19/2023] Open
Abstract
Proper synaptic function depends on a finely-tuned balance between events such as protein synthesis and structural organization. In particular, the functional loss of just one synaptic-related protein can have a profound impact on overall neuronal network function. To this end, we used a mutant mouse model harboring a mutated form of the presynaptic scaffolding protein Bassoon (Bsn), which is phenotypically characterized by: (i) spontaneous generalized epileptic seizure activity, representing a chronically-imbalanced neuronal network; and (ii) a dramatic increase in hippocampal brain-derived neurotrophic factor (BDNF) protein concentration, a key player in synaptic plasticity. Detailed morphological and neurochemical analyses revealed that the increased BDNF levels are associated with: (i) modified neuropeptide distribution; (ii) perturbed expression of selected markers of synaptic activation or plasticity; (iii) subtle changes to microglial structure; and (iv) morphological alterations to the mossy fiber (MF) synapse. These findings emphasize the important contribution of Bassoon protein to normal hippocampal function, and further characterize the Bsn-mutant as a useful model for studying the effects of chronic changes to network activity.
Collapse
Affiliation(s)
- Sandra Dieni
- Neurochemistry Laboratory, Department of Molecular Psychiatry, University Hospital Freiburg Freiburg, Germany
| | - Sigrun Nestel
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Freiburg Freiburg, Germany
| | - Mirjam Sibbe
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Freiburg Freiburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg Hamburg, Germany
| | - Sabine Hellwig
- Neurochemistry Laboratory, Department of Molecular Psychiatry, University Hospital Freiburg Freiburg, Germany
| |
Collapse
|
7
|
Wolfart J, Laker D. Homeostasis or channelopathy? Acquired cell type-specific ion channel changes in temporal lobe epilepsy and their antiepileptic potential. Front Physiol 2015; 6:168. [PMID: 26124723 PMCID: PMC4467176 DOI: 10.3389/fphys.2015.00168] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/19/2015] [Indexed: 01/16/2023] Open
Abstract
Neurons continuously adapt the expression and functionality of their ion channels. For example, exposed to chronic excitotoxicity, neurons homeostatically downscale their intrinsic excitability. In contrast, the “acquired channelopathy” hypothesis suggests that proepileptic channel characteristics develop during epilepsy. We review cell type-specific channel alterations under different epileptic conditions and discuss the potential of channels that undergo homeostatic adaptations, as targets for antiepileptic drugs (AEDs). Most of the relevant studies have been performed on temporal lobe epilepsy (TLE), a widespread AED-refractory, focal epilepsy. The TLE patients, who undergo epilepsy surgery, frequently display hippocampal sclerosis (HS), which is associated with degeneration of cornu ammonis subfield 1 pyramidal cells (CA1 PCs). Although the resected human tissue offers insights, controlled data largely stem from animal models simulating different aspects of TLE and other epilepsies. Most of the cell type-specific information is available for CA1 PCs and dentate gyrus granule cells (DG GCs). Between these two cell types, a dichotomy can be observed: while DG GCs acquire properties decreasing the intrinsic excitability (in TLE models and patients with HS), CA1 PCs develop channel characteristics increasing intrinsic excitability (in TLE models without HS only). However, thorough examination of data on these and other cell types reveals the coexistence of protective and permissive intrinsic plasticity within neurons. These mechanisms appear differentially regulated, depending on the cell type and seizure condition. Interestingly, the same channel molecules that are upregulated in DG GCs during HS-related TLE, appear as promising targets for future AEDs and gene therapies. Hence, GCs provide an example of homeostatic ion channel adaptation which can serve as a primer when designing novel anti-epileptic strategies.
Collapse
Affiliation(s)
- Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| | - Debora Laker
- Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| |
Collapse
|
8
|
Althaus AL, Sagher O, Parent JM, Murphy GG. Intrinsic neurophysiological properties of hilar ectopic and normotopic dentate granule cells in human temporal lobe epilepsy and a rat model. J Neurophysiol 2014; 113:1184-94. [PMID: 25429123 DOI: 10.1152/jn.00835.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hilar ectopic dentate granule cells (DGCs) are a salient feature of aberrant plasticity in human temporal lobe epilepsy (TLE) and most rodent models of the disease. Recent evidence from rodent TLE models suggests that hilar ectopic DGCs contribute to hyperexcitability within the epileptic hippocampal network. Here we investigate the intrinsic excitability of DGCs from humans with TLE and the rat pilocarpine TLE model with the objective of comparing the neurophysiology of hilar ectopic DGCs to their normotopic counterparts in the granule cell layer (GCL). We recorded from 36 GCL and 7 hilar DGCs from human TLE tissue. Compared with GCL DGCs, hilar DGCs in patient tissue exhibited lower action potential (AP) firing rates, more depolarized AP threshold, and differed in single AP waveform, consistent with an overall decrease in excitability. To evaluate the intrinsic neurophysiology of hilar ectopic DGCs, we made recordings from retrovirus-birthdated, adult-born DGCs 2-4 mo after pilocarpine-induced status epilepticus or sham treatment in rats. Hilar DGCs from epileptic rats exhibited higher AP firing rates than normotopic DGCs from epileptic or control animals. They also displayed more depolarized resting membrane potential and wider AP waveforms, indicating an overall increase in excitability. The contrasting findings between disease and disease model may reflect differences between the late-stage disease tissue available from human surgical specimens and the earlier disease stage examined in the rat TLE model. These data represent the first neurophysiological characterization of ectopic DGCs from human hippocampus and prospectively birthdated ectopic DGCs in a rodent TLE model.
Collapse
Affiliation(s)
- A L Althaus
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan; Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - O Sagher
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - J M Parent
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan; Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - G G Murphy
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; and Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Stefanits H, Wesseling C, Kovacs GG. Loss of Calbindin immunoreactivity in the dentate gyrus distinguishes Alzheimer's disease from other neurodegenerative dementias. Neurosci Lett 2014; 566:137-41. [PMID: 24569123 DOI: 10.1016/j.neulet.2014.02.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
Abstract
Calbindin (Cb) is one of the major Ca(2+) binding proteins exhibiting neuromodulatory functions such as long-term potentiation (LTP), synaptic plasticity, and memory functions. It is expressed in hippocampal interneurons, pyramidal cells and granule cells of the dentate gyrus (DGCs). Cb mRNA levels remain stable during normal ageing, but decrease in Alzheimer's, Huntington, and Parkinson's disease. A recent study suggested a link between Aβ-induced Alzheimer's disease (AD)-related cognitive deficits and neuronal depletion of Cb. To evaluate whether this is specific for AD, we performed a comparative study of Cb immunoreactivity of DGCs in cases with AD-related neuropathologic change (49), grouped according to the stages of Braak and Braak, BB), Creutzfeldt-Jakob-disease (16), FTLD-tau Pick's disease type (PiD; 5), argyrophilic grain disease (8), and FTLD-TDP types A and B (6). The group of AD cases with BB stages V and VI showed the highest proportion of Cb negative cells in the DGC when compared to all other groups except PiD. The ratio of negative cells correlated significantly with the BB stages. While the total number of DGCs decreased with age in our series, loss of Cb immunoreactivity was shown to be age-dependent only in PiD and FTLD-TDP. We conclude, that late stage AD-neuropathologic change (BB V and VI stages) associates with significantly higher ratios of Cb negative DGCs and this correlates with advanced BB stage. This might suggest an accumulative effect of an epilepsy-like pathway on the Cb expression or the direct influence of local pathological protein deposits on the DGCs.
Collapse
Affiliation(s)
- Harald Stefanits
- Institute of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Carolin Wesseling
- Institute of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
10
|
Tuning local calcium availability: cell-type-specific immobile calcium buffer capacity in hippocampal neurons. J Neurosci 2013; 33:14431-45. [PMID: 24005295 DOI: 10.1523/jneurosci.4118-12.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It has remained difficult to ascribe a specific functional role to immobile or fixed intracellular calcium buffers in central neurons because the amount of these buffers is unknown. Here, we explicitly isolated the fixed buffer fraction by prolonged whole-cell patch-clamp dialysis and quantified its buffering capacity in murine hippocampal slices using confocal calcium imaging and the "added-buffer" approach. In dentate granule cells, the calcium binding ratio (κ) after complete washout of calbindin D28k (Cb), κfixed, displayed a substantial value of ∼100. In contrast, in CA1 oriens lacunosum moleculare (OLM) interneurons, which do not contain any known calcium-binding protein(s), κfixed amounted to only ∼30. Based on these values, a theoretical analysis of dendritic spread of calcium after local entry showed that fixed buffers, in the absence of mobile species, decrease intracellular calcium mobility 100- and 30-fold in granule cells and OLM cells, respectively, and thereby strongly slow calcium signals. Although the large κfixed alone strongly delays the spread of calcium in granule cells, this value optimizes the benefits of additionally expressing the mobile calcium binding protein Cb. With such high κfixed, Cb effectively increases the propagation velocity to levels seen in OLM cells and, contrary to expectation, does not affect the peak calcium concentration close to the source but sharpens the spatial and temporal calcium gradients. The data suggest that the amount of fixed buffers determines the temporal availability of calcium for calcium-binding partners and plays a pivotal role in setting the repertoire of cellular calcium signaling regimens.
Collapse
|
11
|
Martinian L, Catarino C, Thompson P, Sisodiya S, Thom M. Calbindin D28K expression in relation to granule cell dispersion, mossy fibre sprouting and memory impairment in hippocampal sclerosis: A surgical and post mortem series. Epilepsy Res 2012; 98:14-24. [DOI: 10.1016/j.eplepsyres.2011.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/08/2011] [Accepted: 08/14/2011] [Indexed: 12/29/2022]
|
12
|
Stegen M, Kirchheim F, Hanuschkin A, Staszewski O, Veh RW, Wolfart J. Adaptive Intrinsic Plasticity in Human Dentate Gyrus Granule Cells during Temporal Lobe Epilepsy. Cereb Cortex 2011; 22:2087-101. [DOI: 10.1093/cercor/bhr294] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
13
|
Abrahám H, Richter Z, Gyimesi C, Horváth Z, Janszky J, Dóczi T, Seress L. Degree and pattern of calbindin immunoreactivity in granule cells of the dentate gyrus differ in mesial temporal sclerosis, cortical malformation- and tumor-related epilepsies. Brain Res 2011; 1399:66-78. [PMID: 21621747 DOI: 10.1016/j.brainres.2011.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 11/17/2022]
Abstract
A loss of calbindin immunoreactivity in granule cells of the hippocampal dentate gyrus is a characteristic feature of temporal lobe epilepsy with hippocampal sclerosis. Whether decreased calbindin expression is unique to the hippocampal sclerosis associated with cryptogenic temporal lobe epilepsy, or also occurs in tumor- or malformation-related epilepsy, is unknown. We show that calbindin immunoreactivity in granule cells has been decreased in epilepsy regardless of its etiology. In cases of cortical malformations or hippocampal sclerosis, calbindin immunoreactivity was undetectable in most granule cells. In tumor-related resections, in patients who had a long history of epileptic seizures, calbindin was detected only in one-third of granule cells. Regardless of etiology, calbindin expression correlated with age of onset and with duration of the epilepsy. In contrast to tumor-induced epilepsy, where calbindin-immunoreactive granule cells were equally distributed in the granule cell layer, in hippocampal sclerosis and malformation-related epilepsy, two-thirds of calbindin-immunoreactive granule cells were located in the outer half and only one-third in the inner half of the layer. Developmentally, granule cells at the border of the molecular layer are ontogenetically the oldest, and those at the border of the hilus are the youngest. The reduction of calbindin immunoreactivity in ontogenetically younger granule cells highlights the deleterious effect of early occurring epilepsy and initial early precipitating injury, including febrile seizures that may substantially affect developing immature granule cells, but less the earlier born matured ones.
Collapse
Affiliation(s)
- Hajnalka Abrahám
- Central Electron Microscopic Laboratory, Faculty of Medicine, University of Pécs, Szigeti u 12., Pécs, 7624, Hungary.
| | | | | | | | | | | | | |
Collapse
|
14
|
Altered intrinsic properties of neuronal subtypes in malformed epileptogenic cortex. Brain Res 2010; 1374:116-28. [PMID: 21167139 DOI: 10.1016/j.brainres.2010.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 12/03/2010] [Accepted: 12/08/2010] [Indexed: 02/06/2023]
Abstract
Neuronal intrinsic properties control action potential firing rates and serve to define particular neuronal subtypes. Changes in intrinsic properties have previously been shown to contribute to hyperexcitability in a number of epilepsy models. Here we examined whether a developmental insult producing the cortical malformation of microgyria altered the identity or firing properties of layer V pyramidal neurons and two interneuron subtypes. Trains of action potentials were elicited with a series of current injection steps during whole cell patch clamp recordings. Cells in malformed cortex identified as having an apical dendrite had firing patterns similar to control pyramidal neurons. The duration of the second action potential in the train was increased in paramicrogyral (PMG) pyramidal cells, suggesting that these cells may be in an immature state, as was previously found for layer II/III pyramidal neurons. Based on stereotypical firing patterns and other intrinsic properties, fast-spiking (FS) and low threshold-spiking (LTS) interneuron subpopulations were clearly identified in both control and malformed cortex. Most intrinsic properties measured in malformed cortex were unchanged, suggesting that subtype identity is maintained. However, LTS interneurons in lesioned cortex had increased maximum firing frequency, decreased initial afterhyperpolarization duration, and increased total adaptation ratio compared to control LTS cells. FS interneurons demonstrated decreased maximum firing frequencies in malformed cortex compared to control FS cells. These changes may increase the efficacy of LTS while decreasing the effectiveness of FS interneurons. These data indicate that differential alterations of individual neuronal subpopulations may endow them with specific characteristics that promote epileptogenesis.
Collapse
|
15
|
Pereno GL, Balaszczuk V, Beltramino CA. Detection of conspecific pheromones elicits fos expression in GABA and calcium-binding cells of the rat vomeronasal system-medial extended amygdala. J Physiol Biochem 2010; 67:71-85. [PMID: 20938761 DOI: 10.1007/s13105-010-0051-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 09/28/2010] [Indexed: 11/26/2022]
Abstract
The olfactory accessory system is specialized in the detection of pheromones, being an afferent to medial extended amygdala. In spite of the fact that numerous phenotypes are found in these structures, in the current literature, there are no detailed descriptions about the phenotype of neurons in the vomeronasal system-medial extended amygdala after their activation by pheromonal stimuli. Using immunohistochemistry for fos and dual immunohistochemistry for fos and phenotypes, here we show that females have a greater number of activated neurons by the pheromonal stimulus. Likewise, a great colocalization of fos with GABA, calretinin, and calbindin was observed in the vomeronasal system-medial extended amygdala. These data suggest that in amygdaloid areas, neuronal excitability is controlled by GABAergic neurons that contain different calcium-binding proteins, indicating the important role of inhibitory control on the incoming sensory pheromonal and olfactory inputs controlled and processed by the vomeronasal system.
Collapse
Affiliation(s)
- German Leandro Pereno
- Cátedra de Neurofisiología y Psicofisiología, Facultad de Psicología, Universidad Nacional de Córdoba, Enfermera Gordillo esquina Enrique Barros, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | | | | |
Collapse
|
16
|
Arc regulates spine morphology and maintains network stability in vivo. Proc Natl Acad Sci U S A 2010; 107:18173-8. [PMID: 20921410 DOI: 10.1073/pnas.1006546107] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term memory relies on modulation of synaptic connections in response to experience. This plasticity involves trafficking of AMPA receptors (AMPAR) and alteration of spine morphology. Arc, a gene induced by synaptic activity, mediates the endocytosis of AMPA receptors and is required for both long-term and homeostatic plasticity. We found that Arc increases spine density and regulates spine morphology by increasing the proportion of thin spines. Furthermore, Arc specifically reduces surface GluR1 internalization at thin spines, and Arc mutants that fail to facilitate AMPAR endocytosis do not increase the proportion of thin spines, suggesting that Arc-mediated AMPAR endocytosis facilitates alterations in spine morphology. Thus, by linking spine morphology with AMPAR endocytosis, Arc balances synaptic downscaling with increased structural plasticity. Supporting this, loss of Arc in vivo leads to a significant decrease in the proportion of thin spines and an epileptic-like network hyperexcitability.
Collapse
|
17
|
Bortel A, Longo D, de Guzman P, Dubeau F, Biagini G, Avoli M. Selective changes in inhibition as determinants for limited hyperexcitability in the insular cortex of epileptic rats. Eur J Neurosci 2010; 31:2014-23. [PMID: 20497472 DOI: 10.1111/j.1460-9568.2010.07225.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The insular cortex (IC) is involved in the generalization of epileptic discharges in temporal lobe epilepsy (TLE), whereas seizures originating in the IC can mimic the epileptic phenotype seen in some patients with TLE. However, few studies have addressed the changes occurring in the IC in TLE animal models. Here, we analyzed the immunohistochemical and electrophysiological properties of IC networks in non-epileptic control and pilocarpine-treated epileptic rats. Neurons identified with a neuron-specific nuclear protein antibody showed similar counts in the two types of tissue but parvalbumin- and neuropeptide Y-positive interneurons were significantly decreased (parvalbumin, approximately -35%; neuropeptide Y, approximately -38%; P < 0.01) in the epileptic IC. Non-adapting neurons were seen more frequently in the epileptic IC during intracellular injection of depolarizing current pulses. In addition, single-shock electrical stimuli elicited network-driven epileptiform responses in 87% of epileptic and 22% of non-epileptic control neurons (P < 0.01) but spontaneous postsynaptic potentials had similar amplitude, duration and intervals of occurrence in the two groups. Finally, pharmacologically isolated, GABA(A) receptor-mediated inhibitory postsynaptic potentials had more negative reversal potential (P < 0.01) and higher peak conductance (P < 0.05) in epileptic tissue. These data reveal moderate increased network excitability in the IC of pilocarpine-treated epileptic rats. We propose that this limited degree of hyperexcitability originates from the loss of parvalbumin- and neuropeptide Y-positive interneurons that is compensated by an increased drive for GABA(A) receptor-mediated inhibition.
Collapse
Affiliation(s)
- Aleksandra Bortel
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University, Room 794, Montreal, QC, H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Takahashi H, Brasnjevic I, Rutten BPF, Van Der Kolk N, Perl DP, Bouras C, Steinbusch HWM, Schmitz C, Hof PR, Dickstein DL. Hippocampal interneuron loss in an APP/PS1 double mutant mouse and in Alzheimer's disease. Brain Struct Funct 2010; 214:145-60. [PMID: 20213270 DOI: 10.1007/s00429-010-0242-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 01/27/2010] [Indexed: 01/26/2023]
Abstract
Hippocampal atrophy and neuron loss are commonly found in Alzheimer's disease (AD). However, the underlying molecular mechanisms and the fate in the AD hippocampus of subpopulations of interneurons that express the calcium-binding proteins parvalbumin (PV) and calretinin (CR) has not yet been properly assessed. Using quantitative stereologic methods, we analyzed the regional pattern of age-related loss of PV- and CR-immunoreactive (ir) neurons in the hippocampus of mice that carry M233T/L235P knocked-in mutations in presenilin-1 (PS1) and overexpress a mutated human beta-amyloid precursor protein (APP), namely, the APP(SL)/PS1 KI mice, as well as in APP(SL) mice and PS1 KI mice. We found a loss of PV-ir neurons (40-50%) in the CA1-2, and a loss of CR-ir neurons (37-52%) in the dentate gyrus and hilus of APP(SL)/PS1 KI mice. Interestingly, comparable PV- and CR-ir neuron losses were observed in the dentate gyrus of postmortem brain specimens obtained from patients with AD. The loss of these interneurons in AD may have substantial functional repercussions on local inhibitory processes in the hippocampus.
Collapse
Affiliation(s)
- Hisaaki Takahashi
- Department of Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Young CC, Stegen M, Bernard R, Müller M, Bischofberger J, Veh RW, Haas CA, Wolfart J. Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy. J Physiol 2009; 587:4213-33. [PMID: 19564397 DOI: 10.1113/jphysiol.2009.170746] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In humans, temporal lobe epilepsy (TLE) is often associated with Ammon's horn sclerosis (AHS) characterized by hippocampal cell death, gliosis and granule cell dispersion (GCD) in the dentate gyrus. Granule cells surviving TLE have been proposed to be hyperexcitable and to play an important role in seizure generation. However, it is unclear whether this applies to conditions of AHS. We studied granule cells using the intrahippocampal kainate injection mouse model of TLE, brain slice patch-clamp recordings, morphological reconstructions and immunocytochemistry. With progressing AHS and GCD, 'epileptic' granule cells of the injected hippocampus displayed a decreased input resistance, a decreased membrane time constant and an increased rheobase. The resting leak conductance was doubled in epileptic granule cells and roughly 70-80% of this difference were sensitive to K(+) replacement. Of the increased K(+) leak, about 50% were sensitive to 1 mm Ba(2+). Approximately 20-30% of the pathological leak was mediated by a bicuculline-sensitive GABA(A) conductance. Epileptic granule cells had strongly enlarged inwardly rectifying currents with a low micromolar Ba(2+) IC(50), reminiscent of classic inward rectifier K(+) channels (Irk/Kir2). Indeed, protein expression of Kir2 subunits (Kir2.1, Kir2.2, Kir2.3, Kir2.4) was upregulated in epileptic granule cells. Immunolabelling for two-pore weak inward rectifier K(+) channels (Twik1/K2P1.1, Twik2/K2P6.1) was also increased. We conclude that the excitability of granule cells in the sclerotic focus of TLE is reduced due to an increased resting conductance mainly due to upregulated K(+) channel expression. These results point to a local adaptive mechanism that could counterbalance hyperexcitability in epilepsy.
Collapse
Affiliation(s)
- Christina C Young
- Cellular Neurophysiology, Dept. of Neurosurgery, University Medical Center Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Stegen M, Young CC, Haas CA, Zentner J, Wolfart J. Increased leak conductance in dentate gyrus granule cells of temporal lobe epilepsy patients with Ammon’s horn sclerosis. Epilepsia 2009; 50:646-53. [DOI: 10.1111/j.1528-1167.2009.02025.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Hattiangady B, Rao MS, Shetty AK. Grafting of striatal precursor cells into hippocampus shortly after status epilepticus restrains chronic temporal lobe epilepsy. Exp Neurol 2008; 212:468-81. [PMID: 18579133 DOI: 10.1016/j.expneurol.2008.04.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/17/2008] [Accepted: 04/25/2008] [Indexed: 01/05/2023]
Abstract
Status epilepticus (SE) typically progresses into temporal lobe epilepsy (TLE) typified by complex partial seizures. Because sizable fraction of patients with TLE exhibit chronic seizures that are resistant to antiepileptic drugs, alternative therapies that are efficient for diminishing SE-induced chronic epilepsy have great significance. We hypothesize that bilateral grafting of appropriately treated striatal precursor cells into hippocampi shortly after SE is efficacious for diminishing SE-induced chronic epilepsy through long-term survival and differentiation into GABA-ergic neurons. We induced SE in adult rats via graded intraperitoneal injections of kainic acid, bilaterally placed grafts of striatal precursors (pre-treated with fibroblast growth factor-2 and caspase inhibitor) into hippocampi at 4 days post-SE, and examined long-term effects of grafting on spontaneous recurrent motor seizures (SRMS). Analyses at 9-12 months post-grafting revealed that, the overall frequency of SRMS was 67-89% less than that observed in SE-rats that underwent sham-grafting surgery and epilepsy-only controls. Graft cell survival was approximately 33% of injected cells and approximately 69% of surviving cells differentiated into GABA-ergic neurons, which comprised subclasses expressing calbindin, parvalbumin, calretinin and neuropeptide Y. Grafting considerably preserved hippocampal calbindin but had no effects on aberrant mossy fiber sprouting. The results provide novel evidence that bilateral grafting of appropriately treated striatal precursor cells into hippocampi shortly after SE is proficient for greatly reducing the frequency of SRMS on a long-term basis in the chronic epilepsy period. Presence of a large number of GABA-ergic neurons in grafts further suggests that strengthening of the inhibitory control in host hippocampi likely underlies the beneficial effects mediated by grafts.
Collapse
Affiliation(s)
- Bharathi Hattiangady
- Department of Surgery (Neurosurgery) Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
22
|
Carter DS, Harrison AJ, Falenski KW, Blair RE, DeLorenzo RJ. Long-term decrease in calbindin-D28K expression in the hippocampus of epileptic rats following pilocarpine-induced status epilepticus. Epilepsy Res 2008; 79:213-23. [PMID: 18394865 PMCID: PMC2827853 DOI: 10.1016/j.eplepsyres.2008.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 02/18/2008] [Accepted: 02/21/2008] [Indexed: 11/17/2022]
Abstract
Acquired epilepsy (AE) is characterized by spontaneous recurrent seizures and long-term changes that occur in surviving neurons following an injury such as status epilepticus (SE). Long-lasting alterations in hippocampal Ca(2+) homeostasis have been observed in both in vivo and in vitro models of AE. One major regulator of Ca(2+) homeostasis is the neuronal calcium binding protein, calbindin-D28k that serves to buffer and transport Ca(2+) ions. This study evaluated the expression of hippocampal calbindin levels in the rat pilocarpine model of AE. Calbindin protein expression was reduced over 50% in the hippocampus in epileptic animals. This decrease was observed in the pyramidal layer of CA1, stratum lucidum of CA3, hilus, and stratum granulosum and stratum moleculare of the dentate gyrus when corrected for cell loss. Furthermore, calbindin levels in individual neurons were also significantly reduced. In addition, the expression of calbindin mRNA was decreased in epileptic animals. Time course studies demonstrated that decreased calbindin expression was initially present 1 month following pilocarpine-induced SE and lasted for up to 2 years after the initial episode of SE. The results indicate that calbindin is essentially permanently decreased in the hippocampus in AE. This decrease in hippocampal calbindin may be a major contributing factor underlying some of the plasticity changes that occur in epileptogenesis and contribute to the alterations in Ca(2+) homeostasis associated with AE.
Collapse
Affiliation(s)
- Dawn S. Carter
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Anne J. Harrison
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Katherine W. Falenski
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Robert E. Blair
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Robert J. DeLorenzo
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
- Department of Molecular Biophysics and Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| |
Collapse
|
23
|
Pacheco Otalora LF, Hernandez EF, Arshadmansab MF, rancisco SF, Willis M, Ermolinsky B, Zarei M, Knaus HG, Garrido-Sanabria ER. Down-regulation of BK channel expression in the pilocarpine model of temporal lobe epilepsy. Brain Res 2008; 1200:116-31. [PMID: 18295190 PMCID: PMC2346580 DOI: 10.1016/j.brainres.2008.01.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 12/23/2007] [Accepted: 01/03/2008] [Indexed: 11/24/2022]
Abstract
In the hippocampus, BK channels are preferentially localized in presynaptic glutamatergic terminals including mossy fibers where they are thought to play an important role regulating excessive glutamate release during hyperactive states. Large conductance calcium-activated potassium channels (BK, MaxiK, Slo) have recently been implicated in the pathogenesis of genetic epilepsy. However, the role of BK channels in acquired mesial temporal lobe epilepsy (MTLE) remains unknown. Here we used immunohistochemistry, laser scanning confocal microscopy (LSCM), Western immunoblotting and RT-PCR to investigate the expression pattern of the alpha-pore-forming subunit of BK channels in the hippocampus and cortex of chronically epileptic rats obtained by the pilocarpine model of MTLE. All epileptic rats experiencing recurrent spontaneous seizures exhibited a significant down-regulation of BK channel immunostaining in the mossy fibers at the hilus and stratum lucidum of the CA3 area. Quantitative analysis of immunofluorescence signals by LSCM revealed a significant 47% reduction in BK channel immunofluorescent signals in epileptic rats when compared to age-matched non-epileptic control rats. These data correlate with a similar reduction in BK channel protein levels and transcripts in the cortex and hippocampus. Our data indicate a seizure-related down-regulation of BK channels in chronically epileptic rats. Further functional assays are necessary to determine whether altered BK channel expression is an acquired channelopathy or a compensatory mechanism affecting the network excitability in MTLE. Moreover, seizure-mediated BK down-regulation may disturb neuronal excitability and presynaptic control at glutamatergic terminals triggering exaggerated glutamate release and seizures.
Collapse
Affiliation(s)
- Luis F. Pacheco Otalora
- Department of Biological Sciences at the University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520 USA
| | - Eder F. Hernandez
- Department of Biological Sciences at the University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520 USA
| | - Massoud F. Arshadmansab
- Department of Biological Sciences at the University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520 USA
| | - Sebastian F rancisco
- Department of Biological Sciences at the University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520 USA
| | - Michael Willis
- Department of General Psychiatry, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
- Department of Molecular and Cellular Pharmacology, Medical University Innsbruck, Peter-Mayr Strasse 1, 6020 Innsbruck, Austria
| | - Boris Ermolinsky
- Department of Biological Sciences at the University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520 USA
| | - Masoud Zarei
- Department of Biological Sciences at the University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520 USA
- The Center for Biomedical Studies, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Hans-Guenther Knaus
- Department of Molecular and Cellular Pharmacology, Medical University Innsbruck, Peter-Mayr Strasse 1, 6020 Innsbruck, Austria
| | - Emilio R. Garrido-Sanabria
- Department of Biological Sciences at the University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520 USA
- The Center for Biomedical Studies, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
24
|
Shetty AK, Hattiangady B. Restoration of calbindin after fetal hippocampal CA3 cell grafting into the injured hippocampus in a rat model of temporal lobe epilepsy. Hippocampus 2008; 17:943-56. [PMID: 17604349 PMCID: PMC3612498 DOI: 10.1002/hipo.20311] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Degeneration of the CA3 pyramidal and dentate hilar neurons in the adult rat hippocampus after an intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, leads to permanent loss of the calcium binding protein calbindin in major fractions of dentate granule cells and CA1 pyramidal neurons. We hypothesize that the enduring loss of calbindin in the dentate gyrus and the CA1 subfield after CA3-lesion is due to disruption of the hippocampal circuitry leading to hyperexcitability in these regions; therefore, specific cell grafts that are capable of both reconstructing the disrupted circuitry and suppressing hyperexcitability in the injured hippocampus can restore calbindin. We compared the effects of fetal CA3 or CA1 cell grafting into the injured CA3 region of adult rats at 45 days after KA-induced injury on the hippocampal calbindin. The calbindin immunoreactivity in the dentate granule cells and the CA1 pyramidal neurons of grafted animals was evaluated at 6 months after injury (i.e. at 4.5 months post-grafting). Compared with the intact hippocampus, the calbindin in "lesion-only" hippocampus was dramatically reduced at 6 months post-lesion. However, calbindin expression was restored in the lesioned hippocampus receiving CA3 cell grafts. In contrast, in the lesioned hippocampus receiving CA1 cell grafts, calbindin expression remained less than the intact hippocampus. Thus, specific cell grafting restores the injury-induced loss of calbindin in the adult hippocampus, likely via restitution of the disrupted circuitry. Since loss of calbindin after hippocampal injury is linked to hyperexcitability, re-expression of calbindin in both dentate gyrus and CA1 subfield following CA3 cell grafting may suggest that specific cell grafting is efficacious for ameliorating injury-induced hyperexcitability in the adult hippocampus. However, electrophysiological studies of KA-lesioned hippocampus receiving CA3 cell grafts are required in future to validate this possibility.
Collapse
Affiliation(s)
- Ashok K Shetty
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|