1
|
Li J, Xu S. Diagnosis and Treatment of X-Linked Creatine Transporter Deficiency: Case Report and Literature Review. Brain Sci 2023; 13:1382. [PMID: 37891751 PMCID: PMC10605349 DOI: 10.3390/brainsci13101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: X-linked creatine transporter deficiency (CTD) (OMIM 300036) is a rare group of inherited metabolic disorders characterized by global developmental delay/intellectual disability (GDD/ID), seizures, autistic behavior, and movement disorders. Pathogenic variants in the SLC6A8 gene, located at Xq28, are causative of the disease, leading to impaired creatine transport into the brain. Supplementation with creatine and its precursors, glycine and arginine, has been attempted, yet the treatment efficacy remains controversial. (2) Methods: Here we report a de novo SLC6A8 variant in a boy aged 3 years 9 months presenting with GDD, autistic behavior, and epilepsy. Elevated urinary creatine/creatinine ratio and diminished creatine peak on brain MR spectroscopy suggested the diagnosis of CTD. Genetic sequencing revealed a de novo hemizygous frameshift variant (NM_005629: c.1136_1137del, p. Glu379ValfsTer85). Creatine supplementation therapy was initiated after definitive diagnosis. Electroencephalography and MR spectroscopy were monitored during follow-up in concurrence with neuropsychological evaluations. The clinical phenotype and treatment response of CTD were summarized by systematic view of the literature. (3) Results: In silico analysis showed this variant to be deleterious, probably interfering with substrate binding and conformational changes during creatine transport. Creatine supplementation therapy led to seizure cessation and modest cognitive improvement after half-year's treatment. (4) Conclusions: This case highlights the importance of MR spectroscopy and metabolic screening in males with GDD/ID, allowing for early diagnosis and therapeutic intervention. Mechanistic understanding and case-per-se analysis are required to enable precision treatment for the patients.
Collapse
Affiliation(s)
| | - Sanqing Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| |
Collapse
|
2
|
Alraddadi EA, Khojah AM, Alamri FF, Kecheck HK, Altaf WF, Khouqeer Y. Potential role of creatine as an anticonvulsant agent: evidence from preclinical studies. Front Neurosci 2023; 17:1201971. [PMID: 37456992 PMCID: PMC10339234 DOI: 10.3389/fnins.2023.1201971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders affecting people of all ages representing a significant social and public health burden. Current therapeutic options for epilepsy are not effective in a significant proportion of patients suggesting a need for identifying novel targets for the development of more effective therapeutics. There is growing evidence from animal and human studies suggesting a role of impaired brain energy metabolism and mitochondrial dysfunction in the development of epilepsy. Candidate compounds with the potential to target brain energetics have promising future in the management of epilepsy and other related neurological disorders. Creatine is a naturally occurring organic compound that serves as an energy buffer and energy shuttle in tissues, such as brain and skeletal muscle, that exhibit dynamic energy requirements. In this review, applications of creatine supplements in neurological conditions in which mitochondrial dysfunction is a central component in its pathology will be discussed. Currently, limited evidence mainly from preclinical animal studies suggest anticonvulsant properties of creatine; however, the exact mechanism remain to be elucidated. Future work should involve larger clinical trials of creatine used as an add-on therapy, followed by large clinical trials of creatine as monotherapy.
Collapse
Affiliation(s)
- Eman A. Alraddadi
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman M. Khojah
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Faisal F. Alamri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Husun K. Kecheck
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Wid F. Altaf
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Yousef Khouqeer
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Okwuofu EO, Ogundepo GE, Akhigbemen AM, Abiola AL, Ozolua RI, Igbe I, Chinazamoku O. Creatine attenuates seizure severity, anxiety and depressive-like behaviors in pentylenetetrazole kindled mice. Metab Brain Dis 2021; 36:571-579. [PMID: 33559804 DOI: 10.1007/s11011-021-00684-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/31/2021] [Indexed: 01/24/2023]
Abstract
Epilepsy has been associated with several behavioral changes such as depression and anxiety while some antiepileptic drugs can precipitate psychiatric conditions in patients. This study evaluated the ameliorative effect of creatine on seizure severity and behavioral changes in pentylenetetrazole (PTZ) kindled mice. Mice were kindled by administering sub-convulsive doses of PTZ (35 mg/kg i.p.) at interval of 48 h. The naïve group (n = 7) constituted group 1, while successfully kindled mice were randomly assigned to five groups (n = 7). Group II served as vehicle treated group; groups III-V were treated with creatine 75, 150, and 300 mg/kg/day, p.o; Group V was given 25 mg/kg/day of phenytoin p.o. The treatment was for 15 consecutive days. The intensity of convulsion was scored according to a seven-point scale ranging from stage 0-7. Tail suspension test (TST) and Elevated plus maze (EPM) were utilized to assess depression and anxiety-like behavior respectively. After behavioral evaluation on day 15th, their brain was isolated and assayed for catalase, superoxide dismutase, reduced glutathione, and malondialdehyde. There was a significant (p < 0.05) reduction in the seizure scores, anxiety and depression-like behaviors in mice from the 5th day of treatment. The antioxidant assays revealed significant (p < 0.05) increase in catalase and reduced glutathione, and significant (p < 0.05) reduction in lipid peroxidation in treated mice. This study provides evidence for the seizure reducing property of creatine and its ameliorating potential on anxiety and depressive-like behaviors that follows seizure episodes.
Collapse
Affiliation(s)
- Emmanuel O Okwuofu
- Department of Pharmacology & Toxicology, Prof Dora Akunyili College of Pharmacy, Igbinedion University Okada, Benin City, Edo, Nigeria.
| | - Gbenga E Ogundepo
- Department of Biochemistry, Faculty of Science, Obafemi Awolowo University, Ile Ife, Osun, Nigeria
| | - Abigail M Akhigbemen
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Benin, 300001, Benin City, Nigeria
| | - Akinpelu L Abiola
- Department of Pharmacology & Toxicology, Prof Dora Akunyili College of Pharmacy, Igbinedion University Okada, Benin City, Edo, Nigeria
| | - Raymond I Ozolua
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Benin, 300001, Benin City, Nigeria
| | - Ighodaro Igbe
- Department of Pharmacology & Toxicology, Prof Dora Akunyili College of Pharmacy, Igbinedion University Okada, Benin City, Edo, Nigeria
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Benin, 300001, Benin City, Nigeria
| | - Ononiwu Chinazamoku
- Department of Pharmacology & Toxicology, Prof Dora Akunyili College of Pharmacy, Igbinedion University Okada, Benin City, Edo, Nigeria
| |
Collapse
|
4
|
Brüning CA, Rosa SG, Quines CB, Magni DV, Nonemacher NT, Bortolatto CF, Nogueira CW. The role of nitric oxide in glutaric acid-induced convulsive behavior in pup rats. Eur J Neurosci 2020; 52:3738-3745. [PMID: 32459863 DOI: 10.1111/ejn.14840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022]
Abstract
Glutaric acidaemia type I (GA-I) is a cerebral organic disorder characterized by the accumulation of glutaric acid (GA) and seizures. As seizures are precipitated in children with GA-I and the mechanisms underlying this disorder are not well established, we decided to investigate the role of nitric oxide (NO) in GA-induced convulsive behaviour in pup rats. Pup male Wistar rats (18-day-old) were anesthetized and placed in stereotaxic apparatus for cannula insertion into the striatum for injection of GA. The experiments were performed 3 days after surgery (pup rats 21-day-old). An inhibitor of NO synthesis (N-G-nitro-l-arginine methyl ester-L-NAME, 40 mg/kg) or saline (vehicle) was administered intraperitoneally 30 min before the intrastriatal injection of GA (1 µl, 1.3 µmol/striatum) or saline. Immediately after the intrastriatal injections, the latency and duration of seizures were recorded for 20 min. The administration of L-NAME significantly increased the latency to the first seizure episode and reduced the duration of seizures induced by GA in pup rats. The administration of the NO precursor l-arginine (L-ARG; 80 mg/kg) prevented the effects of L-NAME. Besides, GA significantly increased nitrate and nitrite (NOx) levels in the striatum of pup rats and the preadministration of L-NAME prevented this alteration. L-ARG blocked the reduction of striatal NOx provoked by L-NAME. These results are experimental evidence that NO plays a role in the seizures induced by GA in pup rats, being valuable in understanding the physiopathology of neurological signs observed in children with this organic acidaemia and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Suzan Gonçalves Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Federal University of Santa Maria (UFSM), Brazil
| | - Caroline Brandão Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Federal University of Santa Maria (UFSM), Brazil
| | - Danieli Valnes Magni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Federal University of Santa Maria (UFSM), Brazil
| | - Natália Tavares Nonemacher
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Neurobiotechnology Research Group, Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Pelotas, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Federal University of Santa Maria (UFSM), Brazil
| |
Collapse
|
5
|
Gerbatin RR, Silva LFA, Hoffmann MS, Della-Pace ID, do Nascimento PS, Kegler A, de Zorzi VN, Cunha JM, Botelho P, Neto JBT, Furian AF, Oliveira MS, Fighera MR, Royes LFF. Delayed creatine supplementation counteracts reduction of GABAergic function and protects against seizures susceptibility after traumatic brain injury in rats. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:328-338. [PMID: 30742861 DOI: 10.1016/j.pnpbp.2019.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/23/2019] [Accepted: 02/07/2019] [Indexed: 12/28/2022]
Abstract
Traumatic brain injury (TBI) is a devastating disease frequently followed by behavioral disabilities including post-traumatic epilepsy (PTE). Although reasonable progress in understanding its pathophysiology has been made, treatment of PTE is still limited. Several studies have shown the neuroprotective effect of creatine in different models of brain pathology, but its effects on PTE is not elucidated. Thus, we decided to investigate the impact of delayed and chronic creatine supplementation on susceptibility to epileptic seizures evoked by pentylenetetrazol (PTZ) after TBI. Our experimental data revealed that 4 weeks of creatine supplementation (300 mg/kg, p.o.) initiated 1 week after fluid percussion injury (FPI) notably increased the latency to first myoclonic and tonic-clonic seizures, decreased the time spent in tonic-clonic seizure, seizure intensity, epileptiform discharges and spindle oscillations induced by a sub-convulsant dose of PTZ (35 mg/kg, i.p.). Interestingly, this protective effect persists for 1 week even when creatine supplementation is discontinued. The anticonvulsant effect of creatine was associated with its ability to reduce cell loss including the number of parvalbumin positive (PARV+) cells in CA3 region of the hippocampus. Furthermore, creatine supplementation also protected against the reduction of GAD67 levels, GAD activity and specific [3H]flunitrazepam binding in the hippocampus. These findings showed that chronic creatine supplementation may play a neuroprotective role on brain excitability by controlling the GABAergic function after TBI, providing a possible new strategy for the treatment of PTE.
Collapse
Affiliation(s)
- Rogerio R Gerbatin
- Laboratório de Bioquímica do Exercício, Programa de Pós-Graduação em Educação Física, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luiz Fernando Almeida Silva
- Laboratório de Bioquímica do Exercício, Programa de Pós-Graduação em Educação Física, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maurício S Hoffmann
- Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Iuri D Della-Pace
- Laboratório de Bioquímica do Exercício, Programa de Pós-Graduação em Educação Física, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Patricia Severo do Nascimento
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aline Kegler
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Viviane Nogueira de Zorzi
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jane Marçal Cunha
- ratório de Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federaldo Pará, PA, Brazil
| | - Priscilla Botelho
- ratório de Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federaldo Pará, PA, Brazil
| | - João Bento Torres Neto
- ratório de Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federaldo Pará, PA, Brazil
| | - Ana Flavia Furian
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michele R Fighera
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Bioquímica do Exercício, Programa de Pós-Graduação em Educação Física, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Bioquímica do Exercício, Programa de Pós-Graduação em Educação Física, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Sampaio LRL, Borges LT, Silva JM, de Andrade FRO, Barbosa TM, Oliveira TQ, Macedo D, Lima RF, Dantas LP, Patrocinio MCA, do Vale OC, Vasconcelos SM. Average spectral power changes at the hippocampal electroencephalogram in schizophrenia model induced by ketamine. Fundam Clin Pharmacol 2017; 32:60-68. [DOI: 10.1111/fcp.12319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Luis Rafael L. Sampaio
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
- Health Science Center; School of Nursing; University of Fortaleza; Fortaleza Brazil
| | - Lucas T.N. Borges
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Joyse M.F. Silva
- Health Science Center; School of Nursing; University of Fortaleza; Fortaleza Brazil
| | | | - Talita M. Barbosa
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Tatiana Q. Oliveira
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Danielle Macedo
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Ricardo F. Lima
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Leonardo P. Dantas
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Manoel Cláudio A. Patrocinio
- Health Science Center; School of Medicine; University Centre Christus; Fortaleza Brazil
- Department of Anesthesiology; Dr. Jose Frota Institute Hospital; Fortaleza Brazil
| | - Otoni C. do Vale
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| | - Silvânia M.M. Vasconcelos
- Department of Physiology and Pharmacology; School of Medicine; Federal University of Ceará; Fortaleza Brazil
| |
Collapse
|
7
|
Sampaio LRL, Borges LTN, Barbosa TM, Matos NCB, Lima RDF, Oliveira MND, Gularte VN, Patrocínio MCA, Macêdo D, Vale OCD, Vasconcelos SMMD. Electroencephalographic study of chlorpromazine alone or combined with alpha-lipoic acid in a model of schizophrenia induced by ketamine in rats. J Psychiatr Res 2017; 86:73-82. [PMID: 27951451 DOI: 10.1016/j.jpsychires.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 11/20/2016] [Accepted: 12/01/2016] [Indexed: 11/18/2022]
Abstract
Schizophrenia is characterized by behavioral symptoms, brain function impairments and electroencephalographic (EEG) changes. Dysregulation of immune responses and oxidative imbalance underpins this mental disorder. The present study aimed to investigate the effects of the typical antipsychotic chlorpromazine (CP) alone or combined with the natural antioxidant alpha-lipoic acid (ALA) on changes in the hippocampal average spectral power induced by ketamine (KET). Three days after stereotactic implantation of electrodes, male Wistar rats were divided into groups treated for 10 days with saline (control) or KET (10 mg/kg, IP). CP (1 or 5 mg/kg, IP) alone or combined with ALA (100 mg/kg, P.O.) was administered 30 min before KET or saline. Hippocampal EEG recordings were taken on the 1st, 5th and 10th days of treatment immediately after the last drug administration. KET significantly increased average spectral power of delta and gamma-high bands on the 5th and 10th days of treatment when compared to control. Gamma low-band significantly increased on the 1st, 5th and 10th days when compared to control group. This effect of KET was prevented by CP alone or combined with ALA. Indeed, the combination of ALA 100 + CP1 potentiated the inhibitory effects of CP1 on gamma low-band oscillations. In conclusion, our results showed that KET presents excitatory and time-dependent effects on hippocampal EEG bands activity. KET excitatory effects on EEG were prevented by CP alone and in some situations potentiated by its combination with ALA.
Collapse
Affiliation(s)
- Luis Rafael Leite Sampaio
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Health Science Center, School of Nursing, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Lucas Teixeira Nunes Borges
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Health Science Center, School of Nursing, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Talita Matias Barbosa
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Natalia Castelo Branco Matos
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ricardo de Freitas Lima
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Viviane Nóbrega Gularte
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Danielle Macêdo
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Otoni Cardoso do Vale
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Silvânia Maria Mendes de Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
8
|
Amaral AU, Cecatto C, Seminotti B, Ribeiro CA, Lagranha VL, Pereira CC, de Oliveira FH, de Souza DG, Goodman S, Woontner M, Wajner M. Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload. Brain Res 2015; 1620:116-29. [DOI: 10.1016/j.brainres.2015.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 11/29/2022]
|
9
|
Kolpakova ME, Veselkina OS, Vlasov TD. Creatine in Cell Metabolism and Its Protective Action in Cerebral Ischemia. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0098-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
dos Santos FS, da Silva LA, Pochapski JA, Raczenski A, da Silva WC, Grassiolli S, Malfatti CRM. Effects of l-arginine and creatine administration on spatial memory in rats subjected to a chronic variable stress model. PHARMACEUTICAL BIOLOGY 2014; 52:1033-1038. [PMID: 24617967 DOI: 10.3109/13880209.2013.876654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Chronic stress results from repeated exposure to one or more types of stressors over a period, ranging from days to months, and can be associated with physical, behavioral, and neuropsychiatric manifestations. Some physiological alterations resulting from chronic stress can potentially cause deficits on spatial learning and memory. OBJECTIVE This study investigated the effects of chronic variable stress (CVS) and administration of l-arginine and creatine on spatial memory in rats. Furthermore, body, heart, adrenal weight, and plasma glucose and corticosterone levels were analyzed. MATERIAL AND METHODS Male Wistar rats were subjected to a CVS model for 40 days and evaluated for spatial memory after the stress period. Chronically stressed animals were treated daily by gavage with: 0.5% carboxymethylcellulose (Group Cs), 500 mg/kg l-arginine (Group Cs/La), 300 mg/kg creatine (Group Cs/Cr); and 500 mg/kg l-arginine and 300 mg/kg creatine (Group Cs/La + Cr) during the entire experimental period. RESULTS Our results showed that animals in the Cs/Cr and Cs/La + Cr groups presented significantly decreased corticosterone levels compared to group Cs (p < 0.05); animals in group Cs/Cr were more efficient in finding the platform, in the working memory task, compared to all other groups (p < 0.01); and animals in group Cs/La + Cr significantly improved in reference memory retention compared to controls (p < 0.05). DISCUSSION AND CONCLUSION Overall, these results demonstrated that a single administration of creatine improves working memory efficiency, and, when co-administrated with l-arginine, improves reference memory retention, a phenomenon that is possibly associated with increased creatine/phosphocreatine levels and l-arginine-derived NO synthesis.
Collapse
Affiliation(s)
- Fabio Seidel dos Santos
- Department of Physiotherapy, Biomedical Science Laboratory, Midwest State University , Guarapuava , Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Tian F, Fu X, Gao J, Ying Y, Hou L, Liang Y, Ning Q, Luo X. Glutaric acid-mediated apoptosis in primary striatal neurons. BIOMED RESEARCH INTERNATIONAL 2014; 2014:484731. [PMID: 24900967 PMCID: PMC4036723 DOI: 10.1155/2014/484731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/20/2014] [Accepted: 04/21/2014] [Indexed: 11/28/2022]
Abstract
Glutaric acid (GA) has been implicated in the mechanism of neurodegeneration in glutaric aciduria type I. In the present study, the potential cytotoxic effects of GA (0.1~50 mM for 24~96 h) were examined in cultured primary rat striatal neurons. Results showed increase in the number of cells labeled by annexin-V or with apoptotic features shown by Hoechst/PI staining and transmission electron microscopy (TEM) and upregulation of the expression of mRNA as well as the active protein fragments caspase 3, suggesting involvement of the caspase 3-dependent apoptotic pathway in GA-induced striatal neuronal death. This effect was in part suppressed by the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 but not the α -amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) antagonist 6-cyano-7-nitroquinoxalone-2,3-dione (CNQX). Thus, GA may trigger neuronal damage partially through apoptotic pathway and via activation of NMDA receptors in cultured primary striatal neurons.
Collapse
Affiliation(s)
- Fengyan Tian
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xi Fu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinzhi Gao
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yanqin Ying
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Hou
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qin Ning
- Laboratory of Infectious Immunology, Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
12
|
Rodrigues FS, Souza MA, Magni DV, Ferreira APO, Mota BC, Cardoso AM, Paim M, Xavier LL, Ferreira J, Schetinger MRC, Da Costa JC, Royes LFF, Fighera MR. N-acetylcysteine prevents spatial memory impairment induced by chronic early postnatal glutaric acid and lipopolysaccharide in rat pups. PLoS One 2013; 8:e78332. [PMID: 24205200 PMCID: PMC3813430 DOI: 10.1371/journal.pone.0078332] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/11/2013] [Indexed: 12/18/2022] Open
Abstract
Background and Aims Glutaric aciduria type I (GA-I) is characterized by accumulation of glutaric acid (GA) and neurological symptoms, such as cognitive impairment. Although this disease is related to oxidative stress and inflammation, it is not known whether these processes facilitate the memory impairment. Our objective was to investigate the performance of rat pups chronically injected with GA and lipopolysaccharide (LPS) in spatial memory test, antioxidant defenses, cytokines levels, Na+, K+-ATPase activity, and hippocampal volume. We also evaluated the effect of N-acetylcysteine (NAC) on theses markers. Methods Rat pups were injected with GA (5umol g of body weight-1, subcutaneously; twice per day; from 5th to 28th day of life), and were supplemented with NAC (150mg/kg/day; intragastric gavage; for the same period). LPS (2mg/kg; E.coli 055 B5) or vehicle (saline 0.9%) was injected intraperitoneally, once per day, from 25th to 28th day of life. Oxidative stress and inflammatory biomarkers as well as hippocampal volume were assessed. Results GA caused spatial learning deficit in the Barnes maze and LPS potentiated this effect. GA and LPS increased TNF-α and IL-1β levels. The co-administration of these compounds potentiated the increase of IL-1β levels but not TNF-α levels in the hippocampus. GA and LPS increased TBARS (thiobarbituric acid-reactive substance) content, reduced antioxidant defenses and inhibited Na+, K+-ATPase activity. GA and LPS co-administration did not have additive effect on oxidative stress markers and Na+, K+ pump. The hippocampal volume did not change after GA or LPS administration. NAC protected against impairment of spatial learning and increase of cytokines levels. NAC Also protected against inhibition of Na+,K+-ATPase activity and oxidative markers. Conclusions These results suggest that inflammatory and oxidative markers may underlie at least in part of the neuropathology of GA-I in this model. Thus, NAC could represent a possible adjuvant therapy in treatment of children with GA-I.
Collapse
Affiliation(s)
- Fernanda S Rodrigues
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brasil ; Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brasil ; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The activation of α1-adrenoceptors is implicated in the antidepressant-like effect of creatine in the tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:39-50. [PMID: 23357536 DOI: 10.1016/j.pnpbp.2013.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/08/2013] [Accepted: 01/18/2013] [Indexed: 11/20/2022]
Abstract
The antidepressant-like activity of creatine in the tail suspension test (TST) was demonstrated previously by our group. In this study we investigated the involvement of the noradrenergic system in the antidepressant-like effect of creatine in the mouse TST. In the first set of experiments, creatine administered by i.c.v. route (1 μg/site) decreased the immobility time in the TST, suggesting the central effect of this compound. The anti-immobility effect of peripheral administration of creatine (1 mg/kg, p.o.) was prevented by the pretreatment of mice with α-methyl-p-tyrosine (100 mg/kg, i.p., inhibitor of tyrosine hydroxylase), prazosin (1 mg/kg, i.p., α1-adrenoceptor antagonist), but not by yohimbine (1 mg/kg, i.p., α2-adrenoceptor antagonist). Creatine (0.01 mg/kg, subeffective dose) in combination with subeffective doses of amitriptyline (1 mg/kg, p.o., tricyclic antidepressant), imipramine (0.1 mg/kg, p.o., tricyclic antidepressant), reboxetine (2 mg/kg, p.o., selective noradrenaline reuptake inhibitor) or phenylephrine (0.4 μg/site, i.c.v., α1-adrenoceptor agonist) reduced the immobility time in the TST as compared with either drug alone. These results indicate that the antidepressant-like effect of creatine is likely mediated by an activation of α1-adrenoceptor and that creatine produces synergistic effects in the TST with antidepressants that modulate noradrenaline transporter, suggesting that an improvement in the response to the antidepressant therapy may occur when creatine is combined with these antidepressants. Furthermore, the synergistic effect of creatine (0.01 mg/kg, p.o.) and reboxetine (2 mg/kg, p.o.) combination was abolished by the α1-adrenoceptor antagonist prazosin, indicating that the antidepressant-like effect of combined therapy is likely mediated by an activation of α1-adrenoceptor.
Collapse
|
14
|
Amaral AU, Seminotti B, Cecatto C, Fernandes CG, Busanello ENB, Zanatta Â, Kist LW, Bogo MR, de Souza DOG, Woontner M, Goodman S, Koeller DM, Wajner M. Reduction of Na+, K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: a possible mechanism for brain injury in glutaric aciduria type I. Mol Genet Metab 2012; 107:375-82. [PMID: 22999741 DOI: 10.1016/j.ymgme.2012.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
Abstract
Mitochondrial dysfunction has been proposed to play an important role in the neuropathology of glutaric acidemia type I (GA I). However, the relevance of bioenergetics disruption and the exact mechanisms responsible for the cortical leukodystrophy and the striatum degeneration presented by GA I patients are not yet fully understood. Therefore, in the present work we measured the respiratory chain complexes activities I-IV, mitochondrial respiratory parameters state 3, state 4, the respiratory control ratio and dinitrophenol (DNP)-stimulated respiration (uncoupled state), as well as the activities of α-ketoglutarate dehydrogenase (α-KGDH), creatine kinase (CK) and Na+, K+-ATPase in cerebral cortex, striatum and hippocampus from 30-day-old Gcdh-/- and wild type (WT) mice fed with a normal or a high Lys (4.7%) diet. When a baseline (0.9% Lys) diet was given, we verified mild alterations of the activities of some respiratory chain complexes in cerebral cortex and hippocampus, but not in striatum from Gcdh-/- mice as compared to WT animals. Furthermore, the mitochondrial respiratory parameters and the activities of α-KGDH and CK were not modified in all brain structures from Gcdh-/- mice. In contrast, we found a significant reduction of Na(+), K(+)-ATPase activity associated with a lower degree of its expression in cerebral cortex from Gcdh-/- mice. Furthermore, a high Lys (4.7%) diet did not accentuate the biochemical alterations observed in Gcdh-/- mice fed with a normal diet. Since Na(+), K(+)-ATPase activity is required for cell volume regulation and to maintain the membrane potential necessary for a normal neurotransmission, it is presumed that reduction of this enzyme activity may represent a potential underlying mechanism involved in the brain swelling and cortical abnormalities (cortical atrophy with leukodystrophy) observed in patients affected by GA I.
Collapse
Affiliation(s)
- Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Acute creatine administration improves mitochondrial membrane potential and protects against pentylenetetrazol-induced seizures. Amino Acids 2012; 44:857-68. [DOI: 10.1007/s00726-012-1408-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 09/24/2012] [Indexed: 11/26/2022]
|
16
|
Amaral AU, Cecatto C, Seminotti B, Zanatta Â, Fernandes CG, Busanello ENB, Braga LM, Ribeiro CAJ, de Souza DOG, Woontner M, Koeller DM, Goodman S, Wajner M. Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice. Mol Genet Metab 2012; 107:81-6. [PMID: 22578804 DOI: 10.1016/j.ymgme.2012.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 12/23/2022]
Abstract
Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase activity leading to accumulation of predominantly glutaric (GA) and 3-hydroxyglutaric (3HGA) acids in the brain and other tissues. Affected patients usually present with hypotonia and brain damage and acute encephalopathic episodes whose pathophysiology is not yet fully established. In this study we investigated important parameters of cellular bioenergetics in brain, heart and skeletal muscle from 15-day-old glutaryl-CoA dehydrogenase deficient mice (Gcdh(-/-)) submitted to a single intra-peritoneal injection of saline (Sal) or lysine (Lys - 8 μmol/g) as compared to wild type (WT) mice. We evaluated the activities of the respiratory chain complexes II, II-III and IV, α-ketoglutarate dehydrogenase (α-KGDH), creatine kinase (CK) and synaptic Na(+), K(+)-ATPase. No differences of all evaluated parameters were detected in the Gcdh(-/-) relatively to the WT mice injected at baseline (Sal). Furthermore, mild increases of the activities of some respiratory chain complexes (II-III and IV) were observed in heart and skeletal muscle of Gcdh(-/-) and WT mice after Lys administration. However, the most marked effects provoked by Lys administration were marked decreases of the activities of Na(+), K(+)-ATPase in brain and CK in brain and skeletal muscle of Gcdh(-/-) mice. In contrast, brain α-KGDH activity was not altered in WT and Gcdh(-/-) injected with Sal or Lys. Our results demonstrate that reduction of Na(+), K(+)-ATPase and CK activities may play an important role in the pathogenesis of the neurodegenerative changes in GA I.
Collapse
Affiliation(s)
- Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rambo LM, Ribeiro LR, Schramm VG, Berch AM, Stamm DN, Della-Pace ID, Silva LFA, Furian AF, Oliveira MS, Fighera MR, Royes LFF. Creatine increases hippocampal Na+,K+-ATPase activity via NMDA–calcineurin pathway. Brain Res Bull 2012; 88:553-9. [DOI: 10.1016/j.brainresbull.2012.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 05/28/2012] [Accepted: 06/17/2012] [Indexed: 10/28/2022]
|
18
|
Magni DV, Brüning CA, Gai BM, Quines CB, Rosa SG, Fighera MR, Nogueira CW. m-Trifluoromethyl diphenyl diselenide attenuates glutaric acid-induced seizures and oxidative stress in rat pups: involvement of the γ-aminobutyric acidergic system. J Neurosci Res 2012; 90:1723-31. [PMID: 22535575 DOI: 10.1002/jnr.23070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/15/2012] [Accepted: 03/22/2012] [Indexed: 11/11/2022]
Abstract
Glutaric acidemia type I (GA-I) is an inherited metabolic disease characterized by accumulation of glutaric acid (GA) and seizures. The intrastriatal GA administration in rats has been used as an animal model to mimic seizures presented by glutaric acidemic patients. m-Trifluoromethyl diphenyl diselenide, (m-CF(3) -C(6) H(4) Se)(2) , is an organoselenium compound that protects against seizures induced by pentylenetetrazole in mice. Thus, the aim of this study was to investigate whether (m-CF(3) -C(6) H(4) Se)(2) is effective against GA-induced seizures and oxidative stress in rat pups 21 days of age. Our findings demonstrate that (m-CF(3) -C(6) H(4) Se)(2) preadministration (50 mg/kg; p.o.) protected against the reduction in latency and the increased duration of GA (1.3 μmol/right striatum)-induced seizures in rat pups. In addition, (m-CF(3) -C(6) H(4) Se)(2) protected against the increase in reactive species generation and the reduction in antioxidant defenses glutathione peroxidase and glutathione S-transferase activities induced by GA. By contrast, no change in glutathione reductase or catalase activities was found. In addition, (m-CF(3) -C(6) H(4) Se)(2) was effective in protecting against inhibition of Na(+) ,K(+) -ATPase activity caused by GA in striatum of rat pups. This study showed for the first time that GA administration caused an increase in [(3) H]GABA uptake from striatum slices of rat pups and that (m-CF(3) -C(6) H(4) Se)(2) preadministration protected against this increase. A positive correlation between duration of seizures and [(3) H]GABA uptake levels was demonstrated. The results indicate that (m-CF(3) -C(6) H(4) Se)(2) protected against GA-induced seizures. Moreover, these findings suggest that the protection against oxidative stress, the inhibition of Na(+) ,K(+) -ATPase activity, and the increase in [(3) H]GABA uptake are possible mechanisms for the potential anticonvulsant action of (m-CF(3) -C(6) H(4) Se)(2).
Collapse
Affiliation(s)
- Danieli Valnes Magni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brasil.
| | | | | | | | | | | | | |
Collapse
|
19
|
Tyrosine impairs enzymes of energy metabolism in cerebral cortex of rats. Mol Cell Biochem 2012; 364:253-61. [PMID: 22311600 DOI: 10.1007/s11010-012-1225-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
Tyrosine levels are abnormally elevated in tissues and physiological fluids of patients with inborn errors of tyrosine catabolism, especially in tyrosinemia type II, which is caused by deficiency of tyrosine aminotransferase and provokes eyes, skin, and central nervous system disturbances. Considering that the mechanisms of brain damage in these disorders are poorly known, in this study, we investigated the in vivo and in vitro effects of tyrosine on some parameters of energy metabolism in cerebral cortex of 14-day-old Wistar rats. We observed that 2 mM tyrosine inhibited in vitro the pyruvate kinase (PK) activity and that this inhibition was prevented by 1 mM reduced glutathione with 30, 60, and 90 min of preincubation. Moreover, administration of tyrosine methyl ester (TME) (0.5 mg/g of body weight) decreased the activity of PK and this reduction was prevented by pre-treatment with creatine (Cr). On the other hand, tyrosine did not alter adenylate kinase (AK) activity in vitro, but administration of TME enhanced AK activity not prevented by Cr pre-treatment. Finally, TME administration decreased the activity of CK from cytosolic and mitochondrial fractions and this diminution was prevented by Cr pre-treatment. The results suggest that tyrosine alters essential sulfhydryl groups necessary for CK and PK functions, possibly through oxidative stress. In case this also occurs in the patients, it is possible that energy metabolism alterations may contribute, along with other mechanisms, to the neurological dysfunction of hypertyrosinemias.
Collapse
|
20
|
Tian F, Fu X, Gao J, Zhang C, Ning Q, Luo X. Caspase-3 mediates apoptosis of striatal cells in GA I rat model. ACTA ACUST UNITED AC 2012; 32:107-112. [PMID: 22282255 DOI: 10.1007/s11596-012-0019-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Indexed: 11/30/2022]
Abstract
In previous study, glutaric acid (GA) induced apoptosis of primary striatal neuron in vitro. In order to investigate the neurotoxic effects of GA on neonatal rat corpus striatum and the possible mechanism, 34 male pups were randomly assigned to NS group, low dose GA (LGA, 5 μmol GA/g body weight) group and high dose GA (HGA, 10 μmol GA/g body weight) group. These pups were subcutaneously administered with three injections from postnatal day 3 to 22 at 7:30 am, 15:00 pm and 22:30 pm and killed 12 h after the last injection. Microscopic pathology in corpus striatum was evaluated by HE staining. The apoptotic cells were identified by TUNEL staining. The transcript levels of caspase-3, 8, 9, Bax, Bcl-2 were detected by using real-time PCR and the protein levels of procaspase-3 and the active fraction were evaluated by Western blotting. In LGA and HGA groups, ventricle collapse, cortical atrophy by a macroscope and interstitial edema, vacuolations, widened perivascular space of bilateral striatum by a microscope were observed. TUNEL assay revealed that the apoptotic cells were increased in LGA and HGA groups. The transcript of caspase-3 was up-regulated to 2.5 fold, accompanied by the up-regulation of caspase-9, Bax and down-regulation of Bcl-2. The protein levels of procaspase-3 and the active fraction were up-regulated in LGA and HGA groups. The rat model for GA I showed mitochondrial apoptotic pathway may be involved in the GA-induced striatal lesion. Further studies should be taken to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Fengyan Tian
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Fu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinzhi Gao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Jafari P, Braissant O, Bonafé L, Ballhausen D. The unsolved puzzle of neuropathogenesis in glutaric aciduria type I. Mol Genet Metab 2011; 104:425-37. [PMID: 21944461 DOI: 10.1016/j.ymgme.2011.08.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 12/22/2022]
Abstract
Glutaric aciduria type I (GA-I) is a cerebral organic aciduria caused by deficiency of glutaryl-Co-A dehydrogenase (GCDH). GCDH deficiency leads to accumulation of glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA), two metabolites that are believed to be neurotoxic, in brain and body fluids. The disorder usually becomes clinically manifest during a catabolic state (e.g. intercurrent illness) with an acute encephalopathic crisis that results in striatal necrosis and in a permanent dystonic-dyskinetic movement disorder. The results of numerous in vitro and in vivo studies have pointed to three main mechanisms involved in the metabolite-mediated neuronal damage: excitotoxicity, impairment of energy metabolism and oxidative stress. There is evidence that during a metabolic crisis GA and its metabolites are produced endogenously in the CNS and accumulate because of limiting transport mechanisms across the blood-brain barrier. Despite extensive experimental work, the relative contribution of the proposed pathogenic mechanisms remains unclear and specific therapeutic approaches have yet to be developed. Here, we review the experimental evidence and try to delineate possible pathogenetic models and approaches for future studies.
Collapse
Affiliation(s)
- Paris Jafari
- Inborn Errors of Metabolism, Molecular Pediatrics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|
22
|
Saraiva ALL, Ferreira APO, Silva LFA, Hoffmann MS, Dutra FD, Furian AF, Oliveira MS, Fighera MR, Royes LFF. Creatine reduces oxidative stress markers but does not protect against seizure susceptibility after severe traumatic brain injury. Brain Res Bull 2011; 87:180-6. [PMID: 22051612 DOI: 10.1016/j.brainresbull.2011.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 10/04/2011] [Accepted: 10/20/2011] [Indexed: 12/22/2022]
Abstract
Achievements made over the last years have highlighted the important role of creatine in health and disease. However, its effects on hyperexcitable circuit and oxidative damage induced by traumatic brain injury (TBI) are not well understood. In the present study we revealed that severe TBI elicited by fluid percussion brain injury induced oxidative damage characterized by protein carbonylation, thiobarbituric acid reactive species (TBARS) increase and Na(+),K(+)-ATPase activity inhibition 4 and 8 days after neuronal injury. Statistical analysis showed that after TBI creatine supplementation (300 mg/kg, p.o.) decreased the levels of protein carbonyl and TBARS but did not protect against TBI-induced Na(+),K(+)-ATPase activity inhibition. Electroencephalography (EEG) analysis revealed that the injection of a subconvulsant dose of PTZ (35 mg/kg, i.p.), 4 but not 8 days after neuronal injury, decreased latency for the first clonic seizures and increased the time of spent generalized tonic-clonic seizures compared with the sham group. In addition, creatine supplementation had no effect on convulsive parameters induced by a subconvulsant dose of PTZ. Current experiments provide evidence that lipid and protein oxidation represents a separate pathway in the early post-traumatic seizures susceptibility. Furthermore, the lack of consistent anticonvulsant effect exerted by creatine in this early phase suggests that its apparent antioxidant effect does not protect against excitatory input generation induced by TBI.
Collapse
Affiliation(s)
- André Luis Lopes Saraiva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Magni DV, Souza MA, Oliveira APF, Furian AF, Oliveira MS, Ferreira J, Santos ARS, Mello CF, Royes LFF, Fighera MR. Lipopolysaccharide enhances glutaric acid-induced seizure susceptibility in rat pups: Behavioral and electroencephalographic approach. Epilepsy Res 2011; 93:138-48. [DOI: 10.1016/j.eplepsyres.2010.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 12/31/2022]
|
24
|
Kolling J, Wyse ATS. Creatine prevents the inhibition of energy metabolism and lipid peroxidation in rats subjected to GAA administration. Metab Brain Dis 2010; 25:331-8. [PMID: 20830606 DOI: 10.1007/s11011-010-9215-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/06/2010] [Indexed: 11/30/2022]
Abstract
Guanidinoacetate methyltransferase (GAMT) deficiency is an inherited neurometabolic disorder, biochemically characterized by the tissue accumulation of guanidinoacetate (GAA). Affected patients present epilepsy and mental retardation whose etiopathogeny is unclear. Previous reports have shown that GAA alters brain energy metabolism and that creatine, which is depleted in patients with GAMT deficiency, can act as a neuroprotector; as such, in the present study we investigated the effect of creatine administration on some of the altered parameters of energy metabolism (complex II, Na(+),K(+)-ATPase and creatine kinase) and lipid peroxidation caused by intrastriatal administration of GAA in adult rats. Animals were pretreated for 7 days with daily intraperitonial administrations of creatine. Subsequently, these animals were divided into two groups: Group 1 (sham group), rats that suffered surgery and received saline; and group 2 (GAA-treated). Thirty min after GAA or saline, the animals were sacrificed and the striatum dissected out. Results showed that the administration of creatine was able to reverse the activities of complex II, Na(+),K(+)-ATPase and creatine kinase, as well as, the levels of thiobarbituric acid reactive substances (TBARS), an index of lipid peroxidation. These findings indicate that the energy metabolism deficit caused by GAA may be prevented by creatine, which probably acts as an antioxidant since it was able to prevent lipid peroxidation. These data may contribute, at least in part, to a better understanding of the mechanisms related to the energy deficit and oxidative stress observed in GAMT deficiency.
Collapse
Affiliation(s)
- Janaína Kolling
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, Brazil
| | | |
Collapse
|
25
|
Additive anticonvulsant effects of creatine supplementation and physical exercise against pentylenetetrazol-induced seizures. Neurochem Int 2009; 55:333-40. [DOI: 10.1016/j.neuint.2009.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 04/01/2009] [Indexed: 11/22/2022]
|
26
|
Astrocytic proliferation and mitochondrial dysfunction induced by accumulated glutaric acidemia I (GAI) metabolites: Possible implications for GAI pathogenesis. Neurobiol Dis 2008; 32:528-34. [DOI: 10.1016/j.nbd.2008.09.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/02/2008] [Accepted: 09/09/2008] [Indexed: 11/24/2022] Open
|
27
|
Magni DV, Furian AF, Oliveira MS, Souza MA, Lunardi F, Ferreira J, Mello CF, Royes LFF, Fighera MR. Kinetic characterization of
l‐
[
3
H]glutamate uptake inhibition and increase oxidative damage induced by glutaric acid in striatal synaptosomes of rats. Int J Dev Neurosci 2008; 27:65-72. [DOI: 10.1016/j.ijdevneu.2008.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/30/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022] Open
Affiliation(s)
- Danieli Valnes Magni
- Centro de Ciências da SaúdeLaboratório de Psicofarmacologia e Neurotoxicidade, Departamento de FisiologiaUniversidade Federal de Santa Maria97105‐900Santa MariaRSBrazil
| | - Ana Flávia Furian
- Centro de Ciências da SaúdeLaboratório de Psicofarmacologia e Neurotoxicidade, Departamento de FisiologiaUniversidade Federal de Santa Maria97105‐900Santa MariaRSBrazil
- Programa de Pós‐graduação em Ciências Biológicas: BioquímicaUniversidade Federal do Rio Grande do Sul90035‐003Porto AlegreRSBrazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da SaúdeLaboratório de Psicofarmacologia e Neurotoxicidade, Departamento de FisiologiaUniversidade Federal de Santa Maria97105‐900Santa MariaRSBrazil
- Programa de Pós‐graduação em Ciências Biológicas: BioquímicaUniversidade Federal do Rio Grande do Sul90035‐003Porto AlegreRSBrazil
| | - Mauren Assis Souza
- Centro de Ciências da SaúdeLaboratório de Psicofarmacologia e Neurotoxicidade, Departamento de FisiologiaUniversidade Federal de Santa Maria97105‐900Santa MariaRSBrazil
- Centro de Educação Física e DesportosDepartamento de Métodos e Técnicas DesportivasUniversidade Federal de Santa Maria97105‐900Santa MariaRSBrazil
| | - Fabiane Lunardi
- Centro de Ciências Naturais e ExatasLaboratório de Neurotoxicidade, Departamento de QuímicaUniversidade Federal de Santa Maria97105‐900Santa MariaRSBrazil
| | - Juliano Ferreira
- Centro de Ciências Naturais e ExatasLaboratório de Neurotoxicidade, Departamento de QuímicaUniversidade Federal de Santa Maria97105‐900Santa MariaRSBrazil
| | - Carlos Fernando Mello
- Centro de Ciências da SaúdeLaboratório de Psicofarmacologia e Neurotoxicidade, Departamento de FisiologiaUniversidade Federal de Santa Maria97105‐900Santa MariaRSBrazil
| | - Luiz Fernando Freire Royes
- Centro de Ciências da SaúdeLaboratório de Psicofarmacologia e Neurotoxicidade, Departamento de FisiologiaUniversidade Federal de Santa Maria97105‐900Santa MariaRSBrazil
- Centro de Ciências Naturais e ExatasLaboratório de Neurotoxicidade, Departamento de QuímicaUniversidade Federal de Santa Maria97105‐900Santa MariaRSBrazil
- Centro de Educação Física e DesportosDepartamento de Métodos e Técnicas DesportivasUniversidade Federal de Santa Maria97105‐900Santa MariaRSBrazil
| | - Michele Rechia Fighera
- Centro de Ciências da SaúdeLaboratório de Psicofarmacologia e Neurotoxicidade, Departamento de FisiologiaUniversidade Federal de Santa Maria97105‐900Santa MariaRSBrazil
- Centro de Ciências da SaúdeDepartamento de PediatriaUniversidade Federal de Santa Maria97105‐900Santa MariaRSBrazil
- Universidade Luterana do BrasilCampus Santa MariaSanta MariaRSBrazil
| |
Collapse
|