1
|
Hwang Y, Park JH, Kim HC, Shin EJ. Nimodipine attenuates neuroinflammation and delayed apoptotic neuronal death induced by trimethyltin in the dentate gyrus of mice. J Mol Histol 2024; 55:721-740. [PMID: 39083161 DOI: 10.1007/s10735-024-10226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 10/10/2024]
Abstract
L-type voltage-gated calcium channels (L-VGCCs) are thought to be involved in epileptogenesis and acute excitotoxicity. However, little is known about the role of L-VGCCs in neuroinflammation or delayed neuronal death following excitotoxic insult. We examined the effects of repeated treatment with the L-VGCC blocker nimodipine on neuroinflammatory changes and delayed neuronal apoptosis in the dentate gyrus following trimethyltin (TMT)-induced convulsions. Male C57BL/6 N mice were administered TMT (2.6 mg/kg, i.p.), and the expression of the Cav1.2 and Cav1.3 subunits of L-VGCC were evaluated. The expression of both subunits was significantly decreased; however, the astroglial expression of Cav1.3 L-VGCC was significantly induced at 6 and 10 days after TMT treatment. Furthermore, astroglial Cav1.3 L-VGCCs colocalized with both the pro-inflammatory phenotype marker C3 and the anti-inflammatory phenotype marker S100A10 of astrocytes. Nimodipine (5 mg/kg, i.p. × 5 at 12-h intervals) did not significantly affect TMT-induced astroglial activation. However, nimodipine significantly attenuated the pro-inflammatory phenotype changes, while enhancing the anti-inflammatory phenotype changes in astrocytes after TMT treatment. Consistently, nimodipine reduced the levels of pro-inflammatory astrocytes-to-microglia mediators, while increasing the levels of anti-inflammatory astrocytes-to-microglia mediators. These effects were accompanied by an increase in the phosphorylation of extracellular signal-regulated kinase (ERK), supporting our previous finding that p-ERK is a signaling factor that regulates astroglial phenotype changes. In addition, nimodipine significantly attenuated TMT-induced microglial activation and delayed apoptosis of dentate granule neurons. Our results suggest that L-VGCC blockade attenuates neuroinflammation and delayed neurotoxicity following TMT-induced convulsions through the regulation of astroglial phenotypic changes by promoting ERK signaling.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Çakır M, Saçmacı H. The relationship of salusins with Parkinson's Disease, Alzheimer's Disease, and acute ischemic stroke: A preliminary study. Neurosci Lett 2024; 824:137683. [PMID: 38350537 DOI: 10.1016/j.neulet.2024.137683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Neuroinflammation, oxidative stress, and apoptosis play important roles in the pathophysiology of Alzheimer's Disease (AD), Parkinson's Disease (PD), and Acute Ischemic Stroke (AIS). Salusin-α and salusin-β peptides, which were shown to be present in many tissues, including the central nervous system, were also shown to be associated with apoptosis, inflammation, and oxidative stress. In the present study, the relationship between Salusin-α and salusin-β peptides and AD, PD, and AIS were investigated. A total of 179 people were included in the present study, including 46 AD, 44 PD, 42 AIS, and 47 controls. Plasma Salusin-α and salusin-β levels were measured with the ELISA Method. The plasma salusin-β levels of AD, PD, and AIS patients were lower than the control group at significant levels (p < 0.05). It was also found that there were correlations between salusin-α and salusin-β levels and age, triglyceride, LDL-c, total cholesterol, and hemoglobin levels. In this study, we found that salusin- β, an endogenous neuropeptide, was associated with AD, PD and AIS. The low level of salusin-β in these diseases in which neuronal damage occurs may be related to the neuroprotective properties of this endogenous peptide. Further studies are needed to fully understand the relationship between salusin-β and the pathophysiology of these diseases.
Collapse
Affiliation(s)
- Murat Çakır
- Department of Physiology, Faculty of Medicine, University of Yozgat Bozok, Yozgat, 66200, Turkey.
| | - Hikmet Saçmacı
- Department of Neurology, Faculty of Medicine, University of Yozgat Bozok, Yozgat, 66200, Turkey.
| |
Collapse
|
3
|
Hao JR, Hu QM, Yang X, Wei P, Wang HY, Sun N, Gao C. Isoflurane impairs GluN2B-containing NMDA receptors trafficking and cognition via decreasing histone acetylation and EphB2 expression in aged hippocampal neurons. Basic Clin Pharmacol Toxicol 2023; 132:180-196. [PMID: 36321664 DOI: 10.1111/bcpt.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/25/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022]
Abstract
Perioperative neurocognitive disorders (PND) is a common complication that occurs among elderly patients in the perioperative course. Current clinical evidence has shown that isoflurane exposure could cause cognitive decline, but the exact molecular mechanisms remain unclear. As both NMDARs-dependent synaptic plasticity and histone acetylation play vital roles in processing learning and memory, we postulated that these alternations might occur in the isoflurane-associated PND. Here, we found that isoflurane impaired fear memory in aged mice, decreased GluN2B-containing NMDA receptors phosphorylation and trafficking, as well as the expression of EphB2, a key regulator of synaptic localization of NMDA receptors. We also identified that isoflurane could increase the expression of HDAC2, which was significantly enriched at the ephb2 gene promoter and regulated the transcription of ephb2. Furthermore, we showed that suberoylanilide hydroxamic acid (SAHA), a nonselective HDAC inhibitor or knocking-down HDAC2 rescued the cognitive dysfunction in isoflurane-treated aged mice via increasing acetylation of H3Ac, expression of EphB2 and promoting NMDA receptor trafficking. Collectively, our study highlighted the crucial role of histone posttranslational modifications for EphB2-GluN2B signals in isoflurane-associated PND, and modulating HDAC2 might be a new therapeutic strategy for isoflurane-associated PND.
Collapse
Affiliation(s)
- Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiu-Mei Hu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiu Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pan Wei
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hu-Yi Wang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China.,School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Tau isoform-specific enhancement of L-type calcium current and augmentation of afterhyperpolarization in rat hippocampal neurons. Sci Rep 2022; 12:15231. [PMID: 36075936 PMCID: PMC9458744 DOI: 10.1038/s41598-022-18648-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022] Open
Abstract
Accumulation of tau is observed in dementia, with human tau displaying 6 isoforms grouped by whether they display either 3 or 4 C-terminal repeat domains (3R or 4R) and exhibit no (0N), one (1N) or two (2N) N terminal repeats. Overexpression of 4R0N-tau in rat hippocampal slices enhanced the L-type calcium (Ca2+) current-dependent components of the medium and slow afterhyperpolarizations (AHPs). Overexpression of both 4R0N-tau and 4R2N-tau augmented CaV1.2-mediated L-type currents when expressed in tsA-201 cells, an effect not observed with the third 4R isoform, 4R1N-tau. Current enhancement was only observed when the pore-forming subunit was co-expressed with CaVβ3 and not CaVβ2a subunits. Non-stationary noise analysis indicated that enhanced Ca2+ channel current arose from a larger number of functional channels. 4R0N-tau and CaVβ3 were found to be physically associated by co-immunoprecipitation. In contrast, the 4R1N-tau isoform that did not augment expressed macroscopic L-type Ca2+ current exhibited greatly reduced binding to CaVβ3. These data suggest that physical association between tau and the CaVβ3 subunit stabilises functional L-type channels in the membrane, increasing channel number and Ca2+ influx. Enhancing the Ca2+-dependent component of AHPs would produce cognitive impairment that underlie those seen in the early phases of tauopathies.
Collapse
|
5
|
Huang C, Chu JMT, Liu Y, Kwong VSW, Chang RCC, Wong GTC. Sevoflurane Induces Neurotoxicity in the Animal Model with Alzheimer's Disease Neuropathology via Modulating Glutamate Transporter and Neuronal Apoptosis. Int J Mol Sci 2022; 23:ijms23116250. [PMID: 35682930 PMCID: PMC9181124 DOI: 10.3390/ijms23116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Perioperative neurocognitive disorders are frequently observed in postoperative patients and previous reports have shown that pre-existing mild cognitive impairment with accumulated neuropathology may be a risk factor. Sevoflurane is a general anesthetic agent which is commonly used in clinical practice. However, the effects of sevoflurane in postoperative subjects are still controversial, as both neurotoxic or neuroprotective effects were reported. The purpose of this study is to investigate the effects of sevoflurane in 3 × Tg mice, a specific animal model with pre-existing Alzheimer’s disease neuropathology. 3 × Tg mice and wild-type mice were exposed to 2 h of sevoflurane respectively. Cognitive function, glutamate transporter expression, MAPK kinase pathways, and neuronal apoptosis were accessed on day 7 post-exposure. Our findings indicate that sevoflurane-induced cognitive deterioration in 3 × Tg mice, which was accompanied with the modulation of glutamate transporter, MAPK signaling, and neuronal apoptosis in the cortical and hippocampal regions. Meanwhile, no significant impact was observed in wild-type mice. Our results demonstrated that prolonged inhaled sevoflurane results in the exacerbation of neuronal and cognitive dysfunction which depends on the neuropathology background.
Collapse
Affiliation(s)
- Chunxia Huang
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - John Man Tak Chu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - Yan Liu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - Vivian Suk Wai Kwong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: (R.C.C.C.); (G.T.C.W.)
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (C.H.); (J.M.T.C.); (Y.L.); (V.S.W.K.)
- Correspondence: (R.C.C.C.); (G.T.C.W.)
| |
Collapse
|
6
|
Hohmann U, Ghadban C, Hohmann T, Kleine J, Schmidt M, Scheller C, Strauss C, Dehghani F. Nimodipine Exerts Time-Dependent Neuroprotective Effect after Excitotoxical Damage in Organotypic Slice Cultures. Int J Mol Sci 2022; 23:ijms23063331. [PMID: 35328753 PMCID: PMC8954806 DOI: 10.3390/ijms23063331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
During injuries in the central nervous system, intrinsic protective processes become activated. However, cellular reactions, especially those of glia cells, are frequently unsatisfactory, and further exogenous protective mechanisms are necessary. Nimodipine, a lipophilic L-type calcium channel blocking agent is clinically used in the treatment of aneurysmal subarachnoid haemorrhage with neuroprotective effects in different models. Direct effects of nimodipine on neurons amongst others were observed in the hippocampus as well as its influence on both microglia and astrocytes. Earlier studies proposed that nimodipine protective actions occur not only via calcium channel-mediated vasodilatation but also via further time-dependent mechanisms. In this study, the effect of nimodipine application was investigated in different time frames on neuronal damage in excitotoxically lesioned organotypic hippocampal slice cultures. Nimodipine, but not nifedipine if pre-incubated for 4 h or co-applied with NMDA, was protective, indicating time dependency. Since blood vessels play no significant role in our model, intrinsic brain cell-dependent mechanisms seems to strongly be involved. We also examined the effect of nimodipine and nifedipine on microglia survival. Nimodipine seem to be a promising agent to reduce secondary damage and reduce excitotoxic damage.
Collapse
Affiliation(s)
- Urszula Hohmann
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Chalid Ghadban
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Tim Hohmann
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Joshua Kleine
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Miriam Schmidt
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (C.S.); (C.S.)
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (C.S.); (C.S.)
| | - Faramarz Dehghani
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
- Correspondence: ; Tel.: +49-3455571707
| |
Collapse
|
7
|
Sanchez B, Delemos CD, Sandhu KS, Peterson C, Cord BJ, Gurkoff GG, Waldau B. Aneurysmal subarachnoid hemorrhage survivors show long-term deficits in spatial reference memory in a pilot study of a virtual water maze paradigm. Clin Neurol Neurosurg 2021; 207:106788. [PMID: 34230004 DOI: 10.1016/j.clineuro.2021.106788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Limited data exists on the long-term effects of aneurysmal subarachnoid hemorrhage (SAH) on spatial memory. Herein, we used a computerized virtual water maze to evaluate the feasibility of spatial memory testing in pilot cohort of ten patients who survived previous SAH. METHODS Ten SAH survivors (5.8 ± 5.1 years after initial hemorrhage) and 7 age-matched controls underwent testing in a virtual water maze computer program. Additional subgroup analyses were performed to evaluate spatial reference memory correlation for ventricular size on admission, placement of an external ventricular drain and placement of a shunt. RESULTS With respect to the spatial memory acquisition phase, there was no significant difference of pathway length traveled to reach the platform between SAH survivors and control subjects. During the probe trial, control subjects spent significantly longer time in target quadrants compared to SAH survivors (F(3, 24) = 10.32, p = 0.0001; Target vs. Right: Mean percent difference 0.16 [0-0.32], p = 0.045; Target vs. Across: Mean percent difference 0.35 [0.19-0.51], p < 0.0001; Target vs. Left: Mean percent difference 0.21 [0.05-0.37], p = 0.0094). Furthermore, patients who initially presented with smaller ventricles performed worse that those patients who had ventriculomegaly and/or required surgical management of hydrocephalus. CONCLUSIONS Our data demonstrate that SAH survivors have persistent spatial reference memory deficits years after the hemorrhage. Hydrocephalus at presentation and external ventricular drainage were not found to be associated with poor spatial memory outcomes in this pilot cohort. Therefore, other causes such as global cerebral edema or magnitude of initial ICP spike, need to be considered to be examined as root cause as well in subsequent studies. The protocol described in this manuscript is able to demonstrate a spatial reference memory deficit and can be used to study risk factors for spatial memory impairment on a larger scale.
Collapse
Affiliation(s)
- Breana Sanchez
- Department of Neurological Surgery, UC Davis Medical Center, 4680 Y Street, ACC 3740, Sacramento, CA 95817, United States
| | - Christi D Delemos
- Department of Neurological Surgery, UC Davis Medical Center, 4680 Y Street, ACC 3740, Sacramento, CA 95817, United States
| | - Kamal S Sandhu
- Department of Neurological Surgery, UC Davis Medical Center, 4680 Y Street, ACC 3740, Sacramento, CA 95817, United States
| | - Catherine Peterson
- Department of Neurological Surgery, UC Davis Medical Center, 4680 Y Street, ACC 3740, Sacramento, CA 95817, United States
| | - Branden J Cord
- Department of Neurological Surgery, UC Davis Medical Center, 4680 Y Street, ACC 3740, Sacramento, CA 95817, United States
| | - Gene G Gurkoff
- Department of Neurological Surgery, UC Davis Medical Center, 4680 Y Street, ACC 3740, Sacramento, CA 95817, United States
| | - Ben Waldau
- Department of Neurological Surgery, UC Davis Medical Center, 4680 Y Street, ACC 3740, Sacramento, CA 95817, United States.
| |
Collapse
|
8
|
Calvo-Rodriguez M, García-Rodríguez C, Villalobos C, Núñez L. Role of Toll Like Receptor 4 in Alzheimer's Disease. Front Immunol 2020; 11:1588. [PMID: 32983082 PMCID: PMC7479089 DOI: 10.3389/fimmu.2020.01588] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022] Open
Abstract
Long-term evidence has confirmed the involvement of an inflammatory component in neurodegenerative disorders including Alzheimer’s disease (AD). This view is supported, in part, by data suggesting that selected non-steroidal anti-inflammatory drugs (NSAIDs) provide protection. Additionally, molecular players of the innate immune system have recently been proposed to contribute to these diseases. Toll-like receptors (TLRs) are transmembrane pattern-recognition receptors of the innate immune system that recognize different pathogen-derived and tissue damage-related ligands. TLR4 mediated signaling has been reported to contribute to the pathogenesis of age-related neurodegenerative diseases, including AD. Although the pathophysiology of AD is not clear, soluble aggregates (oligomers) of the amyloid β peptide (Aβo) have been proven to be key players in the pathology of AD. Among others, Aβo promote Ca2+ entry and mitochondrial Ca2+ overload leading to cell death in neurons. TLR4 has recently been found to be involved in AD but the mechanisms are unclear. Our group recently reported that lipopolysaccharide (LPS), a TLR4 receptor agonist, increases cytosolic Ca2+ concentration leading to apoptosis. Strikingly, this effect was only observed in long-term cultured primary neurons considered a model of aging neurons, but not in short-term cultured neurons resembling young neurons. These effects were significantly prevented by pharmacological blockade of TLR4 receptor signaling. Moreover, TLR4 expression in rat hippocampal neurons increased significantly in aged neurons in vitro. Therefore, molecular patterns associated with infection and/or brain cell damage may activate TLR4 and Ca2+ signaling, an effect exacerbated during neuronal aging. Here, we briefly review the data regarding the involvement of TLR4 in AD.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Carmen García-Rodríguez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Lucía Núñez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain.,Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
9
|
Loth MK, Guariglia SR, Re DB, Perez J, de Paiva VN, Dziedzic JL, Chambers JW, Azzam DJ, Guilarte TR. A Novel Interaction of Translocator Protein 18 kDa (TSPO) with NADPH Oxidase in Microglia. Mol Neurobiol 2020; 57:4467-4487. [PMID: 32743737 PMCID: PMC7515859 DOI: 10.1007/s12035-020-02042-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
In the brain neuropil, translocator protein 18 kDa (TSPO) is a stress response protein that is upregulated in microglia and astrocytes in diverse central nervous system pathologies. TSPO is widely used as a biomarker of neuroinflammation in preclinical and clinical neuroimaging studies. However, there is a paucity of knowledge on the function(s) of TSPO in glial cells. In this study, we explored a putative interaction between TSPO and NADPH oxidase 2 (NOX2) in microglia. We found that TSPO associates with gp91phox and p22phox, the principal subunits of NOX2 in primary murine microglia. The association of TSPO with gp91phox and p22phox was observed using co-immunoprecipitation, confocal immunofluorescence imaging, and proximity ligation assay. We found that besides gp91phox and p22phox, voltage-dependent anion channel (VDAC) also co-immunoprecipitated with TSPO consistent with previous reports. When we compared lipopolysaccharide (LPS) stimulated microglia to vehicle control, we found that a lower amount of gp91phox and p22phox protein co-immunoprecipitated with TSPO suggesting a disruption of the TSPO-NOX2 subunits association. TSPO immuno-gold electron microscopy confirmed that TSPO is present in the outer mitochondrial membrane but it is also found in the endoplasmic reticulum (ER), mitochondria-associated ER membrane (MAM), and in the plasma membrane. TSPO localization at the MAM may represent a subcellular site where TSPO interacts with gp91phox and p22phox since the MAM is a point of communication between outer mitochondria membrane proteins (TSPO) and ER proteins (gp91phox and p22phox) where they mature and form the cytochrome b558 (Cytb558) heterodimer. We also found that an acute burst of reactive oxygen species (ROS) increased TSPO levels on the surface of microglia and this effect was abrogated by a ROS scavenger. These results suggest that ROS production may alter the subcellular distribution of TSPO. Collectively, our findings suggest that in microglia, TSPO is associated with the major NOX2 subunits gp91phox and p22phox. We hypothesize that this interaction may regulate Cytb558 formation and modulate NOX2 levels, ROS production, and redox homeostasis in microglia.
Collapse
Affiliation(s)
- Meredith K Loth
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sara R Guariglia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Juan Perez
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, 33199, USA
| | - Vanessa Nunes de Paiva
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jennifer L Dziedzic
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeremy W Chambers
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, 33199, USA
| | - Diana J Azzam
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, 33199, USA
| | - Tomás R Guilarte
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
10
|
Moutin E, Hemonnot AL, Seube V, Linck N, Rassendren F, Perroy J, Compan V. Procedures for Culturing and Genetically Manipulating Murine Hippocampal Postnatal Neurons. Front Synaptic Neurosci 2020; 12:19. [PMID: 32425766 PMCID: PMC7204911 DOI: 10.3389/fnsyn.2020.00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
Neuronal hippocampal cultures are simple and valuable models for studying neuronal function. While embryonic cultures are widely used for different applications, mouse postnatal cultures are still challenging, lack reproducibility and/or exhibit inappropriate neuronal activity. Yet, postnatal cultures have major advantages such as allowing genotyping of pups before culture and reducing the number of experimental animals. Herein we describe a simple and fast protocol for culturing and genetically manipulating hippocampal neurons from P0 to P3 mice. This protocol provides reproducible cultures exhibiting a consistent neuronal development, normal excitatory over inhibitory neuronal ratio and a physiological neuronal activity. We also describe simple and efficient procedures for genetic manipulation of neurons using transfection reagent or lentiviral particles. Overall, this method provides a detailed and validated protocol allowing to explore cellular mechanisms and neuronal activity in postnatal hippocampal neurons in culture.
Collapse
Affiliation(s)
- Enora Moutin
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Anne-Laure Hemonnot
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Laboratoire d'Excellence Canaux Ioniques d'Intérêt Thérapeutique (LabEx ICST), Montpellier, France
| | - Vincent Seube
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Laboratoire d'Excellence Canaux Ioniques d'Intérêt Thérapeutique (LabEx ICST), Montpellier, France
| | - Nathalie Linck
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Laboratoire d'Excellence Canaux Ioniques d'Intérêt Thérapeutique (LabEx ICST), Montpellier, France
| | - François Rassendren
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Laboratoire d'Excellence Canaux Ioniques d'Intérêt Thérapeutique (LabEx ICST), Montpellier, France
| | - Julie Perroy
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Vincent Compan
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Laboratoire d'Excellence Canaux Ioniques d'Intérêt Thérapeutique (LabEx ICST), Montpellier, France
| |
Collapse
|
11
|
Remodeling of Intracellular Ca 2+ Homeostasis in Rat Hippocampal Neurons Aged In Vitro. Int J Mol Sci 2020; 21:ijms21041549. [PMID: 32102482 PMCID: PMC7073228 DOI: 10.3390/ijms21041549] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Aging is often associated with a cognitive decline and a susceptibility to neuronal damage. It is also the most important risk factor for neurodegenerative disorders, particularly Alzheimer's disease (AD). AD is related to an excess of neurotoxic oligomers of amyloid β peptide (Aβo); however, the molecular mechanisms are still highly controversial. Intracellular Ca2+ homeostasis plays an important role in the control of neuronal activity, including neurotransmitter release, synaptic plasticity, and memory storage, as well as neuron cell death. Recent evidence indicates that long-term cultures of rat hippocampal neurons, resembling aged neurons, undergo cell death after treatment with Aβo, whereas short-term cultures, resembling young neurons, do not. These in vitro changes are associated with the remodeling of intracellular Ca2+ homeostasis with aging, thus providing a simplistic model for investigating Ca2+ remodeling in aging. In vitro aged neurons show increased resting cytosolic Ca2+ concentration, enhanced Ca2+ store content, and Ca2+ release from the endoplasmic reticulum (ER). Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria is also enhanced. Aged neurons also show decreased store-operated Ca2+ entry (SOCE), a Ca2+ entry pathway related to memory storage. At the molecular level, in vitro remodeling is associated with changes in the expression of Ca2+ channels resembling in vivo aging, including changes in N-methyl-D-aspartate NMDA receptor and inositol 1,4,5-trisphosphate (IP3) receptor isoforms, increased expression of the mitochondrial calcium uniporter (MCU), and decreased expression of Orai1/Stim1, the molecular players involved in SOCE. Additionally, Aβo treatment exacerbates most of the changes observed in aged neurons and enhances susceptibility to cell death. Conversely, the solely effect of Aβo in young neurons is to increase ER-mitochondria colocalization and enhance Ca2+ transfer from ER to mitochondria without inducing neuronal damage. We propose that cultured rat hippocampal neurons may be a useful model to investigate Ca2+ remodeling in aging and in age-related neurodegenerative disorders.
Collapse
|
12
|
Hotka M, Cagalinec M, Hilber K, Hool L, Boehm S, Kubista H. L-type Ca 2+ channel-mediated Ca 2+ influx adjusts neuronal mitochondrial function to physiological and pathophysiological conditions. Sci Signal 2020; 13:eaaw6923. [PMID: 32047116 PMCID: PMC7116774 DOI: 10.1126/scisignal.aaw6923] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
L-type voltage-gated Ca2+ channels (LTCCs) are implicated in neurodegenerative processes and cell death. Accordingly, LTCC antagonists have been proposed to be neuroprotective, although this view is disputed, because intentional LTCC activation can also have beneficial effects. LTCC-mediated Ca2+ influx influences mitochondrial function, which plays a crucial role in the regulation of cell viability. Hence, we investigated the effect of modulating LTCC-mediated Ca2+ influx on mitochondrial function in cultured hippocampal neurons. To activate LTCCs, neuronal activity was stimulated by increasing extracellular K+ or by application of the GABAA receptor antagonist bicuculline. The activity of LTCCs was altered by application of an agonistic (Bay K8644) or an antagonistic (isradipine) dihydropyridine. Our results demonstrated that activation of LTCC-mediated Ca2+ influx affected mitochondrial function in a bimodal manner. At moderate stimulation strength, ATP synthase activity was enhanced, an effect that involved Ca2+-induced Ca2+ release from intracellular stores. In contrast, high LTCC-mediated Ca2+ loads led to a switch in ATP synthase activity to reverse-mode operation. This effect, which required nitric oxide, helped to prevent mitochondrial depolarization and sustained increases in mitochondrial Ca2+ Our findings indicate a complex role of LTCC-mediated Ca2+ influx in the tuning and maintenance of mitochondrial function. Therefore, the use of LTCC inhibitors to protect neurons from neurodegeneration should be reconsidered carefully.
Collapse
Affiliation(s)
- Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria.
| | - Michal Cagalinec
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
- Laboratory of Mitochondrial Dynamics, Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Ravila 19, 50 411 Tartu, Estonia
| | - Karlheinz Hilber
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria
| | - Livia Hool
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, WA 6009, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria
| | - Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Carlson AP, Hänggi D, Macdonald RL, Shuttleworth CW. Nimodipine Reappraised: An Old Drug With a Future. Curr Neuropharmacol 2020; 18:65-82. [PMID: 31560289 PMCID: PMC7327937 DOI: 10.2174/1570159x17666190927113021] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/02/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022] Open
Abstract
Nimodipine is a dihydropyridine calcium channel antagonist that blocks the flux of extracellular calcium through L-type, voltage-gated calcium channels. While nimodipine is FDAapproved for the prevention and treatment of neurological deficits in patients with aneurysmal subarachnoid hemorrhage (aSAH), it affects myriad cell types throughout the body, and thus, likely has more complex mechanisms of action than simple inhibition of cerebral vasoconstriction. Newer understanding of the pathophysiology of delayed ischemic injury after a variety of acute neurologic injuries including aSAH, traumatic brain injury (TBI) and ischemic stroke, coupled with advances in the drug delivery method for nimodipine, have reignited interest in refining its potential therapeutic use. In this context, this review seeks to establish a firm understanding of current data on nimodipine's role in the mechanisms of delayed injury in aSAH, TBI, and ischemic stroke, and assess the extensive clinical data evaluating its use in these conditions. In addition, we will review pivotal trials using locally administered, sustained release nimodipine and discuss why such an approach has evaded demonstration of efficacy, while seemingly having the potential to significantly improve clinical care.
Collapse
Affiliation(s)
- Andrew P. Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Daniel Hänggi
- Department of Neurosurgery, University of Dusseldorf Hospital, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Robert L. Macdonald
- University of California San Francisco Fresno Department of Neurosurgery and University Neurosciences Institute and Division of Neurosurgery, Department of Surgery, University of Toronto, Canada
| | - Claude W. Shuttleworth
- Department of Neuroscience University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
14
|
Boczek T, Radzik T, Ferenc B, Zylinska L. The Puzzling Role of Neuron-Specific PMCA Isoforms in the Aging Process. Int J Mol Sci 2019; 20:ijms20246338. [PMID: 31888192 PMCID: PMC6941135 DOI: 10.3390/ijms20246338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/02/2023] Open
Abstract
The aging process is a physiological phenomenon associated with progressive changes in metabolism, genes expression, and cellular resistance to stress. In neurons, one of the hallmarks of senescence is a disturbance of calcium homeostasis that may have far-reaching detrimental consequences on neuronal physiology and function. Among several proteins involved in calcium handling, plasma membrane Ca2+-ATPase (PMCA) is the most sensitive calcium detector controlling calcium homeostasis. PMCA exists in four main isoforms and PMCA2 and PMCA3 are highly expressed in the brain. The overall effects of impaired calcium extrusion due to age-dependent decline of PMCA function seem to accumulate with age, increasing the susceptibility to neurotoxic insults. To analyze the PMCA role in neuronal cells, we have developed stable transfected differentiated PC12 lines with down-regulated PMCA2 or PMCA3 isoforms to mimic age-related changes. The resting Ca2+ increased in both PMCA-deficient lines affecting the expression of several Ca2+-associated proteins, i.e., sarco/endoplasmic Ca2+-ATPase (SERCA), calmodulin, calcineurin, GAP43, CCR5, IP3Rs, and certain types of voltage-gated Ca2+ channels (VGCCs). Functional studies also demonstrated profound changes in intracellular pH regulation and mitochondrial metabolism. Moreover, modification of PMCAs membrane composition triggered some adaptive processes to counterbalance calcium overload, but the reduction of PMCA2 appeared to be more detrimental to the cells than PMCA3.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Tomasz Radzik
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
- Correspondence: ; Tel.: +48-42-272-5680
| |
Collapse
|
15
|
Shekari A, Fahnestock M. Retrograde axonal transport of BDNF and proNGF diminishes with age in basal forebrain cholinergic neurons. Neurobiol Aging 2019; 84:131-140. [PMID: 31574357 DOI: 10.1016/j.neurobiolaging.2019.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 01/22/2023]
Abstract
Basal forebrain cholinergic neurons (BFCNs) are critical for learning and memory and degenerate early in Alzheimer's disease (AD). BFCNs depend for their survival and function on nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), which are retrogradely transported from BFCN targets. Age is the greatest risk factor for developing AD, yet the influence of age on BFCN axonal transport is poorly understood. To model aging, embryonic rat basal forebrain or cortical neurons were cultured in microfluidic chambers. Senescence-associated beta-galactosidase staining indicated an aging phenotype only in BFCNs cultured for 18+ days in vitro. BDNF axonal transport impairments were observed exclusivley in aged BFCNs. BFCNs displayed robust proNGF transport, which also diminished with in vitro age. The expression of NGF receptor tropomyosin-related kinase-A and BDNF receptor tropomyosin-related kinase-B also decreased significantly with in vitro age in BFCNs only. These results suggest a unique vulnerability of BFCNs to age-induced transport deficits. These deficits, coupled with the reliance of BFCNs on neurotrophin transport, may explain their vulnerability to age-related neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Arman Shekari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
16
|
Resveratrol Directly Controls the Activity of Neuronal Ryanodine Receptors at the Single-Channel Level. Mol Neurobiol 2019; 57:422-434. [PMID: 31376069 DOI: 10.1007/s12035-019-01705-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/10/2019] [Indexed: 01/14/2023]
Abstract
Calcium ion dyshomeostasis contributes to the progression of many neurodegenerative diseases and represents a target for the development of neuroprotective therapies, as reported by Duncan et al. (Molecules 15(3):1168-95, 2010), LaFerla (Nat Rev Neurosci 3(11):862-72, 2002), and Niittykoshi et al. (Invest Ophthalmol Vis Sci 51(12):6387-93, 2010). Dysfunctional ryanodine receptors contribute to calcium ion dyshomeostasis and potentially to the pathogenesis of neurodegenerative diseases by generating abnormal calcium ion release from the endoplasmic reticulum, according to Bruno et al. (Neurobiol Aging 33(5):1001 e1-6, 2012) and Stutzmann et al. (J Neurosci 24(2):508-13, 2004). Since ryanodine receptors share functional and structural similarities with potassium channels, as reported by Lanner et al. (Cold Spring Harb Perspect Biol 2(11):a003996, 2010), and small molecules with anti-oxidant properties, such as resveratrol (3,5,4'-trihydroxy-trans-stilbene), directly control the activity of potassium channels, according to Wang et al. (J Biomed Sci 23(1):47, 2016), McCalley et al. (Molecules 19(6):7327-40, 2014), Novakovic et al. (Mol Hum Reprod 21(6):545-51, 2015), Li et al. (Cardiovasc Res 45(4):1035-45, 2000), Gopalakrishnan et al. (Br J Pharmacol 129(7):1323-32, 2000), and Hambrock et al. (J Biol Chem 282(5):3347-56, 2007), we hypothesized that trans-resveratrol can modulate intracellular calcium signaling through direct binding and functional regulation of ryanodine receptors. The goal of our study was to identify and measure the control of ryanodine receptor activity by trans-resveratrol. Mechanisms of calcium signaling mediated by the direct interaction between trans-resveratrol and ryanodine receptors were identified and measured with single-channel electrophysiology. Addition of trans-resveratrol to the cytoplasmic face of the ryanodine receptor increased single-channel activity at physiological and elevated pathophysiological cytoplasmic calcium ion concentrations. The open probability of the channel increases after interacting with the small molecule in a dose-dependent manner, but remains also dependent on the concentration of its physiological ligand, cytoplasmic-free calcium ions. This study provides the first evidence of a direct functional interaction between trans-resveratrol and ryanodine receptors. Such functional control of ryanodine receptors by trans-resveratrol as a novel mechanism of action could provide additional rationales for the development of novel therapeutic strategies to treat and prevent neurodegenerative diseases.
Collapse
|
17
|
Primini EO, Liberato JL, Fontana ACK, dos Santos WF. Neuroprotective properties of RT10, a fraction isolated from Parawixia bistriata spider venom, against excitotoxicity injury in neuron-glia cultures. J Venom Anim Toxins Incl Trop Dis 2019; 25:e148818. [PMID: 31131008 PMCID: PMC6533932 DOI: 10.1590/1678-9199-jvatitd-1488-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/15/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND L-Glutamate (L-Glu), the major excitatory neurotransmitter in the mammalian Central Nervous System (CNS), is essential to cognitive functions. However, when L-Glu is accumulated in large concentrations at the synaptic cleft, it can induce excitotoxicity that results in secondary damage implicated in many neurological disorders. Current therapies for the treatment of neurological disorders are ineffective and have side effects associated with their use; therefore, there is a need to develop novel treatments. In this regard, previous studies have shown that neuroactive compounds obtained from the venom of the spider Parawixia bistriata have neuroprotective effects in vitro and in vivo. In this sense, this work aimed to evaluate potential neuroprotective effects of fraction RT10, obtained from this spider venom, on primary cultures of neuron and glial cells subjected to glutamate excitotoxicity insults. METHODS Primary cultures of neurons and glia were obtained from the cerebral tissue of 1-day-old postnatal Wistar rats. After 7 days in vitro (DIV), the cultures were incubated with fraction RT10 (0.002; 0.02; 0.2 and 2 µg/µL) or riluzole (100 µM) for 3-hours before application of 5 mM L-Glu. After 12 hours, the resazurin sodium salt (RSS) test was applied to measure metabolic activity and proliferation of living cells, whereas immunocytochemistry for MAP2 was performed to measure neuronal survival. In addition, the cells were immunolabeled with NeuN and GFAP in baseline conditions. RESULTS In the RSS tests, we observed that pre-incubation with RT10 before the excitotoxic insults from L-Glu resulted in neuroprotection, shown by a 10% reduction in the cell death level. RT10 was more effective than riluzole, which resulted in a cell-death reduction of 5%. Moreover, qualitative analysis of neuronal morphology (by MAP2 staining, expressed as fluorescence intensity (FI), an indirect measure of neuronal survival) indicate that RT10 reduced the toxic effects of L-Glu, as shown by a 38 % increase in MAP2 fluorescence when compared to L-Glu insult. On the other hand, the riluzole treatment resulted in 17% increase of MAP2 fluorescence; therefore, the neuroprotection from RT10 was more efficacious. CONCLUSION RT10 fraction exhibits neuroprotective effects against L-Glu excitotoxicity in neuron-glia cultured in vitro.
Collapse
Affiliation(s)
- Eduardo Octaviano Primini
- Neurobiology and Venoms Laboratory, Department of Biology, College
of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo,
Ribeirão Preto, SP, Brazil
| | - José Luiz Liberato
- Neurobiology and Venoms Laboratory, Department of Biology, College
of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo,
Ribeirão Preto, SP, Brazil
- Institute for Neurosciences and Behavior - INeC, Ribeirão Preto, SP,
Brazil
| | | | - Wagner Ferreira dos Santos
- Neurobiology and Venoms Laboratory, Department of Biology, College
of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo,
Ribeirão Preto, SP, Brazil
- Institute for Neurosciences and Behavior - INeC, Ribeirão Preto, SP,
Brazil
| |
Collapse
|
18
|
NADPH oxidase 2-mediated NLRP1 inflammasome activation involves in neuronal senescence in hippocampal neurons in vitro. Int Immunopharmacol 2019; 69:60-70. [DOI: 10.1016/j.intimp.2019.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/26/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022]
|
19
|
Calvo-Rodriguez M, Hernando-Perez E, Nuñez L, Villalobos C. Amyloid β Oligomers Increase ER-Mitochondria Ca 2+ Cross Talk in Young Hippocampal Neurons and Exacerbate Aging-Induced Intracellular Ca 2+ Remodeling. Front Cell Neurosci 2019; 13:22. [PMID: 30800057 PMCID: PMC6376150 DOI: 10.3389/fncel.2019.00022] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/17/2019] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and strongly associated to aging. AD has been related to excess of neurotoxic oligomers of amyloid β peptide (Aβo), loss of intracellular Ca2+ homeostasis and mitochondrial damage. However, the intimate mechanisms underlying the pathology remain obscure. We have reported recently that long-term cultures of rat hippocampal neurons resembling aging neurons are prone to damage induced by Aβ oligomers (Aβo) while short-term cultured cells resembling young neurons are not. In addition, we have also shown that aging neurons display critical changes in intracellular Ca2+ homeostasis including increased Ca2+ store content and Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria. Aging also promotes the partial loss of store-operated Ca2+ entry (SOCE), a Ca2+ entry pathway involved in memory storage. Here, we have addressed whether Aβo treatment influences differentially intracellular Ca2+ homeostasis in young and aged neurons. We found that Aβo exacerbate the remodeling of intracellular Ca2+ induced by aging. Specifically, Aβo exacerbate the loss of SOCE observed in aged neurons. Aβo also exacerbate the increased resting cytosolic Ca2+ concentration, Ca2+ store content and Ca2+ release as well as increased expression of the mitochondrial Ca2+ uniporter (MCU) observed in aging neurons. In contrast, Aβo elicit none of these effects in young neurons. Surprisingly, we found that Aβo increased the Ca2+ transfer from ER to mitochondria in young neurons without having detrimental effects. Consistently, Aβo increased also colocalization of ER and mitochondria in both young and aged neurons. However, in aged neurons, Aβo suppressed Ca2+ transfer from ER to mitochondria, decreased mitochondrial potential, enhanced reactive oxygen species (ROS) generation and promoted apoptosis. These results suggest that modulation of ER—mitochondria coupling in hippocampal neurons may be a novel physiological role of Aβo. However, excess of Aβo in the face of the remodeling of intracellular Ca2+ homeostasis associated to aging may lead to loss of ER—mitochondrial coupling and AD.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Valladolid, Valladolid, Spain
| | - Elena Hernando-Perez
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Valladolid, Valladolid, Spain
| | - Lucia Nuñez
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Valladolid, Valladolid, Spain.,Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
20
|
Chandran R, Kumar M, Kesavan L, Jacob RS, Gunasekaran S, Lakshmi S, Sadasivan C, Omkumar R. Cellular calcium signaling in the aging brain. J Chem Neuroanat 2019; 95:95-114. [DOI: 10.1016/j.jchemneu.2017.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/03/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
|
21
|
Ni M, Zhang J, Huang L, Liu G, Li Q. A Rho-kinase inhibitor reverses learning and memory deficits in a Rat model of chronic cerebral ischemia by altering Bcl-2/Bax-NMDAR signaling in the cerebral cortex. J Pharmacol Sci 2018; 138:107-115. [PMID: 30366873 DOI: 10.1016/j.jphs.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022] Open
Abstract
The current study investigated whether a Rho-kinase inhibitor alleviated impairments in a rat model of chronic cerebral ischemia and examined the specific pathological mechanisms by which Rho-kinase impacts neuronal damage and cognitive dysfunction. Adult Sprague-Dawley rats underwent permanent bilateral carotid artery occlusion (BCAO) to establish our chronic cerebral ischemia model. Chronic Y27632 administration reversed the abnormal behaviors of BCAO-treated rats in the Morris water maze. We performed Western blot analyses of the apoptosis-related proteins Bcl-2 and Bax to examine the potential mechanism underlying the beneficial effects of Y27632 on cerebral ischemia and showed for the first time that Y27632 reversed the decrease in the Bcl-2/Bax ratio in BCAO model rats. Y27632 restored the depression of NR2A- and NR2B-containing N-methyl-d-aspartate receptors (NMDARs) in the cerebral cortex of BCAO model rats. We also investigated these effects on middle cerebral artery occlusion (MCAO) model rats and observed some differences between the two models. In summary, our data provide evidence supporting the hypothesis that Rho-kinase inhibitors exert neuroprotective effects on cerebral ischemia. The Bcl-2/Bax-NMDAR signaling pathway in the cerebral cortex may be responsible for the protective effects of the Rho-kinase inhibitor, and this pathway may represent a pharmacological target for curative clinical strategies.
Collapse
Affiliation(s)
- Ming Ni
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, PR China; Department of Clinical Pharmacy, Henan Provincial People's Hospital, Zhengzhou 450000, PR China; Department of Clinical Pharmacy, Fuwai Central China Cardiovascular Hospital, Zhengzhou 450000, PR China
| | - Jigang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, PR China
| | - Lin Huang
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, PR China
| | - Gaolin Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, PR China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, PR China.
| |
Collapse
|
22
|
Gonçalves LV, Herlinger AL, Ferreira TAA, Coitinho JB, Pires RGW, Martins-Silva C. Environmental enrichment cognitive neuroprotection in an experimental model of cerebral ischemia: biochemical and molecular aspects. Behav Brain Res 2018; 348:171-183. [DOI: 10.1016/j.bbr.2018.04.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/07/2018] [Accepted: 04/16/2018] [Indexed: 01/25/2023]
|
23
|
Sun Y, Xu Y, Cheng X, Chen X, Xie Y, Zhang L, Wang L, Hu J, Gao Z. The differences between GluN2A and GluN2B signaling in the brain. J Neurosci Res 2018; 96:1430-1443. [PMID: 29682799 DOI: 10.1002/jnr.24251] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/24/2022]
Abstract
The N-methyl-d-aspartate (NMDA) receptor, a typical ionotropic glutamate receptor, is a crucial protein for maintaining brain function. GluN2A and GluN2B are the main types of NMDA receptor subunit in the adult forebrain. Studies have demonstrated that they play different roles in a number of pathophysiological processes. Although the underlying mechanism for this has not been clarified, the most fundamental reason may be the differences between the signaling pathways associated with GluN2A and GluN2B. With the aim of elucidating the reasons behind the diverse roles of these two subunits, we described the signaling differences between GluN2A and GluN2B from the aspects of C-terminus-associated molecules, effects on typical downstream signaling proteins, and metabotropic signaling. Because there are several factors interfering with the determination of subunit-specific signaling, there is still a long way to go toward clarifying the signaling differences between these two subunits. Developing better pharmacology tools, such as highly selective antagonists for triheteromeric GluN2A- and GluN2B-containing NMDA receptors, and establishing new molecular biological methods, for example, engineering photoswitchable NMDA receptors, may be useful for clarifying the signaling differences between GluN2A and GluN2B.
Collapse
Affiliation(s)
- Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Yingge Xu
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Xiaokun Cheng
- Department of Physical and Chemical Analysis, North China Pharmaceutical Group New Drug Research and Development Co., Ltd, Shijiazhuang, People's Republic of China
| | - Xi Chen
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Linan Zhang
- Department of Pathophysiology, College of Basic Medical Science, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Long Wang
- Department of Family and Consumer Sciences, California State University, Long Beach, California
| | - Jie Hu
- Nursing Research Center, School of Nursing, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China.,State Key Laboratory Breeding Base, Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| |
Collapse
|
24
|
Amato RJ, Boland J, Myer N, Few L, Dowd D. Pharmacogenomics and Psychiatric Clinical Care. J Psychosoc Nurs Ment Health Serv 2018; 56:22-31. [DOI: 10.3928/02793695-20170928-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/14/2017] [Indexed: 12/28/2022]
|
25
|
Edwards D, Sommerhage F, Berry B, Nummer H, Raquet M, Clymer B, Stancescu M, Hickman JJ. Comparison of NMDA and AMPA Channel Expression and Function between Embryonic and Adult Neurons Utilizing Microelectrode Array Systems. ACS Biomater Sci Eng 2017; 3:3525-3533. [PMID: 29250595 PMCID: PMC5728088 DOI: 10.1021/acsbiomaterials.7b00596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022]
Abstract
![]()
Microelectrode
arrays (MEAs) are innovative tools used to perform
electrophysiological experiments for the study of electrical activity
and connectivity in populations of neurons from dissociated cultures.
Reliance upon neurons derived from embryonic tissue is a common limitation
of neuronal/MEA hybrid systems and perhaps of neuroscience research
in general, and the use of adult neurons could model fully functional
in vivo parameters more closely. Spontaneous network activity was
concurrently recorded from both embryonic and adult rat neurons cultured
on MEAs for up to 10 weeks in vitro to characterize the synaptic connections
between cell types. The cultures were exposed to synaptic transmission
antagonists against NMDA and AMPA channels, which revealed significantly
different receptor profiles of adult and embryonic networks in vitro.
In addition, both embryonic and adult neurons were evaluated for NMDA
and AMPA channel subunit expression over five weeks in vitro. The
results established that neurons derived from embryonic tissue did
not express mature synaptic channels for several weeks in vitro under
defined conditions. Consequently, the embryonic response to synaptic
antagonists was significantly different than that of neurons derived
from adult tissue sources. These results are especially significant
because most studies reported with embryonic hippocampal neurons do
not begin at two to four weeks in culture. In addition, the utilization
of MEAs in lieu of patch-clamp electrophysiology avoided a large-scale,
labor-intensive study. These results establish the utility of this
unique hybrid system derived from adult hippocampal tissue in combination
with MEAs and offer a more appropriate representation of in vivo function
for drug discovery. It has application for neuronal development and
regeneration as well as for investigations into neurodegenerative
disease, traumatic brain injury, and stroke.
Collapse
Affiliation(s)
- Darin Edwards
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States.,The Burnett School of Biomedical Sciences, University of Central Florida, UCF College of Medicine, 6850 Lake Nona Blvd, Orlando, Florida 32827, United States
| | - Frank Sommerhage
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - Bonnie Berry
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States.,The Burnett School of Biomedical Sciences, University of Central Florida, UCF College of Medicine, 6850 Lake Nona Blvd, Orlando, Florida 32827, United States
| | - Hanna Nummer
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - Martina Raquet
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - Brad Clymer
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - Maria Stancescu
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States.,The Burnett School of Biomedical Sciences, University of Central Florida, UCF College of Medicine, 6850 Lake Nona Blvd, Orlando, Florida 32827, United States
| |
Collapse
|
26
|
Broad-spectrum protein kinase inhibition by the staurosporine analog KT-5720 reverses ethanol withdrawal-associated loss of NeuN/Fox-3. Alcohol 2017; 64:37-43. [PMID: 28965654 DOI: 10.1016/j.alcohol.2017.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 11/22/2022]
Abstract
Chronic, intermittent ethanol (CIE) exposure is known to produce neuroadaptive alterations in excitatory neurotransmission that contribute to the development of dependence. Although activation of protein kinases (e.g., cyclic AMP [cAMP]-dependent protein kinase) is implicated in the synaptic trafficking of these receptors following CIE exposure, the functional consequences of these effects are yet to be fully understood. The present study sought to delineate the influence of protein kinase in regulating cytotoxicity following CIE exposure, as well as to examine the relative roles of ethanol exposure and ethanol withdrawal (EWD) in promoting these effects. Rat hippocampal explants were exposed to a developmental model of CIE with or without co-application of broad-spectrum protein kinase inhibitor KT-5720 (1 μM) either during ethanol exposure or EWD. Hippocampal cytotoxicity was assessed via immunofluorescence (IF) of neuron-specific nuclear protein (NeuN) with thionine staining of Nissl bodies to confirm IF findings. Concomitant application of ethanol and KT-5720 restored the loss of NeuN/Fox-3 IF in pyramidal CA1 and granule DG cell layers produced by CIE, but there was no restoration in CA3. Application of KT-5720 during EWD failed to significantly alter levels of NeuN IF, implying that ethanol exposure activates protein kinases that, in part, mediate the effects of EWD. KT-5720 application during EWD also restored thionine staining in CA1, suggesting kinase regulation of both neurons and non-neuronal cells. These data demonstrate that CIE exposure alters protein kinase activity to promote ethanol withdrawal-associated loss of NeuN/Fox-3 and highlight the influence of kinase signaling on distinct cell types in the developing hippocampus.
Collapse
|
27
|
Möhrle D, Reimann K, Wolter S, Wolters M, Varakina K, Mergia E, Eichert N, Geisler HS, Sandner P, Ruth P, Friebe A, Feil R, Zimmermann U, Koesling D, Knipper M, Rüttiger L. NO-Sensitive Guanylate Cyclase Isoforms NO-GC1 and NO-GC2 Contribute to Noise-Induced Inner Hair Cell Synaptopathy. Mol Pharmacol 2017; 92:375-388. [PMID: 28874607 DOI: 10.1124/mol.117.108548] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 02/14/2025] Open
Abstract
Nitric oxide (NO) activates the NO-sensitive soluble guanylate cyclase (NO-GC, sGC) and triggers intracellular signaling pathways involving cGMP. For survival of cochlear hair cells and preservation of hearing, NO-mediated cascades have both protective and detrimental potential. Here we examine the cochlear function of mice lacking one of the two NO-sensitive guanylate cyclase isoforms [NO-GC1 knockout (KO) or NO-GC2 KO]. The deletion of NO-GC1 or NO-GC2 did not influence electromechanical outer hair cell (OHC) properties, as measured by distortion product otoacoustic emissions, neither before nor after noise exposure, nor were click- or noise-burst-evoked auditory brainstem response thresholds different from controls. Yet inner hair cell (IHC) ribbons and auditory nerve responses showed significantly less deterioration in NO-GC1 KO and NO-GC2 KO mice after noise exposure. Consistent with a selective role of NO-GC in IHCs, NO-GC β1 mRNA was found in isolated IHCs but not in OHCs. Using transgenic mice expressing the fluorescence resonance energy transfer-based cGMP biosensor cGi500, NO-induced elevation of cGMP was detected in real-time in IHCs but not in OHCs. Pharmacologic long-term treatment with a NO-GC stimulator altered auditory nerve responses but did not affect OHC function and hearing thresholds. Interestingly, NO-GC stimulation exacerbated the loss of auditory nerve response in aged animals but attenuated the loss in younger animals. We propose NO-GC2 and, to some degree, NO-GC1 as targets for early pharmacologic prevention of auditory fiber loss (synaptopathy). Both isoforms provide selective benefits for hearing function by maintaining the functional integrity of auditory nerve fibers in early life rather than at old age.
Collapse
MESH Headings
- Animals
- Female
- Guanylate Cyclase/metabolism
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Isoenzymes/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Morpholines/pharmacology
- Nitric Oxide/metabolism
- Noise/adverse effects
- Pyrimidines/pharmacology
- Rats
- Rats, Wistar
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/metabolism
- Synapses/drug effects
- Synapses/metabolism
- Synapses/pathology
Collapse
Affiliation(s)
- Dorit Möhrle
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Katrin Reimann
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Steffen Wolter
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Markus Wolters
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Ksenya Varakina
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Evanthia Mergia
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Nicole Eichert
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Hyun-Soon Geisler
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Peter Sandner
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Peter Ruth
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Andreas Friebe
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Robert Feil
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Doris Koesling
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Molecular Physiology of Hearing, University of Tübingen, Tübingen (D.M., K.R., S.W., K.V., N.E., H.-S.G., U.Z., M.K., L.R.), Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen (M.W., R.F.), Department of Pharmacology and Toxicology, University of Bochum, Bochum (E.M., D.K.), Bayer AG, Drug Discovery Pharma Research Centre Wuppertal, Wuppertal (P.S.), Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen (P.R.), and Department of Physiology, University of Würzburg, Würzburg (A.F.), Germany
| |
Collapse
|
28
|
Schampel A, Volovitch O, Koeniger T, Scholz CJ, Jörg S, Linker RA, Wischmeyer E, Wunsch M, Hell JW, Ergün S, Kuerten S. Nimodipine fosters remyelination in a mouse model of multiple sclerosis and induces microglia-specific apoptosis. Proc Natl Acad Sci U S A 2017; 114:E3295-E3304. [PMID: 28381594 PMCID: PMC5402421 DOI: 10.1073/pnas.1620052114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite continuous interest in multiple sclerosis (MS) research, there is still a lack of neuroprotective strategies, because the main focus has remained on modulating the immune response. Here we performed in-depth analysis of neurodegeneration in experimental autoimmune encephalomyelitis (EAE) and in in vitro studies regarding the effect of the well-established L-type calcium channel antagonist nimodipine. Nimodipine treatment attenuated clinical EAE and spinal cord degeneration and promoted remyelination. Surprisingly, we observed calcium channel-independent effects on microglia, resulting in apoptosis. These effects were cell-type specific and irrespective of microglia polarization. Apoptosis was accompanied by decreased levels of nitric oxide (NO) and inducible NO synthase (iNOS) in cell culture as well as decreased iNOS and reactive oxygen species levels in EAE. In addition, increased numbers of Olig2+APC+ oligodendrocytes were detected. Overall, nimodipine application seems to generate a favorable environment for regenerative processes and therefore could be a treatment option for MS, because it combines features of immunomodulation with beneficial effects on neuroregeneration.
Collapse
Affiliation(s)
- Andrea Schampel
- Department of Anatomy and Cell Biology, University of Würzburg, 97070 Wuerzburg, Germany
| | - Oleg Volovitch
- Department of Anatomy and Cell Biology, University of Cologne, 50931 Cologne, Germany
| | - Tobias Koeniger
- Department of Anatomy and Cell Biology, University of Würzburg, 97070 Wuerzburg, Germany
| | - Claus-Jürgen Scholz
- Core Unit Systems Medicine, University Hospital of Würzburg, 97080 Wuerzburg, Germany
- The Life & Medical Sciences Institute, University of Bonn, 53113 Bonn, Germany
| | - Stefanie Jörg
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Erhard Wischmeyer
- Institute of Physiology, Molecular Electrophysiology, University of Würzburg, 97070 Wuerzburg, Germany
| | - Marie Wunsch
- Department of Anatomy and Cell Biology, University of Würzburg, 97070 Wuerzburg, Germany
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Süleyman Ergün
- Department of Anatomy and Cell Biology, University of Würzburg, 97070 Wuerzburg, Germany
| | - Stefanie Kuerten
- Department of Anatomy and Cell Biology, University of Würzburg, 97070 Wuerzburg, Germany;
| |
Collapse
|
29
|
Calvo-Rodríguez M, de la Fuente C, García-Durillo M, García-Rodríguez C, Villalobos C, Núñez L. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca 2+ responses, and neuron cell death in cultured rat hippocampal neurons. J Neuroinflammation 2017; 14:24. [PMID: 28143556 PMCID: PMC5282876 DOI: 10.1186/s12974-017-0802-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background Toll-like receptors (TLRs) are transmembrane pattern-recognition receptors of the innate immune system recognizing diverse pathogen-derived and tissue damage-related ligands. It has been suggested that TLR signaling contributes to the pathogenesis of age-related, neurodegenerative diseases, including Alzheimer’s disease (AD). AD is associated to oligomers of the amyloid β peptide (Aβo) that cause intracellular Ca2+ dishomeostasis and neuron cell death in rat hippocampal neurons. Here we assessed the interplay between inflammation and Aβo in long-term cultures of rat hippocampal neurons, an in vitro model of neuron aging and/or senescence. Methods Ca2+ imaging and immunofluorescence against annexin V and TLR4 were applied in short- and long-term cultures of rat hippocampal neurons to test the effects of TLR4-agonist LPS and Aβo on cytosolic [Ca2+] and on apoptosis as well as on expression of TLR4. Results LPS increases cytosolic [Ca2+] and promotes apoptosis in rat hippocampal neurons in long-term culture considered aged and/or senescent neurons, but not in short-term cultured neurons considered young neurons. TLR4 antagonist CAY10614 prevents both effects. TLR4 expression in rat hippocampal neurons is significantly larger in aged hippocampal cultures. Treatment of aged hippocampal cultures with Aβo increases TLR4 expression and enhances LPS-induced Ca2+ responses and neuron cell death. Conclusions Aging and amyloid β oligomers, the neurotoxin involved in Alzheimer’s disease, enhance TLR4 expression as well as LPS-induced Ca2+ responses and neuron cell death in rat hippocampal neurons aged in vitro. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0802-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Calvo-Rodríguez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carmen de la Fuente
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Mónica García-Durillo
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carmen García-Rodríguez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain.
| | - Lucía Núñez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain.,Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
30
|
Sun Y, Cheng X, Hu J, Gao Z. The Role of GluN2A in Cerebral Ischemia: Promoting Neuron Death and Survival in the Early Stage and Thereafter. Mol Neurobiol 2017; 55:1208-1216. [DOI: 10.1007/s12035-017-0395-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/09/2017] [Indexed: 01/10/2023]
|
31
|
Fan H, Li X, Wang W, Lai Q, Tang X, Gao D, Yin X, Xu T. Effects of NMDA-Receptor Antagonist on the Expressions of Bcl-2 and Bax in the Subventricular Zone of Neonatal Rats with Hypoxia-Ischemia Brain Damage. Cell Biochem Biophys 2017; 73:323-330. [PMID: 27352318 DOI: 10.1007/s12013-015-0586-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neonatal hypoxia-ischemia brain damage is an important cause of death by affecting prognosis of neural diseases. It is difficult to find effective methods of prevention and treatment due to the complexity of its pathogenesis. N-methyl-D-aspartate (NMDA), as an excitotoxicity amino acids, has proven to play an important role in hypoxic-ischemic. However, the exact effects of the NMDA subunits, NR2A and NR2B, during hypoxic-ischemic have not been investigated in detail. Therefore, we sought to study whether the NMDA receptor antagonist could confer neuroprotective effects in a neonatal rat hypoxia-ischemia model. The effects of intraperitoneal injections of different drugs, namely MK-801 (0.5 mg/kg), NVP-AAM077 (5 mg/kg), and Ro25-6981 (5 mg/kg), on the expressions of anti-apoptotic protein Bcl-2 and apoptosis protein Bax in the subventricular zone were analyzed by immunohistochemical staining to explore the roles of NMDA subunits (NR2A and NR2B) in hypoxic-ischemic. We found that the NR2B antagonist (Ro25-6981) could inhibit hypoxic-ischemic with the increasing Bcl-2 expression. NR2A antagonists (NVP-AAM077) can increase cerebral hypoxia-ischemia in neonatal rats, promoting the expression of apoptotic protein Bax.
Collapse
Affiliation(s)
- Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China
| | - Xiaoquan Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China
| | - Wei Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China
| | - Qingwei Lai
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China
| | - Xiaohong Tang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, China
| | - Dianshuai Gao
- Department of Anatomy and Neurobiology, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221004, Jiangsu, China
| | - Xiaoxing Yin
- Department of Clinical Pharmacology, School of Pharmacy, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221004, Jiangsu, China.
| | - Tiejun Xu
- Department of Anatomy and Neurobiology, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
32
|
Memantine, a Low-Affinity NMDA Receptor Antagonist, Protects against Methylmercury-Induced Cytotoxicity of Rat Primary Cultured Cortical Neurons, Involvement of Ca2+ Dyshomeostasis Antagonism, and Indirect Antioxidation Effects. Mol Neurobiol 2016; 54:5034-5050. [DOI: 10.1007/s12035-016-0020-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/01/2016] [Indexed: 01/20/2023]
|
33
|
Calvo-Rodríguez M, García-Durillo M, Villalobos C, Núñez L. In vitro aging promotes endoplasmic reticulum (ER)-mitochondria Ca 2+ cross talk and loss of store-operated Ca 2+ entry (SOCE) in rat hippocampal neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2637-2649. [PMID: 27503411 DOI: 10.1016/j.bbamcr.2016.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/11/2022]
Abstract
Aging is associated to cognitive decline and susceptibility to neuron death, two processes related recently to subcellular Ca2+ homeostasis. Memory storage relies on mushroom spines stability that depends on store-operated Ca2+ entry (SOCE). In addition, Ca2+ transfer from endoplasmic reticulum (ER) to mitochondria sustains energy production but mitochondrial Ca2+ overload promotes apoptosis. We have addressed whether SOCE and ER-mitochondria Ca2+ transfer are influenced by culture time in long-term cultures of rat hippocampal neurons, a model of neuronal aging. We found that short-term cultured neurons show large SOCE, low Ca2+ store content and no functional coupling between ER and mitochondria. In contrast, in long-term cultures reflecting aging neurons, SOCE is essentially lost, Stim1 and Orai1 are downregulated, Ca2+ stores become overloaded, Ca2+ release is enhanced, expression of the mitochondrial Ca2+ uniporter (MCU) increases and most Ca2+ released from the ER is transferred to mitochondria. These results suggest that neuronal aging is associated to increased ER-mitochondrial cross talking and loss of SOCE. This subcellular Ca2+ remodeling might contribute to cognitive decline and susceptibility to neuron cell death in the elderly.
Collapse
Affiliation(s)
- María Calvo-Rodríguez
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Mónica García-Durillo
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain.
| | - Lucía Núñez
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain; Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
34
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
35
|
Lee YJ, Choi SY, Yang JH. AMP-activated protein kinase is involved in perfluorohexanesulfonate-induced apoptosis of neuronal cells. CHEMOSPHERE 2016; 149:1-7. [PMID: 26826296 DOI: 10.1016/j.chemosphere.2016.01.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/24/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
Perfluorohexanesulfonate (PFHxS), one of the major perfluoroalkyl compounds (PFCs), has been used in a variety of industrial and consumer applications and detected in serum in the general population. This raised a concern over its possible detrimental health effects, including neurotoxic effects. We have previously shown that PFHxS induced neuronal apoptosis via the NMDA receptor-mediated extracellular signal-regulated kinase (ERK) pathway. Recently, it has been reported that AMP-activated protein kinase (AMPK) acts as a key signal molecule in neuronal excitotoxicity as well as providing a neuroprotective function. In the present study, we have examined the involvement of AMPK in PFHxS-induced neuronal apoptosis using neuronal differentiated PC12 cells. PFHxS induced significant increases in intracellular [Ca(2+)] via the NMDA receptor and the L-type voltage-gated calcium channel (L-VGCC). The inhibition of Ca(2+) loading by the NMDA receptor antagonist, MK801 and the L-VGCC blockers, nifedipine and diltiazem significantly reduced PFHxS-induced apoptosis. PFHxS induced sustained activation of AMPK and the inhibition of AMPK activation by compound C and AMPK siRNA significantly reduced PFHxS-induced caspase-3 activity. These results indicate the pro-apoptotic role of AMPK. The activation of AMPK was attenuated by MK801, nifedipine and diltiazem. However, the activation of AMPK was not affected by the ERK inhibitor, PD98059. Likewise, ERK activation was not affected by compound C but was substantially reduced by MK801, nifedipine or diltiazem. This suggests that the activation of AMPK and ERK is regulated by intracellular Ca(2+) loading in distinct pathways. Taken together, PFHxS-induced neuronal apoptosis is mediated by AMPK and ERK pathways, which are distinctly regulated by increased intracellular Ca(2+) via the NMDA receptor and L-VGCC.
Collapse
Affiliation(s)
- Youn Ju Lee
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - So-Young Choi
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Jae-Ho Yang
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea.
| |
Collapse
|
36
|
The Functional and Molecular Properties, Physiological Functions, and Pathophysiological Roles of GluN2A in the Central Nervous System. Mol Neurobiol 2016; 54:1008-1021. [DOI: 10.1007/s12035-016-9715-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
|
37
|
Calvo-Rodríguez M, Villalobos C, Nuñez L. Fluorescence and Bioluminescence Imaging of Subcellular Ca2+ in Aged Hippocampal Neurons. J Vis Exp 2015. [PMID: 26650893 DOI: 10.3791/53330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Susceptibility to neuron cell death associated to neurodegeneration and ischemia are exceedingly increased in the aged brain but mechanisms responsible are badly known. Excitotoxicity, a process believed to contribute to neuron damage induced by both insults, is mediated by activation of glutamate receptors that promotes Ca2+ influx and mitochondrial Ca2+ overload. A substantial change in intracellular Ca2+ homeostasis or remodeling of intracellular Ca2+ homeostasis may favor neuron damage in old neurons. For investigating Ca2+ remodeling in aging we have used live cell imaging in long-term cultures of rat hippocampal neurons that resemble in some aspects aged neurons in vivo. For this end, hippocampal cells are, in first place, freshly dispersed from new born rat hippocampi and plated on poli-D-lysine coated, glass coverslips. Then cultures are kept in controlled media for several days or several weeks for investigating young and old neurons, respectively. Second, cultured neurons are loaded with fura2 and subjected to measurements of cytosolic Ca2+ concentration using digital fluorescence ratio imaging. Third, cultured neurons are transfected with plasmids expressing a tandem of low-affinity aequorin and GFP targeted to mitochondria. After 24 hr, aequorin inside cells is reconstituted with coelenterazine and neurons are subjected to bioluminescence imaging for monitoring of mitochondrial Ca2+ concentration. This three-step procedure allows the monitoring of cytosolic and mitochondrial Ca2+ responses to relevant stimuli as for example the glutamate receptor agonist NMDA and compare whether these and other responses are influenced by aging. This procedure may yield new insights as to how aging influence cytosolic and mitochondrial Ca2+ responses to selected stimuli as well as the testing of selected drugs aimed at preventing neuron cell death in age-related diseases.
Collapse
Affiliation(s)
- María Calvo-Rodríguez
- Instituto de Biologìa y Genética Molecular, Consejo Superior de Investigaciones Cientìficas
| | - Carlos Villalobos
- Instituto de Biologìa y Genética Molecular, Consejo Superior de Investigaciones Cientìficas;
| | - Lucía Nuñez
- Departamento de Bioquìmica y Biologìa Molecular y Fisiologìa, Universidad de Valladolid
| |
Collapse
|
38
|
Calvo-Rodríguez M, Núñez L, Villalobos C. Non-steroidal anti-inflammatory drugs (NSAIDs) and neuroprotection in the elderly: a view from the mitochondria. Neural Regen Res 2015; 10:1371-2. [PMID: 26604882 PMCID: PMC4625487 DOI: 10.4103/1673-5374.165219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- María Calvo-Rodríguez
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Valladolid, c/ Sanz y Fores 3, 47003 Valladolid, Spain
| | - Lucía Núñez
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Valladolid, c/ Sanz y Fores 3, 47003 Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Valladolid, c/ Sanz y Fores 3, 47003 Valladolid, Spain
| |
Collapse
|
39
|
Yap YW, Llanos RM, La Fontaine S, Cater MA, Beart PM, Cheung NS. Comparative Microarray Analysis Identifies Commonalities in Neuronal Injury: Evidence for Oxidative Stress, Dysfunction of Calcium Signalling, and Inhibition of Autophagy-Lysosomal Pathway. Neurochem Res 2015; 41:554-67. [PMID: 26318862 DOI: 10.1007/s11064-015-1666-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction, ubiquitin-proteasomal system impairment and excitotoxicity occur during the injury and death of neurons in neurodegenerative conditions. The aim of this work was to elucidate the cellular mechanisms that are universally altered by these conditions. Through overlapping expression profiles of rotenone-, lactacystin- and N-methyl-D-aspartate-treated cortical neurons, we have identified three affected biological processes that are commonly affected; oxidative stress, dysfunction of calcium signalling and inhibition of the autophagic-lysosomal pathway. These data provides many opportunities for therapeutic intervention in neurodegenerative conditions, where mitochondrial dysfunction, proteasomal inhibition and excitotoxicity are evident.
Collapse
Affiliation(s)
- Yann Wan Yap
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Roxana M Llanos
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Sharon La Fontaine
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Michael A Cater
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Nam Sang Cheung
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.
| |
Collapse
|
40
|
Reynolds AR, Berry JN, Sharrett-Field L, Prendergast MA. Ethanol withdrawal is required to produce persisting N-methyl-D-aspartate receptor-dependent hippocampal cytotoxicity during chronic intermittent ethanol exposure. Alcohol 2015; 49:219-27. [PMID: 25746220 PMCID: PMC4414743 DOI: 10.1016/j.alcohol.2015.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 11/03/2022]
Abstract
Chronic intermittent ethanol consumption is associated with neurodegeneration and cognitive deficits in preclinical laboratory animals and in the clinical population. While previous work suggests a role for neuroadaptations in the N-methyl-D-aspartate (NMDA) receptor in the development of ethanol dependence and manifestation of withdrawal, the relative roles of ethanol exposure and ethanol withdrawal in producing these effects have not been fully characterized. To examine underlying cytotoxic mechanisms associated with CIE exposure, organotypic hippocampal slices were exposed to 1–3 cycles of ethanol (50 mM) in cell culture medium for 5 days, followed by 24-hours of ethanol withdrawal in which a portion of slices were exposed to competitive NMDA receptor antagonist (2R)-amino-5-phosphonovaleric acid (APV; 40 µM). Cytotoxicity was assessed using immunohistochemical labeling of neuron specific nuclear protein (NeuN; Fox-3), a marker of mature neurons, and thionine (2%) staining of Nissl bodies. Multiple cycles of CIE produced neurotoxicity, as reflected in persisting losses of neuron NeuN immunoreactivity and thionine staining in each of the primary cell layers of the hippocampal formation. Hippocampi aged in vitro were significantly more sensitive to the toxic effects of multiple CIEs than were non-aged hippocampi. This effect was not demonstrated in slices exposed to continuous ethanol, in the absence of withdrawal, or to a single exposure/withdrawal regimen. Exposure to APV significantly attenuated the cytotoxicity observed in the primary cell layers of the hippocampus. The present findings suggest that ethanol withdrawal is required to produce NMDA receptor-dependent hippocampal cytotoxicity, particularly in the aging hippocampus in vitro.
Collapse
|
41
|
Calvo M, Sanz-Blasco S, Caballero E, Villalobos C, Núñez L. Susceptibility to excitotoxicity in aged hippocampal cultures and neuroprotection by non-steroidal anti-inflammatory drugs: role of mitochondrial calcium. J Neurochem 2015; 132:403-17. [DOI: 10.1111/jnc.13004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/20/2023]
Affiliation(s)
- María Calvo
- Instituto de Biología y Genética Molecular (IBGM); Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Valladolid; Valladolid Spain
| | - Sara Sanz-Blasco
- Instituto de Biología y Genética Molecular (IBGM); Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Valladolid; Valladolid Spain
| | - Erica Caballero
- Instituto de Biología y Genética Molecular (IBGM); Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Valladolid; Valladolid Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM); Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Valladolid; Valladolid Spain
| | - Lucía Núñez
- Instituto de Biología y Genética Molecular (IBGM); Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Valladolid; Valladolid Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología; Universidad de Valladolid; Valladolid Spain
| |
Collapse
|
42
|
Stansfield KH, Bichell TJ, Bowman AB, Guilarte TR. BDNF and Huntingtin protein modifications by manganese: implications for striatal medium spiny neuron pathology in manganese neurotoxicity. J Neurochem 2014; 131:655-66. [PMID: 25099302 DOI: 10.1111/jnc.12926] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/23/2022]
Abstract
High levels of manganese (Mn) exposure decrease striatal medium spiny neuron (MSN) dendritic length and spine density, but the mechanism(s) are not known. The Huntingtin (HTT) gene has been functionally linked to cortical brain-derived neurotrophic factor (BDNF) support of striatal MSNs via phosphorylation at serine 421. In Huntington's disease, pathogenic CAG repeat expansions of HTT decrease synthesis and disrupt transport of cortical-striatal BDNF, which may contribute to disease, and Mn is a putative environmental modifier of Huntington's disease pathology. Thus, we tested the hypothesis that changes in MSN dendritic morphology Mn due to exposure are associated with decreased BDNF levels and alterations in Htt protein. We report that BDNF levels are decreased in the striatum of Mn-exposed non-human primates and in the cerebral cortex and striatum of mice exposed to Mn. Furthermore, proBDNF and mature BDNF concentrations in primary cortical and hippocampal neuron cultures were decreased by exposure to Mn confirming the in vivo findings. Mn exposure decreased serine 421 phosphorylation of Htt in cortical and hippocampal neurons and increased total Htt levels. These data strongly support the hypothesis that Mn-exposure-related MSN pathology is associated with decreased BDNF trophic support via alterations in Htt.
Collapse
Affiliation(s)
- Kirstie H Stansfield
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
43
|
Di Vito A, Mele M, Piscioneri A, Morelli S, Bartolo LD, Barni T, Facciolo RM, Canonaco M. Overstimulation of glutamate signals leads to hippocampal transcriptional plasticity in hamsters. Cell Mol Neurobiol 2014; 34:501-9. [PMID: 24532154 DOI: 10.1007/s10571-014-0034-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/28/2014] [Indexed: 01/07/2023]
Abstract
It's known that neurons in mammalian hibernators are more tolerant to hypoxia than those in non-hibernating species and as a consequence animals are capable of awakening from the arousal state without exhibiting cerebral damages. In addition, evidences have suggested that euthermic hamster neurons display protective adaptations against hypoxia, while those of rats are not capable, even though molecular mechanisms involved in similar neuroprotective strategies have not been yet fully studied. In the present work, overstimulation of glutamatergic receptors NMDA recognized as one of the major death-promoting element in hypoxia, accounted for altered network complexity consistent with a moderate reduction of hippocampal neuronal survival (p < 0.05) in hamsters. These alterations appeared to be featured concomitantly with altered glutamatergic signaling as indicated by significant down-regulation (p < 0.01) of NMDAergic (NR2A) and AMPAergic (GluR1, R2) receptor subtypes together with the metabotropic mGluR5 subtype. Diminished mRNA levels were also reported for NMDA receptor binding factors and namely PSD95 plus DREAM, which exert positive and negative regulatory properties, respectively, on receptor trafficking events. Conversely, involvement of glutamatergic signaling systems on neuronal excitotoxicity was strengthened by the co-activation of GABAAR-mediated effects as indicated by toxic morphological effects being notably reduced along with up-regulated GluR1, GluR2, mGluR5, DREAM, and Homer1c scaffold proteins when muscimol was added. Overall, these results point to a neuroprotective role of the GABAergic system against excitotoxicity episodes via DREAM-dependent inhibition of NMDA receptor and activation of AMPA receptor plus mGluR5, respectively, thus proposing them as novel therapeutic targets against cerebral ischemic damages in humans.
Collapse
Affiliation(s)
- Anna Di Vito
- Molecular Oncology Laboratory, Experimental and Clinical Medicine Department, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
44
|
CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels. Cell Death Dis 2014; 5:e1156. [PMID: 24722281 PMCID: PMC5424111 DOI: 10.1038/cddis.2014.134] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/17/2014] [Accepted: 02/27/2014] [Indexed: 01/15/2023]
Abstract
Inhibition of the mitochondrial Na+/Ca2+ exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca2+ homeostasis. However, the Ca2+ signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca2+ levels are modulated by CGP37157 (10 μM) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca2+ homeostasis using cameleon-based mitochondrial Ca2+ and cytosolic Ca2+ ([Ca2+]i) live imaging. We observed that NCLX-driven mitochondrial Ca2+ exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca2]i concomitant with a Ca2+ accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca2+ efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca2+]i increase by blocking voltage-gated Ca2+ channels (VGCCs), whereas it did not induce depletion of ER Ca2+ stores. Moreover, mitochondrial Ca2+ overload was reduced as a consequence of diminished Ca2+ entry through VGCCs. The decrease in cytosolic and mitochondrial Ca2+ overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca2+ dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs.
Collapse
|
45
|
Ahlgren H, Bas-Orth C, Freitag HE, Hellwig A, Ottersen OP, Bading H. The nuclear calcium signaling target, activating transcription factor 3 (ATF3), protects against dendrotoxicity and facilitates the recovery of synaptic transmission after an excitotoxic insult. J Biol Chem 2014; 289:9970-82. [PMID: 24515113 DOI: 10.1074/jbc.m113.502914] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The focal swellings of dendrites ("dendritic beading") are an early morphological hallmark of neuronal injury and dendrotoxicity. They are associated with a variety of pathological conditions, including brain ischemia, and cause an acute disruption of synaptic transmission and neuronal network function, which contribute to subsequent neuronal death. Here, we show that increased synaptic activity prior to excitotoxic injury protects, in a transcription-dependent manner, against dendritic beading. Expression of activating transcription factor 3 (ATF3), a nuclear calcium-regulated gene and member of the core gene program for acquired neuroprotection, can protect against dendritic beading. Conversely, knockdown of ATF3 exacerbates dendritic beading. Assessment of neuronal network functions using microelectrode array recordings revealed that hippocampal neurons expressing ATF3 were able to regain their ability for functional synaptic transmission and to participate in coherent neuronal network activity within 48 h after exposure to toxic concentrations of NMDA. Thus, in addition to attenuating cell death, synaptic activity and expression of ATF3 render hippocampal neurons more resistant to acute dendrotoxicity and loss of synapses. Dendroprotection can enhance recovery of neuronal network functions after excitotoxic insults.
Collapse
Affiliation(s)
- Hanna Ahlgren
- From the Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, INF 364, 69120 Heidelberg, Germany and
| | | | | | | | | | | |
Collapse
|
46
|
Cataldi M. The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases. Curr Neuropharmacol 2013; 11:276-97. [PMID: 24179464 PMCID: PMC3648780 DOI: 10.2174/1570159x11311030004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/02/2013] [Accepted: 02/14/2013] [Indexed: 12/12/2022] Open
Abstract
It is a common belief that voltage-gated calcium channels (VGCC) cannot carry toxic amounts of Ca2+ in neurons. Also, some of them as L-type channels are essential for Ca2+-dependent regulation of prosurvival gene-programs. However, a wealth of data show a beneficial effect of drugs acting on VGCCs in several neurodegenerative and neurovascular diseases. In the present review, we explore several mechanisms by which the “harmless” VGCCs may become “toxic” for neurons. These mechanisms could explain how, though usually required for neuronal survival, VGCCs may take part in neurodegeneration. We will present evidence showing that VGCCs can carry toxic Ca2+ when: a) their density or activity increases because of aging, chronic hypoxia or exposure to β-amyloid peptides or b) Ca2+-dependent action potentials carry high Ca2+ loads in pacemaker neurons. Besides, we will examine conditions in which VGCCs promote neuronal cell death without carrying excess Ca2+. This can happen, for instance, when they carry metal ions into the neuronal cytoplasm or when a pathological decrease in their activity weakens Ca2+-dependent prosurvival gene programs. Finally, we will explore the role of VGCCs in the control of nonneuronal cells that take part to neurodegeneration like those of the neurovascular unit or of microglia.
Collapse
Affiliation(s)
- Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Italy
| |
Collapse
|
47
|
de Souza L, Smaili SS, Ureshino RP, Sinigaglia-Coimbra R, Andersen ML, Lopes GS, Tufik S. Effect of chronic sleep restriction and aging on calcium signaling and apoptosis in the hippocampus of young and aged animals. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:23-30. [PMID: 22343009 DOI: 10.1016/j.pnpbp.2012.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 11/19/2022]
Abstract
Aging leads to progressive deterioration of physiological function and diminished responses to environmental stress. Organic and functional alterations are frequently observed in elderly subjects. Although chronic sleep loss is observed during senescence, little is known about the impact of insufficient sleep on cellular function in aging neurons. Disruption of neuronal calcium (Ca²⁺) signaling is related to impaired neuronal function and cell death. It has been hypothesized that sleep deprivation may compromise neuronal stability and induce cell death in young neurons; however, it is necessary to evaluate the impact of aging on this process. Therefore, the aim of this study was to evaluate the effects of chronic sleep restriction (CSR) on Ca²⁺ signaling and cell death in the hippocampus of young and aged animals. We found that glutamate and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) induced a greater elevation in cytosolic Ca²⁺ ([Ca²⁺](c)) in hippocampal slices from aged rats subjected to CSR compared to age-matched controls. Interestingly, aged-matched controls showed a reduced Ca²⁺ response to glutamate and FCCP, relative to both CSR and control young animals. Apoptotic nuclei were observed in aged rats from both treatment groups; however, the profile of apoptotic nuclei in aged CSR rats was highly variable. Bax and Bcl-2 protein expression did not change with aging in the CSR groups. Our study indicates that aging promotes changes in Ca²⁺ signaling, which may also be affected by CSR. These age-dependent changes in Ca²⁺ signaling may increase cellular vulnerability during CSR and contribute to Ca²⁺ signaling dysregulation, which may ultimately induce cell death.
Collapse
Affiliation(s)
- Luciane de Souza
- Departamento de Psicobiologia, Universidade Federal de São Paulo/UNIFESP, Rua Napoleão de Barros 925, Vila Clementino, 04024-002 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
48
|
Brittain MK, Brustovetsky T, Brittain JM, Khanna R, Cummins TR, Brustovetsky N. Ifenprodil, a NR2B-selective antagonist of NMDA receptor, inhibits reverse Na+/Ca2+ exchanger in neurons. Neuropharmacology 2012; 63:974-82. [PMID: 22820271 DOI: 10.1016/j.neuropharm.2012.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 11/25/2022]
Abstract
Glutamate-induced delayed calcium dysregulation (DCD) is causally linked to excitotoxic neuronal death. The mechanisms of DCD are not completely understood, but it has been proposed that the excessive influx of external Ca(2+) is essential for DCD. The NMDA-subtype of glutamate receptor (NMDAR) and the plasmalemmal Na(+)/Ca(2+) exchanger operating in the reverse mode (NCX(rev)) have been implicated in DCD. In experiments with "younger" neurons, 6-8 days in vitro (6-8 DIV), in which the NR2A-containing NMDAR expression is low, ifenprodil, an inhibitor of NR2B-containing NMDAR, completely prevented DCD whereas PEAQX, another NMDAR antagonist that preferentially interacts with NR2A-NMDAR, was without effect. With "older" neurons (13-16 DIV), in which NR2A- and NR2B-NMDARs are expressed to a greater extent, both ifenprodil and PEAQX applied separately failed to prevent DCD. However, combined application of ifenprodil and PEAQX completely averted DCD. Ifenprodil and ifenprodil-like NR2B-NMDAR antagonists Ro 25-6981 and Co 101244 but not PEAQX or AP-5 inhibited gramicidin- and Na(+)/NMDG-replacement-induced increases in cytosolic Ca(2+) mediated predominantly by NCX(rev). This suggests that ifenprodil, Ro 25-6981, and Co 101244 inhibit NCX(rev). The ability of ifenprodil to inhibit NCX(rev) correlates with its efficacy in preventing DCD and emphasizes an important role of NCX(rev) in DCD. Overall our data suggest that both NR2A- and NR2B-NMDARs are involved in DCD in "older" neurons, and it is necessary to inhibit both NMDARs and NCX(rev) to prevent glutamate-induced DCD.
Collapse
Affiliation(s)
- Matthew K Brittain
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
49
|
Comparative impact of voltage-gated calcium channels and NMDA receptors on mitochondria-mediated neuronal injury. J Neurosci 2012; 32:6642-50. [PMID: 22573686 DOI: 10.1523/jneurosci.6008-11.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate excitotoxicity, a major component of many neurodegenerative disorders, is characterized by excessive calcium influx selectively through NMDARs. However, there is a substantial uncertainty concerning why other known routes of significant calcium entry, in particular, VGCCs, are not similarly toxic. Here, we report that in the majority of neurons in rat hippocampal and cortical cultures, maximal L-type VGCC activation induces much lower calcium loading than toxic NMDAR activation. Consequently, few depolarization-activated neurons exhibit calcium deregulation and cell death. Activation of alternative routes of calcium entry induced neuronal death in proportion to the degree of calcium loading. In a small subset of neurons, depolarization evoked stronger calcium elevations, approaching those induced by toxic NMDA. These neurons were characterized by elevated expression of VGCCs and enhanced voltage-gated calcium currents, mitochondrial dysfunction and cell death. Preventing VGCC-dependent mitochondrial calcium loading resulted in stronger cytoplasmic calcium elevations, whereas inhibiting mitochondrial calcium clearance accelerated mitochondrial depolarization. Both observations further implicate mitochondrial dysfunction in VGCC-mediated cell death. Results indicate that neuronal vulnerability tracks the extent of calcium loading but does not appear to depend explicitly on the route of calcium entry.
Collapse
|
50
|
Hypoxia-induced activation of N-methyl-D-aspartate receptors causes retinal ganglion cell death in the neonatal retina. J Neuropathol Exp Neurol 2012; 71:330-47. [PMID: 22437343 DOI: 10.1097/nen.0b013e31824deb21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
It is well established that hypoxia causes excess accumulation of glutamate in developing neural tissues. This study aimed to elucidate the mechanism by which glutamate can cause retinal ganglion cell (RGC) death through the N-methyl-D-aspartate (NMDA) receptors (NR) in the developing retina. One-day-old Wistar rats were exposed to hypoxia for 2 hours and then killed at different time points. Normal age-matched rats were used as controls. NR1, NR2A-D, and NR3A messenger RNA and protein expression showed significant increases over control values, notably at early time points (3 hours to 7 days) after the hypoxic exposure, and immunoexpression of NR1, NR2A-D and NR3A on retinal ganglion cells (RGCs) was enhanced in hypoxic rats and this was confirmed in cultured hypoxic RGCs. Ca(2+) influx in cultured RGCs was increased after hypoxic exposure, and the intracellular Ca(2+) concentration was suppressed by MK-801. Mitochondrial permeability transition pore opening, mitochondrial/cytosolic cytochrome c, and cytosolic caspase-3 expression levels were significantly increased in the hypoxic RGCs. These increases were reversed by MK-801, suggesting that the NMDA receptor subunits in the retina respond rapidly to the hypoxia-induced glutamate overload that leads to the cascade of events that result in RGC death.
Collapse
|