1
|
Helmschrodt C, Höbel S, Schöniger S, Bauer A, Bonicelli J, Gringmuth M, Fietz SA, Aigner A, Richter A, Richter F. Polyethylenimine Nanoparticle-Mediated siRNA Delivery to Reduce α-Synuclein Expression in a Model of Parkinson's Disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:57-68. [PMID: 29246324 PMCID: PMC5602522 DOI: 10.1016/j.omtn.2017.08.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 02/07/2023]
Abstract
RNA interference (RNAi)-based strategies that mediate the specific knockdown of target genes by administration of small interfering RNAs (siRNAs) could be applied for treatment of presently incurable neurodegenerative diseases such as Parkinson’s disease. However, inefficient delivery of siRNA into neurons hampers in vivo application of RNAi. We have previously established the 4–12 kDa branched polyethylenimine (PEI) F25-LMW with superior transfection efficacy for delivery of siRNA in vivo. Here, we present that siRNA complexed with this PEI extensively distributes across the CNS down to the lumbar spinal cord after a single intracerebroventricular infusion. siRNA against α-synuclein (SNCA), a pre-synaptic protein that aggregates in Parkinson’s disease, was complexed with PEI F25-LMW and injected into the lateral ventricle of mice overexpressing human wild-type SNCA (Thy1-aSyn mice). Five days after the single injection of 0.75 μg PEI/siRNA, SNCA mRNA expression in the striatum was reduced by 65%, accompanied by reduction of SNCA protein by ∼50%. Mice did not show signs of toxicity or adverse effects. Moreover, ependymocytes and brain parenchyma were completely preserved and free of immune cell invasion, astrogliosis, or microglial activation. Our results support the efficacy and safety of PEI nanoparticle-mediated delivery of siRNA to the brain for therapeutic intervention.
Collapse
Affiliation(s)
- Christin Helmschrodt
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Sabrina Höbel
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, Leipzig 04107, Germany
| | - Sandra Schöniger
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Anne Bauer
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Jana Bonicelli
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Marieke Gringmuth
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Simone A Fietz
- Veterinary Institute of Anatomy, Histology, and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, Leipzig 04107, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany.
| | - Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig 04103, Germany
| |
Collapse
|
2
|
Hüske C, Sander SE, Hamann M, Kershaw O, Richter F, Richter A. Towards optimized anesthesia protocols for stereotactic surgery in rats: Analgesic, stress and general health effects of injectable anesthetics. A comparison of a recommended complete reversal anesthesia with traditional chloral hydrate monoanesthesia. Brain Res 2016; 1642:364-375. [DOI: 10.1016/j.brainres.2016.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/17/2016] [Accepted: 04/07/2016] [Indexed: 11/29/2022]
|
3
|
Protective Effect of Oral Hesperetin Against Unilateral Striatal 6-Hydroxydopamine Damage in the Rat. Neurochem Res 2015; 41:1065-72. [DOI: 10.1007/s11064-015-1796-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 12/01/2015] [Accepted: 12/08/2015] [Indexed: 12/12/2022]
|
4
|
MEI JIAMING, NIU CHAOSHI. Effects of engineered conserved dopamine neurotrophic factor-expressing bone marrow stromal cells on dopaminergic neurons following 6-OHDA administrations. Mol Med Rep 2015; 11:1207-13. [DOI: 10.3892/mmr.2014.2878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 09/19/2014] [Indexed: 11/05/2022] Open
|
5
|
Costa KM, Maciel IS, Kist LW, Campos MM, Bogo MR. Pharmacological inhibition of CXCR2 chemokine receptors modulates paraquat-induced intoxication in rats. PLoS One 2014; 9:e105740. [PMID: 25153082 PMCID: PMC4143277 DOI: 10.1371/journal.pone.0105740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 07/28/2014] [Indexed: 11/23/2022] Open
Abstract
Paraquat (PQ) is an agrochemical agent commonly used worldwide, which is allied to potential risks of intoxication. This herbicide induces the formation of reactive oxygen species (ROS) that ends up compromising various organs, particularly the lungs and the brain. This study evaluated the deleterious effects of paraquat on the central nervous system (CNS) and peripherally, with special attempts to assess the putative protective effects of the selective CXCR2 receptor antagonist SB225002 on these parameters. PQ-toxicity was induced in male Wistar rats, in a total dose of 50 mg/kg, and control animals received saline solution at the same schedule of administration. Separate groups of animals were treated with the selective CXCR2 antagonist SB225002 (1 or 3 mg/kg), administered 30 min before each paraquat injection. The major changes found in paraquat-treated animals were: decreased body weight and hypothermia, nociception behavior, impairment of locomotor and gait capabilities, enhanced TNF-α and IL-1β expression in the striatum, and cell migration to the lungs and blood. Some of these parameters were reversed when the antagonist SB225002 was administered, including recovery of physiological parameters, decreased nociception, improvement of gait abnormalities, modulation of striatal TNF-α and IL-1β expression, and decrease of neutrophil migration to the lungs and blood. Taken together, our results demonstrate that damage to the central and peripheral systems elicited by paraquat can be prevented by the pharmacological inhibition of CXCR2 chemokine receptors. The experimental evidence presented herein extends the comprehension on the toxicodynamic aspects of paraquat, and opens new avenues to treat intoxication induced by this herbicide.
Collapse
Affiliation(s)
- Kesiane M. Costa
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
| | - Izaque S. Maciel
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
| | - Luiza W. Kist
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
| | - Maria M. Campos
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
- Institute of Toxicology and Pharmacology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
- Faculty of Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil,
| | - Maurício R. Bogo
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
- Postgraduate Program in Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre/RS, Brazil
- * E-mail:
| |
Collapse
|
6
|
Salama M, Arias-Carrión O. Natural toxins implicated in the development of Parkinson's disease. Ther Adv Neurol Disord 2012; 4:361-73. [PMID: 22164190 DOI: 10.1177/1756285611413004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Experimental models of Parkinson's disease (PD) are of great importance for improving the design of future clinical trials. Various neurotoxic models are available, including 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), paraquat and rotenone. However, no model is considered perfect; each has its own limitations. Based on epidemiological data, a new trend of using environmental toxins in PD modeling seems attractive and has dominated public discussions of the disease etiology. A search for new environmental toxin-based models would improve our knowledge of the pathology of the condition. Here, we discuss some toxins of natural origin (e.g. cycad-derived toxins, epoxomicin, Nocardia asteroides bacteria, Streptomyces venezuelae bacteria, annonacin and DOPAL) that possibly represent a contributory environmental component to PD.
Collapse
|
7
|
Heuer A, Smith GA, Lelos MJ, Lane EL, Dunnett SB. Unilateral nigrostriatal 6-hydroxydopamine lesions in mice I: motor impairments identify extent of dopamine depletion at three different lesion sites. Behav Brain Res 2011; 228:30-43. [PMID: 22146593 DOI: 10.1016/j.bbr.2011.11.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 12/17/2022]
Abstract
The unilateral 6-hydroxydopamine mouse lesion models of Parkinson's disease have received increasing attention in recent years, but comparison of the different lesion models was largely focused at a histological level. An extensive behavioural comparison between different mouse models on tests of motor function has yet to be carried out, to pin point tests that accurately discriminate between different extents of dopaminergic depletion. In the present study we examine the consequences of injection of the toxin at three sites along the nigrostriatal tract (substantia nigra, medial forebrain bundle, and striatum) on a broad range of simple motor tasks, and on the dopaminergic pathology. All lesion groups demonstrated marked behavioural deficits and displayed distinct profiles of degeneration along the nigrostriatal dopamine pathway. Tests that correlated closely with the level of substantia nigra cell loss included the corridor, cylinder and balance beam tests, the rotarod, inverted cage lid and three types of rotational assessment (spontaneous, amphetamine-induced and apomorphine-induced). Specific tasks are identified which are capable of distinguishing a near-complete lesion, with amphetamine rotation, corridor and cylinder tests showing the highest correlations with levels of nigral cell loss. Performance in the different behavioural tests was associated with distinct profiles of cell loss in the SN and VTA. We provide a comprehensive behavioural assessment of lesion-induced deficits in mouse models of PD, which should facilitate selection of the most appropriate lesion model and most sensitive behavioural tests for use in future studies investigating therapeutic interventions.
Collapse
Affiliation(s)
- Andreas Heuer
- Brain Repair Group, School of Bioscience, Cardiff University, Cardiff, Wales, UK.
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Elhak SG, Ghanem AA, Abdelghaffar H, Eldakroury S, Eltantawy D, Eldosouky S, Salama M. The role of pramipexole in a severe Parkinson's disease model in mice. Ther Adv Neurol Disord 2011; 3:333-7. [PMID: 21179594 DOI: 10.1177/1756285610389655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Pramipexole is one of a new generation of dopamine agonists. Recently there have been questions regarding its neuroprotective effects. These effects have been tested against various insults, which have yielded conflicting results. METHODS In this study, we introduced a combination of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/paraquat to induce a severe Parkinson's disease model. The mice, after receiving the combination of toxins, were evaluated using mortality rates and immunohistochemistry for degenerating tyrosine hydroxylase-positive neurons. RESULTS AND CONCLUSIONS Pramipexole was tested for its capacity to offer protection against neurotoxic the effects of MPTP/paraquat in this model; however, the results showed no improvement with pramipexole therapy.
Collapse
|
10
|
Pratte M, Panayotis N, Ghata A, Villard L, Roux JC. Progressive motor and respiratory metabolism deficits in post-weaning Mecp2-null male mice. Behav Brain Res 2011; 216:313-20. [DOI: 10.1016/j.bbr.2010.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 07/30/2010] [Accepted: 08/08/2010] [Indexed: 12/11/2022]
|
11
|
Branchi I, D’Andrea I, Armida M, Carnevale D, Ajmone-Cat MA, Pèzzola A, Potenza RL, Morgese MG, Cassano T, Minghetti L, Popoli P, Alleva E. Striatal 6-OHDA lesion in mice: Investigating early neurochemical changes underlying Parkinson's disease. Behav Brain Res 2010; 208:137-43. [DOI: 10.1016/j.bbr.2009.11.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/04/2009] [Accepted: 11/09/2009] [Indexed: 12/31/2022]
|
12
|
Pierre SR, Lemmens MAM, Figueiredo-Pereira ME. Subchronic infusion of the product of inflammation prostaglandin J2 models sporadic Parkinson's disease in mice. J Neuroinflammation 2009; 6:18. [PMID: 19630993 PMCID: PMC2724408 DOI: 10.1186/1742-2094-6-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 07/25/2009] [Indexed: 11/10/2022] Open
Abstract
Background Chronic neuroinflammation is implicated in Parkinson's disease (PD). Inflammation involves the activation of microglia and astrocytes that release high levels of prostaglandins. There is a profound gap in our understanding of how cyclooxygenases and their prostaglandin products redirect cellular events to promote PD neurodegeneration. The major prostaglandin in the mammalian brain is prostaglandin D2, which readily undergoes spontaneous dehydration to generate the bioactive cyclopentenone prostaglandins of the J2 series. These J2 prostaglandins are highly reactive and neurotoxic products of inflammation shown in cellular models to impair the ubiquitin/proteasome pathway and cause the accumulation of ubiquitinated proteins. PD is a disorder that exhibits accumulation of ubiquitinated proteins in neuronal inclusions (Lewy bodies). The role of J2 prostaglandins in promoting PD neurodegeneration has not been investigated under in vivo conditions. Methods We addressed the neurodegenerative and behavioral effects of the administration of prostaglandin J2 (PGJ2) simultaneously into the substantia nigra/striatum of adult male FVB mice by subchronic microinjections. One group received unilateral injections of DMSO (vehicle, n = 6) and three groups received PGJ2 [3.4 μg or 6.7 μg (n = 6 per group) or 16.7 μg (n = 5)] per injection. Immunohistochemical and behavioral analyses were applied to assess the effects of the subchronic PGJ2 microinfusions. Results Immunohistochemical analysis demonstrated a PGJ2 dose-dependent significant and selective loss of dopaminergic neurons in the substantia nigra while the GABAergic neurons were spared. PGJ2 also triggered formation of aggregates immunoreactive for ubiquitin and α-synuclein in the spared dopaminergic neurons. Moreover, PGJ2 infusion caused a massive microglia and astrocyte activation that could initiate a deleterious cascade leading to self-sustained progressive neurodegeneration. The PGJ2-treated mice also exhibited locomotor and posture impairment. Conclusion Our studies establish the first model of inflammation in which administration of an endogenous highly reactive product of inflammation, PGJ2, recapitulates key aspects of PD. Our novel PGJ2-induced PD model strongly supports the view that localized and chronic production of highly reactive and neurotoxic prostaglandins, such as PGJ2, in the CNS could be an integral component of inflammation triggered by insults evoked by physical, chemical or microbial stimuli and thus establishes a link between neuroinflammation and PD neurodegeneration.
Collapse
Affiliation(s)
- Sha-Ron Pierre
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.
| | | | | |
Collapse
|
13
|
Hamann M, Sohr R, Morgenstern R, Richter A. Extracellular amino acid levels in the striatum of the dt(sz) mutant, a model of paroxysmal dystonia. Neuroscience 2008; 157:188-95. [PMID: 18824218 DOI: 10.1016/j.neuroscience.2008.08.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/27/2008] [Accepted: 08/31/2008] [Indexed: 10/21/2022]
Abstract
The pathophysiology of idiopathic dystonia is still unknown, but it is regarded as a basal ganglia disorder. Previous studies indicated an involvement of a striatal GABAergic disinhibition and a cortico-striatal glutamatergic overactivity in the manifestation of stress-inducible dystonic episodes in the dt(sz) hamster, a model of idiopathic paroxysmal dystonia. These investigations were carried out postmortem or in anesthetized animals. In the present study, in vivo microdialysis in conscious, freely-moving dt(sz) and non-dystonic control hamsters was used to examine the levels of GABA, aspartate, glutamate, glutamine, glycine and taurine in each animal during following conditions: (1) at baseline in the absence of dystonia, (2) during an episode of paroxysmal dystonia precipitated by stressful stimuli, (3) during a recovery period and (4) at baseline after complete recovery. In comparison to non-dystonic controls, which were treated in the same manner as the dystonic animals, no differences could be detected under basal conditions. The induction of a dystonic episode in mutant hamsters led to higher contents of glycine in these animals in comparison to stressed but non-dystonic controls. Significant changes of glycine levels within the animal groups were not detected. The levels of the excitatory amino acids glutamate, glutamine and aspartate as well as the levels of the inhibitory amino acids GABA and taurine did not differ between the animal groups or between the periods of measurement. The higher levels of glycine might contribute to the manifestation of paroxysmal dystonia in dt(sz) hamsters, although unaltered glutamate, glutamine and aspartate levels do not support the hypothesis of a critical involvement of a cortico-striatal overactivity. It seems that a deficiency of GABAergic interneurons, found by previous immunohistochemical examinations, does not lead to reduced extracellular GABA levels in the striatum.
Collapse
Affiliation(s)
- M Hamann
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|