1
|
Kim HY, Lee J, Kim HJ, Lee BE, Jeong J, Cho EJ, Jang HJ, Shin KJ, Kim MJ, Chae YC, Lee SE, Myung K, Baik JH, Suh PG, Kim JI. PLCγ1 in dopamine neurons critically regulates striatal dopamine release via VMAT2 and synapsin III. Exp Mol Med 2023; 55:2357-2375. [PMID: 37907739 PMCID: PMC10689754 DOI: 10.1038/s12276-023-01104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 11/02/2023] Open
Abstract
Dopamine neurons are essential for voluntary movement, reward learning, and motivation, and their dysfunction is closely linked to various psychological and neurodegenerative diseases. Hence, understanding the detailed signaling mechanisms that functionally modulate dopamine neurons is crucial for the development of better therapeutic strategies against dopamine-related disorders. Phospholipase Cγ1 (PLCγ1) is a key enzyme in intracellular signaling that regulates diverse neuronal functions in the brain. It was proposed that PLCγ1 is implicated in the development of dopaminergic neurons, while the physiological function of PLCγ1 remains to be determined. In this study, we investigated the physiological role of PLCγ1, one of the key effector enzymes in intracellular signaling, in regulating dopaminergic function in vivo. We found that cell type-specific deletion of PLCγ1 does not adversely affect the development and cellular morphology of midbrain dopamine neurons but does facilitate dopamine release from dopaminergic axon terminals in the striatum. The enhancement of dopamine release was accompanied by increased colocalization of vesicular monoamine transporter 2 (VMAT2) at dopaminergic axon terminals. Notably, dopamine neuron-specific knockout of PLCγ1 also led to heightened expression and colocalization of synapsin III, which controls the trafficking of synaptic vesicles. Furthermore, the knockdown of VMAT2 and synapsin III in dopamine neurons resulted in a significant attenuation of dopamine release, while this attenuation was less severe in PLCγ1 cKO mice. Our findings suggest that PLCγ1 in dopamine neurons could critically modulate dopamine release at axon terminals by directly or indirectly interacting with synaptic machinery, including VMAT2 and synapsin III.
Collapse
Affiliation(s)
- Hye Yun Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jieun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Jin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Byeong Eun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaewook Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eun Jeong Cho
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, 58245, Republic of Korea
| | - Kyeong Jin Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min Ji Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Pann-Ghill Suh
- Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
2
|
Zhang H, Wang Q, Sun Q, Qin F, Nie D, Li Q, Gu Y, Jiang Y, Lu S, Lu Z. Effects of Compound 511 on BDNF-TrkB Signaling in the Mice Ventral Tegmental Area in Morphine-Induced Conditioned Place Preference. Cell Mol Neurobiol 2021; 41:961-975. [PMID: 32323150 DOI: 10.1007/s10571-020-00848-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
Compound 511 (511) is specially developed for opioid addiction treatment based on the Ancient Chinese drug rehabilitation literature, and its composition has profound effects in the treatment of drug addiction in various clinical trials and animal experiments. The effect of 511 on the rewarding properties of morphine and craving responses and its potential mechanisms remain unclear. Here, we have applied a conditioned place preference (CPP) paradigm in mice to measure morphine-induced rewarding effects under the treatment of 511. Then we used the RNA sequencing strategy to screen its potential mechanisms. In our research, firstly, we found 511 could decrease CPP score, locomotor activity, self-administration, jumping behavior, weight loss, wet-dog shakes, and stereotyped behavior. Then the brain VTA region tissues were performed mRNA sequencing to detect potential mechanisms. We found the brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) were downregulated in morphine-induced CPP, whereas the decreased BDNF and TrkB were reversed after 511 treatment. We retested the levels of BDNF and TrkB using qRT-PCR and Western blot and found the similar results to mRNA sequencing. It has been widely reported that BDNF-TrkB signaling in the VTA is involved in multiple facets of addiction, including reward and motivation, so we focused on the BDNF-TrkB signaling to investigate the anti-addiction mechanisms of 511 in morphine addiction mice. We studied the downstream pathway of BDNF-TrkB and the soma size of dopaminergic neurons. The results showed 511 could increase the phosphorylation levels of PI3K and AKT, which were decreased in morphine-induced CPP. Simultaneously, 511 could decrease the level of PLCγ1 and the phosphorylation levels of ERK and S6K, which were increased in morphine-induced CPP. In addition, 511 also enlarged the soma size of VTA dopaminergic neurons, which was reduced in morphine-induced CPP. Hence, our research indicated 511 maybe mediate the BDNF-TrkB signaling in VTA to improve morphine addiction behavior.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qisheng Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinmei Sun
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fenfen Qin
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dengyun Nie
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qian Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Yun Gu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Yongwei Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China
| | - Zhigang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiang Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Inhibition of orexin receptor 1 contributes to the development of morphine dependence via attenuation of cAMP response element-binding protein and phospholipase Cβ3. J Chem Neuroanat 2020; 108:101801. [DOI: 10.1016/j.jchemneu.2020.101801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 11/21/2022]
|
4
|
Vierck CJ, Chapman CR. Prospective evaluation of chronic pain disorders and treatments. J Neurosci Methods 2018; 295:104-110. [PMID: 29198951 DOI: 10.1016/j.jneumeth.2017.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/23/2017] [Accepted: 11/29/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND The incidence of chronic pain is variable among individuals who have sustained traumatic or surgical injury. Also, treatments for pain rarely are effective consistently for a procedure or agent, and no therapies are considered effective for pain that is chronic. NEW METHOD Difficulties with standard methods for conducting clinical trials call attention to a need for protocols that provide a new understanding of the development of and control over chronic pain. Prospective single-subject research designs can document varieties of pain progression over time for individuals. Subsequent grouping of individuals with common characteristics directs a mechanism-based approach to therapy. RESULTS Tracking of individuals' pain and associated influences over time is consistent with clinical practice, noting and adapting to changes that occur. COMPARISON WITH EXISTING METHODS Grouping patients with diverse characteristics and variable effects of therapy is problematic. Conventional evaluation of pain assesses patients with similar injuries or surgery without characterizations of individuals who develop chronic pain or recover over time. Also, classical evaluation of therapies involves comparison of groups receiving treatment or a placebo without characterization of patients with successful and unsuccessful results. CONCLUSIONS Single-subject prospective studies can inform clinical trials according to individual differences that would be obscured by comparison of groups with unknown variation in characteristics that influence pain and therapeutic effectiveness.
Collapse
Affiliation(s)
- Charles J Vierck
- Department of Neuroscience, College of Medicine and McKnight Brain Institute, University of Florida, Gainesville, FL, 2610, United States.
| | - C Richard Chapman
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, UT, 84108, United States
| |
Collapse
|
5
|
Heller EA, Kaska S, Fallon B, Ferguson D, Kennedy PJ, Neve RL, Nestler EJ, Mazei-Robison MS. Morphine and cocaine increase serum- and glucocorticoid-inducible kinase 1 activity in the ventral tegmental area. J Neurochem 2014; 132:243-53. [PMID: 25099208 DOI: 10.1111/jnc.12925] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/13/2014] [Accepted: 08/04/2014] [Indexed: 11/27/2022]
Abstract
Drugs of abuse modulate the function and activity of the mesolimbic dopamine circuit. To identify novel mediators of drug-induced neuroadaptations in the ventral tegmental area (VTA), we performed RNA sequencing analysis on VTA samples from mice administered repeated saline, morphine, or cocaine injections. One gene that was similarly up-regulated by both drugs was serum- and glucocorticoid-inducible kinase 1 (SGK1). SGK1 activity, as measured by phosphorylation of its substrate N-myc downstream regulated gene (NDRG), was also increased robustly by chronic drug treatment. Increased NDRG phosphorylation was evident 1 but not 24 h after the last drug injection. SGK1 phosphorylation itself was similarly modulated. To determine the role of increased SGK1 activity on drug-related behaviors, we over-expressed constitutively active (CA) SGK1 in the VTA. SGK1-CA expression reduced locomotor sensitization elicited by repeated cocaine, but surprisingly had the opposite effect and promoted locomotor sensitization to morphine, without affecting the initial locomotor responses to either drug. SGK1-CA expression did not significantly affect morphine or cocaine conditioned place preference, although there was a trend toward increased conditioned place preference with both drugs. Further characterizing the role of this kinase in drug-induced changes in VTA may lead to improved understanding of neuroadaptations critical to drug dependence and addiction. We find that repeated, but not acute, morphine or cocaine administration induces an increase in serum- and glucocorticoid-inducible kinase (SGK1) gene expression and activity in the ventral tegmental area (VTA). This increase in SGK1 activity may play a role in drug-dependent behaviors and suggests a novel signaling cascade for potential intervention in drug dependence and addiction.
Collapse
Affiliation(s)
- Elizabeth A Heller
- Fishberg Dept. of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Opiate-induced molecular and cellular plasticity of ventral tegmental area and locus coeruleus catecholamine neurons. Cold Spring Harb Perspect Med 2013; 2:a012070. [PMID: 22762025 DOI: 10.1101/cshperspect.a012070] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The study of neuronal adaptations induced by opiate drugs is particularly relevant today given their widespread prescription and nonprescription use. Although much is known about the acute actions of such drugs on the nervous system, a great deal of work remains to fully understand their chronic effects. Here, we focus on longer-lasting adaptations that occur in two catecholaminergic brain regions that mediate distinct behavioral actions of opiates: ventral tegmental area (VTA) dopaminergic neurons, important for drug reward, and locus coeruleus (LC) noradrenergic neurons, important for physical dependence and withdrawal. We focus on changes in cellular, synaptic, and structural plasticity in these brain regions that contribute to opiate dependence and addiction. Understanding the molecular determinants of this opiate-induced plasticity will be critical for the development of better treatments for opiate addiction and perhaps safer opiate drugs for medicinal use.
Collapse
|
7
|
Yang YR, Choi JH, Chang JS, Kwon HM, Jang HJ, Ryu SH, Suh PG. Diverse cellular and physiological roles of phospholipase C-γ1. Adv Biol Regul 2012; 52:138-151. [PMID: 21964416 DOI: 10.1016/j.advenzreg.2011.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Yong Ryoul Yang
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
El Maarouf A, Kolesnikov Y, Pasternak G, Rutishauser U. Removal of polysialylated neural cell adhesion molecule increases morphine analgesia and interferes with tolerance in mice. Brain Res 2011; 1404:55-62. [PMID: 21704981 DOI: 10.1016/j.brainres.2011.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 11/20/2022]
Abstract
Neurons that express high levels of polysialylated neural cell adhesion molecule (PSA-NCAM) in adult spinal substantia gelatinosa also express the μ-opioid receptor. While PSA removal from NCAM by spinal intrathecal injection of endoneuraminidase-N (endo-N) did not detectably change opioid receptor expression, morphine-induced analgesia was significantly increased. This analgesic strengthening was detected as early as 15 min after endo-N treatment and persisted for at least 7 days. In addition, the tolerance that develops with chronic morphine treatment was overcome in the absence of PSA. Interestingly, the same effects on analgesia and tolerance were also produced by selective deletion of the NCAM-180 isoform.
Collapse
Affiliation(s)
- Abderrahman El Maarouf
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
10
|
Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ. Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 2008; 56 Suppl 1:73-82. [PMID: 18647613 DOI: 10.1016/j.neuropharm.2008.06.059] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/10/2008] [Accepted: 06/14/2008] [Indexed: 12/11/2022]
Abstract
Drugs of abuse produce widespread effects on the structure and function of neurons throughout the brain's reward circuitry, and these changes are believed to underlie the long-lasting behavioral phenotypes that characterize addiction. Although the intracellular mechanisms regulating the structural plasticity of neurons are not fully understood, accumulating evidence suggests an essential role for neurotrophic factor signaling in the neuronal remodeling which occurs after chronic drug administration. Brain-derived neurotrophic factor (BDNF), a growth factor enriched in brain and highly regulated by several drugs of abuse, regulates the phosphatidylinositol 3'-kinase (PI3K), mitogen-activated protein kinase (MAPK), phospholipase Cgamma (PLCgamma), and nuclear factor kappa B (NFkappaB) signaling pathways, which influence a range of cellular functions including neuronal survival, growth, differentiation, and structure. This review discusses recent advances in our understanding of how BDNF and its signaling pathways regulate structural and behavioral plasticity in the context of drug addiction.
Collapse
Affiliation(s)
- Scott J Russo
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|