1
|
Chen H, Li J, Huang Z, Fan X, Wang X, Chen X, Guo H, Liu H, Li S, Yu S, Li H, Huang X, Ma X, Deng X, Wang C, Liu Y. Dopaminergic system and neurons: Role in multiple neurological diseases. Neuropharmacology 2024; 260:110133. [PMID: 39197818 DOI: 10.1016/j.neuropharm.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The dopaminergic system is a complex and powerful neurotransmitter system in the brain. It plays an important regulatory role in motivation, reward, cognition, and motor control. In recent decades, research in the field of the dopaminergic system and neurons has increased exponentially and is gradually becoming a point of intervention in the study and understanding of a wide range of neurological diseases related to human health. Studies have shown that the dopaminergic system and neurons are involved in the development of many neurological diseases (including, but not limited to Parkinson's disease, schizophrenia, depression, attention deficit hyperactivity disorder, etc.) and that dopaminergic neurons either have too much stress or too weak function in the dopaminergic system can lead to disease. Therefore, targeting dopaminergic neurons is considered key to treating these diseases. This article provides a comprehensive review of the dopaminergic system and neurons in terms of brain region distribution, physiological function and subtypes of dopaminergic neurons, as well as the role of the dopaminergic system and neurons in a variety of diseases.
Collapse
Affiliation(s)
- Heng Chen
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jieshu Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhixing Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxiao Fan
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaofei Wang
- Beijing Normal University, Beijing, 100875, China
| | - Xing Chen
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Haitao Guo
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hao Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuqi Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaojun Yu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Honghong Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinyu Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuehua Ma
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xinqi Deng
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chunguo Wang
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yonggang Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
2
|
Hagihara H, Miyakawa T. Postmortem evidence of decreased brain pH in major depressive disorder: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:460. [PMID: 39496593 PMCID: PMC11535390 DOI: 10.1038/s41398-024-03173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is a prevalent and debilitating mental disorder that shares symptoms, genetics, and molecular changes in the brain with other psychiatric disorders, such as schizophrenia and bipolar disorder. Decreased brain pH, associated with increased lactate levels due to altered energy metabolism and neuronal hyperexcitation, has been consistently observed in schizophrenia and bipolar disorder. We recently demonstrated similar brain alterations in various animal models of neuropsychiatric disorders, including MDD. However, our understanding of brain pH alterations in human patients with MDD remains limited. METHODS We conducted meta-analyses to assess postmortem brain pH in patients with MDD compared to control subjects, examining its relationships with recurrence of depressive episodes and illness duration, utilizing publicly available demographic data. Studies reporting individual raw pH data were identified through searches in the Stanley Medical Research Institute database, NCBI GEO database, PubMed, and Google Scholar. The data were analyzed using the random effects model, ANOVA, and ANCOVA. RESULTS The random effects model, using 39 curated datasets (790 patients and 957 controls), indicated a significant decrease in brain pH in patients with MDD (Hedges' g = -0.23, p = 0.0056). A two-way ANCOVA revealed that the effect of diagnosis on pH remained significant when considering covariates, including postmortem interval, age at death, and sex. Patients with recurrent episodes, but not a single episode, showed significantly lower pH than controls in both females and males (256 patients and 279 controls from seven datasets). Furthermore, a significant negative correlation was observed between brain pH and illness duration (115 patients from five datasets). Female preponderance of decreased pH was also found, possibly due to a longer illness duration and a higher tendency of recurrent episodes in females. CONCLUSION This study suggests a decrease in brain pH in patients with MDD, potentially associated with recurrent episodes and longer illness duration. As suggested from previous animal model studies, altered brain energy metabolism, leading to decreased pH, may serve as a potential transdiagnostic endophenotype for MDD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Japan.
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Japan.
| |
Collapse
|
3
|
Boo KJ, Gonzales EL, Remonde CG, Seong JY, Jeon SJ, Park YM, Ham BJ, Shin CY. Hycanthone Inhibits Inflammasome Activation and Neuroinflammation-Induced Depression-Like Behaviors in Mice. Biomol Ther (Seoul) 2023; 31:161-167. [PMID: 36203404 PMCID: PMC9970841 DOI: 10.4062/biomolther.2022.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
Despite the various medications used in clinics, the efforts to develop more effective treatments for depression continue to increase in the past decades mainly because of the treatment-resistant population, and the testing of several hypotheses- and target-based treatments. Undesirable side effects and unresponsiveness to current medications fuel the drive to solve this top global health problem. In this study, we focused on neuroinflammatory response-mediated depression which represents a cluster of depression etiology both in animal models and humans. Several meta-analyses reported that proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were increased in major depressive disorder patients. Inflammatory mediators implicated in depression include type-I interferon and inflammasome pathways. To elucidate the molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology of depression, we introduced hycanthone, an antischistosomal drug, to check whether it can counteract depressive-like behaviors in vivo and normalize the inflammation-induced changes in vitro. Lipopolysaccharide (LPS) treatment increased proinflammatory cytokine expression in the murine microglial cells as well as the stimulation of type I interferon-related pathways that are directly or indirectly regulated by Janus kinase-signal transducer and activator of transcription (JAK-STAT) activation. Hycanthone treatment attenuated those changes possibly by inhibiting the JAK-STAT pathway and inflammasome activation. Hycanthone also ameliorated depressive-like behaviors by LPS. Taken together, we suggest that the inhibitory action of hycanthone against the interferon pathway leading to attenuation of depressive-like behaviors can be a novel therapeutic mechanism for treating depression.
Collapse
Affiliation(s)
- Kyung-Jun Boo
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Chilly Gay Remonde
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae Young Seong
- Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea,Department of Integrative Biotechnology, College of Science and Technology, Sahmyook University, Seoul 01795, Republic of Korea
| | - Yeong-Min Park
- Graduate School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea,Graduate School of Medicine, Konkuk University, Seoul 05029, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-454-5630, Fax: +82-2-2030-7899
| |
Collapse
|
4
|
Zhao F, Cheng Z, Piao J, Cui R, Li B. Dopamine Receptors: Is It Possible to Become a Therapeutic Target for Depression? Front Pharmacol 2022; 13:947785. [PMID: 36059987 PMCID: PMC9428607 DOI: 10.3389/fphar.2022.947785] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine and its receptors are currently recognized targets for the treatment of several neuropsychiatric disorders, including Parkinson’s disease, schizophrenia, some drug use addictions, as well as depression. Dopamine receptors are widely distributed in various regions of the brain, but their role and exact contribution to neuropsychiatric diseases has not yet been thoroughly studied. Based on the types of dopamine receptors and their distribution in different brain regions, this paper reviews the current research status of the molecular, cellular and circuit mechanisms of dopamine and its receptors involved in depression. Multiple lines of investigation of these mechanisms provide a new future direction for understanding the etiology and treatment of depression and potential new targets for antidepressant treatments.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
- *Correspondence: Bingjin Li,
| |
Collapse
|
5
|
Ning H, Zhou H, Ren J, Zhou G, Yang N, Wang Z, Yuan C, Tian Z, Chen J, Shen L, Zheng H, Zhao Y, Wang H, Liu W, Liu Z. Zishen pingchan granules combined with pramipexole in the improvement of depressive symptoms in Parkinson's disease: a prospective, multicenter, randomized, double-blind, controlled clinical study. Lab Invest 2022; 20:357. [PMID: 35962349 PMCID: PMC9373440 DOI: 10.1186/s12967-022-03551-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/22/2022] [Indexed: 12/05/2022]
Abstract
Background and objective Zishen Pingchan granule (ZPG), a traditional Chinese herbal recipe for treating Parkinson’s disease (PD), is usually used as an add-on drug with some antiparkinsonian drugs in China. The objectives of this study were to evaluate the efficacy, safety, and tolerability of ZPG combined with pramipexole in the treatment of depression in PD (dPD). Methods A 12-week, multicenter, randomized, double-blind, and placebo-controlled study on ZPG was performed on a total of 200 patients who were treated with pramipexole but still had mild to moderate depressive symptoms. Patients were randomly divided into ZPG (n = 100) or placebo (n = 100). The primary effective result was the mean change from the baseline on the Hamilton Depression Scale 17 items (HAM-D-17) over 12 weeks and the clinical efficacy rate. Secondary endpoints were the mean change from the baseline in the Geriatric Depression Scale (GDS-15), Unified Parkinson's disease rating scale Part III (UPDRS III), Parkinson's quality of life scale (PDQ-8), and Parkinson's disease sleep scale (PDSS-2) over 12 weeks. Results After 12 weeks of treatment, ZPG significantly reduced the mean [95% confidence interval] HAMD score vs. placebo (− 1.43 scores [− 2.50, − 0.36]; p = 0.009). The clinical remission rate and responders of the ZPG group were higher than those of the placebo (46.1% vs. 31.0%; p = 0.041; 34.8% vs. 18.4%; p = 0.014). A significant improvement in the PDSS-2 score was also observed in the ZPG group compared with that in the placebo group (− 3.56 scores [− 5.77, − 1.35]; p = 0.002). A total of 7 patients (7.1%) in the ZPG group had mild adverse events (AEs) vs 9 patients (9%) in the placebo group. No severe AEs were observed in either group. The randomization and controlled clinical study revealed that ZPG was effective, safe, and well-tolerated. Conclusion ZPG combined with pramipexole further reduced the depressive symptoms and improved the sleeping quality of PD patients. Trial registration The protocol was retrospectively registered at the Chinese Clinical Trial Registry, Unique identifier: ChiCTR1800019942, date of registration: December 9, 2018; http://www.chictr.org.cn/showproj.aspx?proj=30432
Collapse
Affiliation(s)
- Houxu Ning
- Department of Chinese Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.,Department of Neurology, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Hao Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Gaiyan Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ning Yang
- Department of Chinese Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhenfu Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100036, China
| | - Canxing Yuan
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zuojun Tian
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Juping Chen
- Department of Neurology, Changshu Hospital of Traditional Chinese Medicine, Changshu, 215500, China
| | - Lihua Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226000, China
| | - Huifen Zheng
- Department of Neurology, Geriatric Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210000, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Haidong Wang
- Department of Chinese Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
6
|
Partial Ablation of Postsynaptic Dopamine D2 Receptors in the Central Nucleus of the Amygdala Increases Risk Avoidance in Exploratory Tasks. eNeuro 2022; 9:ENEURO.0528-21.2022. [PMID: 35210287 PMCID: PMC8925651 DOI: 10.1523/eneuro.0528-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 02/04/2022] [Indexed: 12/05/2022] Open
Abstract
The central nucleus of the amygdala (CeA) is involved in the expression of fear and has been implicated in several anxiety disorders. This structure is densely innervated by DAergic projections that impinge on amygdalar neurons expressing various dopamine (DA) receptor subtypes, including D2 receptors (D2Rs). Although various pharmacological approaches have assessed the role of D2Rs in the CeA, the actual participation of postsynaptic D2Rs in the CeA to defensive behaviors remains unclear. Here, we investigated the distribution of D2Rs in the CeA and their role in modifying neuronal activity and fear related behaviors in mice. First, using the mouse reporter strain D2R-EGFP, we verified that D2Rs are present both in neurons of the CeA and in A10 dorsocaudal (A10dc) DAergic neurons that innervate the CeA. Moreover, we showed that pharmacological stimulation of D2Rs increases the activity of protein kinase C (PKC)δ cells present in the CeA, a type of neuron previously associated with reduced defensive behaviors. Finally, using a molecular genetics approach that discriminates postsynaptic D2Rs from presynaptic D2 autoreceptors, we demonstrated that mice carrying targeted deletions of postsynaptic D2Rs in the CeA display increased risk avoidance in exploratory tasks. Together, our results indicate that postsynaptic D2Rs in the CeA attenuate behavioral reactions to potential environmental threats.
Collapse
|
7
|
Ochi T, Vyalova NM, Losenkov IS, Paderina DZ, Pozhidaev IV, Loonen AJM, Simutkin GG, Bokhan NA, Wilffert B, Ivanova SA. Preliminary Pharmacogenetic Study to Explore Putative Dopaminergic Mechanisms of Antidepressant Action. J Pers Med 2021; 11:jpm11080731. [PMID: 34442374 PMCID: PMC8401614 DOI: 10.3390/jpm11080731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background: There is sufficient evidence that interference of dopaminergic neurotransmission contributes to the therapeutic effects of antidepressants in unipolar and bipolar depression. Methods: Hamilton depression rating scale (HAMD 17) scores of 163 at least moderately ill patients with major depressive disorders were used to establish treatment response. HAMD 17 score status was measured before initiation, after two weeks, and after four weeks of treatment with various antidepressants. The possible association between response and genotype in a total of 14 variants of dopamine neurotransmission-related proteins was investigated. Results: DRD4 rs11246226 CA heterozygous patients were found with a greater improvement of HAMD 17 score when compared to homozygous C patients during 0–2 weeks and 0–4 weeks. Patients with MAOB rs1799836 heterozygous GA and homozygous A also demonstrated improved scores during 2–4 weeks and 0–4 weeks. Conclusions: The results are preliminary due to the limited population size and the small number of variants. Further research into the involvement of habenular dopamine D4 receptors in the antidepressant response is desirable.
Collapse
Affiliation(s)
- Taichi Ochi
- PharmacoTherapy, Epidemiology and Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands; (T.O.); (B.W.)
| | - Natalya M. Vyalova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Aleutskaya Str., 4, 634014 Tomsk, Russia; (N.M.V.); (I.S.L.); (D.Z.P.); (I.V.P.); (G.G.S.); (N.A.B.); (S.A.I.)
| | - Innokentiy S. Losenkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Aleutskaya Str., 4, 634014 Tomsk, Russia; (N.M.V.); (I.S.L.); (D.Z.P.); (I.V.P.); (G.G.S.); (N.A.B.); (S.A.I.)
| | - Diana Z. Paderina
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Aleutskaya Str., 4, 634014 Tomsk, Russia; (N.M.V.); (I.S.L.); (D.Z.P.); (I.V.P.); (G.G.S.); (N.A.B.); (S.A.I.)
- Department of Cytology and Genetics, National Research Tomsk State University, Lenin Ave., 36, 634050 Tomsk, Russia
| | - Ivan V. Pozhidaev
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Aleutskaya Str., 4, 634014 Tomsk, Russia; (N.M.V.); (I.S.L.); (D.Z.P.); (I.V.P.); (G.G.S.); (N.A.B.); (S.A.I.)
- Department of Cytology and Genetics, National Research Tomsk State University, Lenin Ave., 36, 634050 Tomsk, Russia
| | - Anton J. M. Loonen
- PharmacoTherapy, Epidemiology and Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands; (T.O.); (B.W.)
- Correspondence: ; Tel.: +31-503-637-576
| | - German G. Simutkin
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Aleutskaya Str., 4, 634014 Tomsk, Russia; (N.M.V.); (I.S.L.); (D.Z.P.); (I.V.P.); (G.G.S.); (N.A.B.); (S.A.I.)
| | - Nikolay A. Bokhan
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Aleutskaya Str., 4, 634014 Tomsk, Russia; (N.M.V.); (I.S.L.); (D.Z.P.); (I.V.P.); (G.G.S.); (N.A.B.); (S.A.I.)
- Department of Psychotherapy and Psychological Counseling, National Research Tomsk State University, Lenin Ave., 36, 634050 Tomsk, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt, 2, 634050 Tomsk, Russia
| | - Bob Wilffert
- PharmacoTherapy, Epidemiology and Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands; (T.O.); (B.W.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - Svetlana A. Ivanova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, Aleutskaya Str., 4, 634014 Tomsk, Russia; (N.M.V.); (I.S.L.); (D.Z.P.); (I.V.P.); (G.G.S.); (N.A.B.); (S.A.I.)
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt, 2, 634050 Tomsk, Russia
- Division for Control and Diagnostics, School of Non-Destructive Testing and Security, National Research Tomsk Polytechnic University, Lenin Ave., 30, 634050 Tomsk, Russia
| |
Collapse
|
8
|
Alshogran OY, Al-Eitan LN, Altawalbeh SM, Aman HA. Association of DRD4 exon III and 5-HTTLPR VNTR genetic polymorphisms with psychiatric symptoms in hemodialysis patients. PLoS One 2021; 16:e0249284. [PMID: 33784353 PMCID: PMC8009383 DOI: 10.1371/journal.pone.0249284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 01/01/2023] Open
Abstract
Mental illness is prevalent among hemodialysis (HD) patients. Given that the dopaminergic and serotonergic pathways are involved in the etiology of psychiatric disease, this study evaluated the genetic association of dopamine D4 receptor (DRD4) and serotonin transporter (SLC6A4) genes with psychiatric symptom susceptibility among HD patients. Hospital Anxiety and Depression Scale (HADS) was used to assess anxiety and depressive symptoms among patients (n = 265). Genetic polymorphisms of DRD4 (48 bp VNTR) and SLC6A4 (5-HTTLPR VNTR and rs25531) were examined using a conventional polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique, as appropriate. Significant differences were observed in the distribution of 5-HTTLPR genotypes, SLC6A4 tri-allelic-phased genotype, and DRD4-Exon III VNTR genotypes/alleles between patients with anxiety symptoms versus those with normal/borderline conditions (p<0.05). Binary logistic regression analyses showed that the heterozygous 4,5 VNTR genotype of DRD4 was associated with a higher risk of anxiety symptoms after adjusting for other covariates (odds ratio = 4.25, p = 0.028). None of the studied polymorphisms was linked to depression in HD patients. Collectively, the current findings provide genetic clues to psychopathology in HD patients and suggest that the DRD4 exon III VNTR polymorphism is involved in the etiology of anxiety in this patient population.
Collapse
Affiliation(s)
- Osama Y. Alshogran
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Laith N. Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Shoroq M. Altawalbeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Hatem A. Aman
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
9
|
Nedic Erjavec G, Sagud M, Nikolac Perkovic M, Svob Strac D, Konjevod M, Tudor L, Uzun S, Pivac N. Depression: Biological markers and treatment. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110139. [PMID: 33068682 DOI: 10.1016/j.pnpbp.2020.110139] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Nowadays depression is considered as a systemic illness with different biological mechanisms involved in its etiology, including inflammatory response, hypothalamic-pituitary-adrenal (HPA) axis dysregulation and neurotransmitter and neurotrophic systems imbalance. Novel "omics" approaches, such as metabolomics and glycomics provide information about altered metabolic pathways and metabolites, as well as disturbances in glycosylation processes affected by or causing the development of depression. The clinical diagnosis of depression continues to be established based on the presence of the specific symptoms, but due to its heterogeneous underlying biological background, that differs according to the disease stage, there is an unmet need for treatment response biomarkers which would facilitate the process of appropriate treatment selection. This paper provides an overview of the role of major stress response system, the HPA axis, and its dysregulation in depression, possible involvement of neurotrophins, especially brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and insulin-like growth factor-1, in the development of depression. Article discusses how activated inflammation processes and increased cytokine levels, as well as disturbed neurotransmitter systems can contribute to different stages of depression and could specific metabolomic and glycomic species be considered as potential biomarkers of depression. The second part of the paper includes the most recent findings about available medical treatment of depression. The described biological factors impose an optimistic conclusion that they could represent easy obtainable biomarkers potentially predicting more personalized treatment and diagnostic options.
Collapse
Affiliation(s)
- Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marina Sagud
- The University of Zagreb School of Medicine, Salata 3, 10000 Zagreb, Croatia; University Hospital Center Zagreb, Department of Psychiatry, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marcela Konjevod
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Sandra Uzun
- University Hospital Center Zagreb, Department for Anesthesiology, Reanimatology, and Intensive Care, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
10
|
Gonçalves MCB, Glaser T, Oliveira SLBD, Ulrich H. Adenosinergic-Dopaminergic Signaling in Mood Disorders: A Mini-Review. J Caffeine Adenosine Res 2020. [DOI: 10.1089/caff.2020.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Talita Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Malikowska-Racia N, Salat K. Recent advances in the neurobiology of posttraumatic stress disorder: A review of possible mechanisms underlying an effective pharmacotherapy. Pharmacol Res 2019; 142:30-49. [PMID: 30742899 DOI: 10.1016/j.phrs.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
Recent progress in the field of neurobiology supported by clinical evidence gradually reveals the mystery of human brain functioning. So far, many psychiatric disorders have been described in great detail, although there are still plenty of cases that are misunderstood. These include posttraumatic stress disorder (PTSD), which is a unique disease that combines a wide range of neurobiological changes, which involve disturbances of the hypothalamic-pituitary-adrenal gland axis, hyperactivation of the amygdala complex, and attenuation of some hippocampal and cortical functions. Such multiplicity results in differential symptomatology, including elevated anxiety, nightmares, fear retrieval episodes that may trigger delusions and hallucinations, sleep disturbances, and many others that strongly interfere with the quality of the patient's life. Because of widespread neurological changes and the disease manifestation, the pharmacotherapy of PTSD remains unclear and requires a multidimensional approach and involvement of polypharmacotherapy. Hopefully, more and more neuroscientists and clinicians will study PTSD, which will provide us with new information that would possibly accelerate establishment of well-tolerated and effective pharmacotherapy. In this review, we have focused on neurobiological changes regarding PTSD, addressing the most disturbed brain structures and neurotransmissions, as well as discussing in detail the recently taken and novel therapeutic paths.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland.
| | - Kinga Salat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| |
Collapse
|
12
|
Abrahams S, McFie S, Lacerda M, Patricios J, Suter J, September AV, Posthumus M. Unravelling the interaction between the DRD2 and DRD4 genes, personality traits and concussion risk. BMJ Open Sport Exerc Med 2019; 5:e000465. [PMID: 30815277 PMCID: PMC6361366 DOI: 10.1136/bmjsem-2018-000465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2018] [Indexed: 12/27/2022] Open
Abstract
Background Concussion occurs when biomechanical forces transmitted to the head result in neurological deficits. Personality may affect the balance between safe and dangerous play potentially influencing concussion risk. Dopamine receptor D2 (DRD2) and dopamine receptor D4 (DRD4) genetic polymorphisms were previously associated with personality traits. Objectives This case-control genetic association study investigated the associations of (1) DRD2 and DRD4 genotypes with concussion susceptibility and personality, (2) personality with concussion susceptibility and (3) the statistical model of genotype, personality and concussion susceptibility. Methods In total, 138 non-concussed controls and 163 previously concussed cases were recruited from high school (n=135, junior), club and professional rugby teams (n=166, senior). Participants were genotyped for DRD2 rs12364283 (A>G), DRD2 rs1076560 (C>A) and DRD4 rs1800955 (T>C) genetic variants. Statistical analyses including structural equation modelling were performed using the R environment and STATA. Results The rs1800955 CC genotype (p=0.014) and inferred DRD2 (rs12364283-rs1076560)-DRD4 (rs1800955) A-C-C allele combination (p=0.019) were associated with decreased concussion susceptibility in juniors. The rs1800955 TT and CT genotypes were associated with low reward dependence in juniors (p<0.001) and seniors (p=0.010), respectively. High harm avoidance was associated with decreased concussion susceptibility in juniors (p=0.009) and increased susceptibility in seniors (p=0.001). The model showed that a genetic variant was associated with personality while personality was associated with concussion susceptibility. Conclusion These findings highlight the linear relationship between genetics, personality and concussion susceptibility. Identifying a genetic profile of 'high risk' behaviour, together with the development of personalised behavioural training, can potentially reduce concussion risk.
Collapse
Affiliation(s)
- Shameemah Abrahams
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa.,Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sarah McFie
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Miguel Lacerda
- Department of Statistical Sciences, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Jon Patricios
- Sports Concussion South Africa, Johannesburg, South Africa.,Section of Sports Medicine, University of Pretoria, Pretoria, South Africa.,Department of Emergency Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Jason Suter
- Cape Sports Medicine, Sports Science Institute, Cape Town, South Africa
| | - Alison V September
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Michael Posthumus
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Ghasemi M, Claunch J, Niu K. Pathologic role of nitrergic neurotransmission in mood disorders. Prog Neurobiol 2018; 173:54-87. [PMID: 29890213 DOI: 10.1016/j.pneurobio.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
Abstract
Mood disorders are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although over the past 40 years the biogenic amine models have provided meaningful links with the clinical phenomena of, and the pharmacological treatments currently employed in, mood disorders, there is still a need to examine the contribution of other systems to the neurobiology and treatment of mood disorders. This article reviews the current literature describing the potential role of nitric oxide (NO) signaling in the pathophysiology and thereby the treatment of mood disorders. The hypothesis has arisen from several observations including (i) altered NO levels in patients with mood disorders; (ii) antidepressant effects of NO signaling blockers in both clinical and pre-clinical studies; (iii) interaction between conventional antidepressants/mood stabilizers and NO signaling modulators in several biochemical and behavioral studies; (iv) biochemical and physiological evidence of interaction between monoaminergic (serotonin, noradrenaline, and dopamine) system and NO signaling; (v) interaction between neurotrophic factors and NO signaling in mood regulation and neuroprotection; and finally (vi) a crucial role for NO signaling in the inflammatory processes involved in pathophysiology of mood disorders. These accumulating lines of evidence have provided a new insight into novel approaches for the treatment of mood disorders.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Joshua Claunch
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Kathy Niu
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
14
|
Jesulola E, Micalos P, Baguley IJ. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - are we there yet? Behav Brain Res 2017; 341:79-90. [PMID: 29284108 DOI: 10.1016/j.bbr.2017.12.025] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
A number of factors (biogenic amine deficiency, genetic, environmental, immunologic, endocrine factors and neurogenesis) have been identified as mechanisms which provide unitary explanations for the pathophysiology of depression. Rather than a unitary construct, the combination and linkage of these factors have been implicated in the pathogenesis of depression. That is, environmental stressors and heritable genetic factors acting through immunologic and endocrine responses initiate structural and functional changes in many brain regions, resulting in dysfunctional neurogenesis and neurotransmission which then manifest as a constellation of symptoms which present as depression.
Collapse
Affiliation(s)
- Emmanuel Jesulola
- Paramedicine Discipline, Charles Sturt University, Bathurst Campus, NSW Australia.
| | - Peter Micalos
- Paramedicine Discipline, Charles Sturt University, Bathurst Campus, NSW Australia
| | - Ian J Baguley
- Brain Injury Rehabilitation Service, Westmead Hospital, Hawkesbury Rd, Wentworthville, NSW Australia
| |
Collapse
|
15
|
Figueira FH, de Quadros Oliveira N, de Aguiar LM, Escarrone AL, Primel EG, Barros DM, da Rosa CE. Exposure to atrazine alters behaviour and disrupts the dopaminergic system in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:94-102. [PMID: 28847529 DOI: 10.1016/j.cbpc.2017.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/20/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
Atrazine is an extensively used herbicide, and has become a common environmental contaminant. Effects on dopaminergic neurotransmission in mammals following exposure to atrazine have been previously demonstrated. Here, the effects of atrazine regarding behavioural and dopaminergic neurotransmission parameters were assessed in the fruit fly D. melanogaster, exposed during embryonic and larval development. Embryos (newly fertilized eggs) were exposed to two atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Negative geotaxis assay, as well as exploratory behaviour, immobility time and number of grooming episodes in an open field system were assessed. Tyrosine hydroxylase (TH) activity and gene expression of the dopaminergic system were also evaluated in newly emerged male and female flies. All analyzed parameters in male flies were not significantly affected by atrazine exposure. However female flies exposed to atrazine at 10μM presented an increase in immobility time and a reduction in exploratory activity in the open field test, which was offset by an increase in the number of grooming episodes. Also, female flies exposed to 100μM of atrazine presented an increase in immobility time. Gene expression of DOPA decarboxylase and dopamine (DA) receptors were also increased only in females. The behavioural effects of atrazine exposure observed in female flies were due to a disturbance in the dopaminergic system.
Collapse
Affiliation(s)
- Fernanda Hernandes Figueira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Natália de Quadros Oliveira
- Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Lais Mattos de Aguiar
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| | - Ana Laura Escarrone
- Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Ednei Gilberto Primel
- Escola de Química e Alimentos, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| | - Daniela Martí Barros
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Carlos Eduardo da Rosa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
16
|
Parvalbumin, but not calretinin, neurons express high levels of α1-containing GABA A receptors, α7-containing nicotinic acetylcholine receptors and D2-dopamine receptors in the basolateral amygdala of the rat. J Chem Neuroanat 2017; 86:41-51. [PMID: 28834708 DOI: 10.1016/j.jchemneu.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 01/28/2023]
Abstract
The generation of emotional responses by the basolateral amygdala is largely determined by the balance of excitatory and inhibitory inputs to its principal neurons - the pyramidal cells. The activity of these neurons is tightly controlled by g-aminobutyric acid (GABA)ergic interneurons, especially by those expressing parvalbumin (PV) and calretinin (CR). Although it is known that GABAergic, cholinergic and dopaminergic fibres make synapses on PV and CR cells, knowledge of the various receptors which are used by these cells is still incomplete. Thus, the present study investigates whether neurons expressing PV or CR co-express specific GABA, acetylcholine and/or dopamine receptors in the basolateral amygdala of the rat. The results show that almost two-thirds of PV neurons co-express high concentrations of α1 subunit of GABAA receptor, and more than half of them co-express high levels of α7 subunit of nicotinic acetylcholine receptor and/or D2-subtype of dopamine receptor. In contrast, a smaller percentage of CR neurons had detectable amounts of these receptors and at lower levels of abundance in most cases. In conclusion, the present results indicate that not only principal neurons but also GABAergic interneurons have specific receptors, which allow these cells to respond to the GABAergic, cholinergic and dopaminergic inputs coming to the basolateral amygdala of the rat. Since these cells receive intrinsic GABAergic inputs, they are strongly interconnected. Since they also receive extrinsic cholinergic and dopaminergic inputs, such stimulation may result in stimulus-driven feed-forward control of the principal neurons. The effects of such control may be either feed-forward inhibition of the principal neurons via α7 nicotinic acetylcholine receptors or disinhibition of these cells via D2-dopamine receptors.
Collapse
|
17
|
Gururajan A, Clarke G, Dinan TG, Cryan JF. Molecular biomarkers of depression. Neurosci Biobehav Rev 2016; 64:101-33. [DOI: 10.1016/j.neubiorev.2016.02.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/11/2016] [Accepted: 02/12/2016] [Indexed: 12/22/2022]
|
18
|
Savitz J, Morris HM, Drevets WC. Neuroimaging Studies of Bipolar Depression: Therapeutic Implications. BIPOLAR DEPRESSION: MOLECULAR NEUROBIOLOGY, CLINICAL DIAGNOSIS, AND PHARMACOTHERAPY 2016. [DOI: 10.1007/978-3-319-31689-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Chandley MJ, Crawford JD, Szebeni A, Szebeni K, Ordway GA. NTRK2 expression levels are reduced in laser captured pyramidal neurons from the anterior cingulate cortex in males with autism spectrum disorder. Mol Autism 2015; 6:28. [PMID: 26000162 PMCID: PMC4440594 DOI: 10.1186/s13229-015-0023-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/24/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The anterior cingulate cortex (ACC) is a brain area involved in modulating behavior associated with social interaction, disruption of which is a core feature of autism spectrum disorder (ASD). Functional brain imaging studies demonstrate abnormalities of the ACC in ASD as compared to typically developing control patients. However, little is known regarding the cellular basis of these functional deficits in ASD. Pyramidal neurons in the ACC are excitatory glutamatergic neurons and key cellular mediators of the neural output of the ACC. This study was designed to investigate the potential role of ACC pyramidal neurons in ASD brain pathology. METHODS Postmortem ACC tissue from carefully matched ASD and typically developing control donors was obtained from two national brain collections. Pyramidal neurons and surrounding astrocytes were separately collected from layer III of the ACC by laser capture microdissection. Isolated RNA was subjected to reverse transcription and endpoint PCR to determine gene expression levels for 16 synaptic genes relevant to glutamatergic neurotransmission. Cells were also collected from the prefrontal cortex (Brodmann area 10) to examine those genes demonstrating differences in expression in the ACC comparing typically developing and ASD donors. RESULTS The level of NTRK2 expression was robustly and significantly lower in pyramidal neurons from ASD donors as compared to typically developing donors. Levels of expression of GRIN1, GRM8, SLC1A1, and GRIP1 were modestly lower in pyramidal neurons from ASD donors, but statistical significance for these latter genes did not survive correction for multiple comparisons. No significant expression differences of any genes were found in astrocytes laser captured from the same neocortical area. In addition, expression levels of NTRK2 and other synaptic genes were normal in pyramidal neurons laser captured from the prefrontal cortex. CONCLUSIONS These studies demonstrate a unique pathology of neocortical pyramidal neurons of the ACC in ASD. NTRK2 encodes the tropomyosin receptor kinase B (TrkB), transmission through which neurotrophic factors modify differentiation, plasticity, and synaptic transmission. Reduced pyramidal neuron NTRK2 expression in the ACC could thereby contribute to abnormal neuronal activity and disrupt social behavior mediated by this brain region.
Collapse
Affiliation(s)
- Michelle J Chandley
- />Department of Health Sciences, College of Public Health, East Tennessee State University, P.O. Box 70673, Johnson City, TN 37614 USA
| | - Jessica D Crawford
- />Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, P.O. Box 70582, Johnson City, TN 37614 USA
| | - Attila Szebeni
- />Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, P.O. Box 70582, Johnson City, TN 37614 USA
| | - Katalin Szebeni
- />Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, P.O. Box 70582, Johnson City, TN 37614 USA
| | - Gregory A Ordway
- />Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, P.O. Box 70582, Johnson City, TN 37614 USA
| |
Collapse
|
20
|
DiLalla LF, Bersted K, John SG. Peer Victimization and DRD4 Genotype Influence Problem Behaviors in Young Children. J Youth Adolesc 2015; 44:1478-93. [PMID: 25869327 DOI: 10.1007/s10964-015-0282-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/01/2015] [Indexed: 01/27/2023]
Abstract
Decades of research supports the presence of significant genetic influences on children's internalizing (emotional), externalizing (acting out), and social difficulties, including victimization. Additionally, being victimized has been shown to relate to further behavioral problems. The current study assessed the nature of the gene-environment relationships between the DRD4 gene, peer victimization, and externalizing and internalizing difficulties in 6- to 10-year-old children. 174 children (56 % girls; 88.6 % Caucasian, 3.4 % African American, 8 % mixed race or Mayan) and their parents were administered victimization and problem behavior questionnaires, and DRD4 was genotyped for the children. An interaction between genes (DRD4) and environment (victimization) was significant and supported the differential susceptibility model for verbal victimization and child-reported externalizing behaviors. Children with the DRD4 7-repeat allele were differentially responsive to the verbal victimization environment, such that those experiencing little to no victimization reported significantly lower levels of externalizing behaviors, but if they experienced high amounts of victimization, they reported the highest levels of externalizing behaviors. Thus, consideration of how genes and environment affect children's experiences of victimization prior to adolescence is essential for understanding the trajectory of both externalizing and internalizing behaviors during adolescent development.
Collapse
Affiliation(s)
- Lisabeth Fisher DiLalla
- Family and Community Medicine, Mail Code 6503, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA,
| | | | | |
Collapse
|
21
|
Khoddami M, Nadri H, Moradi A, Sakhteman A. Homology modeling, molecular dynamic simulation, and docking based binding site analysis of human dopamine (D4) receptor. J Mol Model 2015; 21:36. [DOI: 10.1007/s00894-015-2579-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/07/2015] [Indexed: 01/11/2023]
|
22
|
Rubinow MJ, Mahajan G, May W, Overholser JC, Jurjus GJ, Dieter L, Herbst N, Steffens DC, Miguel-Hidalgo JJ, Rajkowska G, Stockmeier CA. Basolateral amygdala volume and cell numbers in major depressive disorder: a postmortem stereological study. Brain Struct Funct 2014; 221:171-84. [PMID: 25287512 DOI: 10.1007/s00429-014-0900-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 09/23/2014] [Indexed: 01/27/2023]
Abstract
Functional imaging studies consistently report abnormal amygdala activity in major depressive disorder (MDD). Neuroanatomical correlates are less clear: imaging studies have produced mixed results on amygdala volume, and postmortem neuroanatomic studies have only examined cell densities in portions of the amygdala or its subregions in MDD. Here, we present a stereological analysis of the volume of, and the total number of, neurons, glia, and neurovascular (pericyte and endothelial) cells in the basolateral amygdala in MDD. Postmortem tissues from 13 subjects with MDD and 10 controls were examined. Sections (~15/subject) taken throughout the rostral-caudal extent of the basolateral amygdala (BLA) were stained for Nissl substance and utilized for stereological estimation of volume and cell numbers. Results indicate that depressed subjects had a larger lateral nucleus than controls and a greater number of total BLA neurovascular cells than controls. There were no differences in the number or density of neurons or glia between depressed and control subjects. These findings present a more detailed picture of BLA cellular anatomy in depression than has previously been available. Further studies are needed to determine whether the greater number of neurovascular cells in depressed subjects may be related to increased amygdala activity in depression.
Collapse
Affiliation(s)
- Marisa J Rubinow
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| | - Gouri Mahajan
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| | - Warren May
- Department of Medicine, Center of Biostatistics, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| | - James C Overholser
- Department of Psychology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| | - George J Jurjus
- Department of Psychiatry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA. .,Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA.
| | - Lesa Dieter
- Department of Psychology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| | - Nicole Herbst
- Department of Psychiatry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| | - David C Steffens
- Department of Psychiatry, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Jose J Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA. .,Department of Psychiatry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
23
|
Azkona G, Marcilla I, López de Maturana R, Sousa A, Pérez-Navarro E, Luquin MR, Sanchez-Pernaute R. Sustained Increase of PKA Activity in the Postcommissural Putamen of Dyskinetic Monkeys. Mol Neurobiol 2014; 50:1131-41. [DOI: 10.1007/s12035-014-8688-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/23/2014] [Indexed: 01/14/2023]
|
24
|
Leukocyte Gene Expression in Patients with Medication Refractory Depression before and after Treatment with ECT or Isoflurane Anesthesia: A Pilot Study. DEPRESSION RESEARCH AND TREATMENT 2014; 2014:582380. [PMID: 24826212 PMCID: PMC4009159 DOI: 10.1155/2014/582380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/22/2014] [Indexed: 12/16/2022]
Abstract
Objective. To evaluate leukocyte gene expression for 9 selected genes (mRNAs) as biological markers in patients with medication refractory depression before and after treatment with ECT or isoflurane anesthesia (ISO). Methods. In a substudy of a nonrandomized open-label trial comparing effects of ECT to ISO therapy, blood samples were obtained before and after treatment from 22 patients with refractory depression, and leukocyte mRNA was assessed by quantitative PCR. Patients' mRNAs were also compared to 17 healthy controls. Results. Relative to controls, patients before treatment showed significantly higher IL10 and DBI and lower ADRA2A and ASIC3 mRNA (P < 0.025). Both ECT and ISO induced significant decreases after treatment in 4 genes: IL10, NR3C1, DRD4, and Sult1A1. After treatment, patients' DBI, ASIC3, and ADRA2A mRNA remained dysregulated. Conclusion. Significant differences from controls and/or significant changes after ECT or ISO treatment were observed for 7 of the 9 mRNAs studied. Decreased expression of 4 genes after effective treatment with either ECT or ISO suggests possible overlap of underlying mechanisms. Three genes showing dysregulation before and after treatment may be trait-like biomarkers of medication refractory depression. Gene expression for these patients has the potential to facilitate diagnosis, clarify pathophysiology, and identify potential biomarkers for treatment effects.
Collapse
|
25
|
Chandley MJ, Szebeni K, Szebeni A, Crawford J, Stockmeier CA, Turecki G, Miguel-Hidalgo JJ, Ordway GA. Gene expression deficits in pontine locus coeruleus astrocytes in men with major depressive disorder. J Psychiatry Neurosci 2013; 38:276-84. [PMID: 23415275 PMCID: PMC3692725 DOI: 10.1503/jpn.120110] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Norepinephrine and glutamate are among several neurotransmitters implicated in the neuropathology of major depressive disorder (MDD). Glia deficits have also been demonstrated in people with MDD, and glia are critical modulators of central glutamatergic transmission. We studied glia in men with MDD in the region of the brain (locus coeruleus; LC) where noradrenergic neuronal cell bodies reside and receive glutamatergic input. METHODS The expression of 3 glutamate-related genes (SLC1A3, SLC1A2, GLUL) concentrated in glia and a glia gene (GFAP) were measured in postmortem tissues from men with MDD and from paired psychiatrically healthy controls. Initial gene expression analysis of RNA isolated from homogenized tissue (n = 9-10 pairs) containing the LC were followed by detailed analysis of gene expressions in astrocytes and oligodendrocytes (n = 6-7 pairs) laser captured from the LC region. We assessed protein changes in GFAP using immunohistochemistry and immunoblotting (n = 7-14 pairs). RESULTS Astrocytes, but not oligodendrocytes, demonstrated robust reductions in the expression of SLC1A3 and SLC1A2, whereas GLUL expression was unchanged. GFAP expression was lower in astrocytes, and we confirmed reduced GFAP protein in the LC using immunostaining methods. LIMITATIONS Reduced expression of protein products of SLC1A3 and SLC1A2 could not be confirmed because of insufficient amounts of LC tissue for these assays. Whether gene expression abnormalities were associated with only MDD and not with suicide could not be confirmed because most of the decedents who had MDD died by suicide. CONCLUSION Major depressive disorder is associated with unhealthy astrocytes in the noradrenergic LC, characterized here by a reduction in astrocyte glutamate transporter expression. These findings suggest that increased glutamatergic activity in the LC occurs in men with MDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gregory A. Ordway
- Correspondence to: G.A. Ordway, Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City TN 37614;
| |
Collapse
|
26
|
Savitz JB, Drevets WC. Neuroreceptor imaging in depression. Neurobiol Dis 2013; 52:49-65. [DOI: 10.1016/j.nbd.2012.06.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 05/21/2012] [Accepted: 06/02/2012] [Indexed: 02/08/2023] Open
|
27
|
Paredes UM, Quinn JP, D'Souza UM. Allele-specific transcriptional activity of the variable number of tandem repeats in 5' region of the DRD4 gene is stimulus specific in human neuronal cells. GENES BRAIN AND BEHAVIOR 2012; 12:282-7. [PMID: 23013251 DOI: 10.1111/j.1601-183x.2012.00857.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/17/2012] [Accepted: 09/17/2012] [Indexed: 01/08/2023]
Abstract
The dopamine receptor D4 (DRD4) gene includes several variable number of tandem repeat loci that have been suggested to modulate DRD4 gene expression patterns. Previous studies showed differential basal activity of the two most common variants of a tandem repeat (120 bp per repeat unit) located in the 5' region adjacent to the DRD4 promoter in human cell lines. In this communication, we further characterized the ability of this polymorphic repeat to elicit tissue-, allele- and stimuli-specific transcriptional activity in vitro. The short and long variants of the DRD4 5' tandem repeat were cloned into a luciferase reporter gene construct containing the SV40 promoter. The luciferase constructs were cotransfected with expression vectors of two ubiquitously expressed human transcription factors (TFs), CCCTC-binding factor (CTCF) and upstream stimulatory factor 2 (USF2), into human cell lines and primary cultures of neonate rat cortex and luciferase activity measured. Overexpression with these TFs resulted in differential cell- and allele-specific transcriptional activities of the luciferase constructs. The results of our experiments show that variants of this tandem repeat in the 5' promoter of the DRD4 gene will direct differential reporter gene transcriptional activity in a cell-type-specific manner dependent on the signal pathways activated.
Collapse
Affiliation(s)
- U M Paredes
- MRC Centre for Social, Genetic and Developmental Psychiatry (SGDP), Institute of Psychiatry, King's College, University of London, London.
| | | | | |
Collapse
|
28
|
Low gene expression of bone morphogenetic protein 7 in brainstem astrocytes in major depression. Int J Neuropsychopharmacol 2012; 15:855-68. [PMID: 21896235 DOI: 10.1017/s1461145711001350] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The noradrenergic locus coeruleus (LC) is the principal source of brain norepinephrine, a neurotransmitter thought to play a major role in the pathology of major depressive disorder (MDD) and in the therapeutic action of many antidepressant drugs. The goal of this study was to identify potential mediators of brain noradrenergic dysfunction in MDD. Bone morphogenetic protein 7 (BMP7), a member of the transforming growth factor-β superfamily, is a critical mediator of noradrenergic neuron differentiation during development and has neurotrophic and neuroprotective effects on mature catecholaminergic neurons. Real-time PCR of reversed transcribed RNA isolated from homogenates of LC tissue from 12 matched pairs of MDD subjects and psychiatrically normal control subjects revealed low levels of BMP7 gene expression in MDD. No differences in gene expression levels of other members of the BMP family were observed in the LC, and BMP7 gene expression was normal in the prefrontal cortex and amygdala in MDD subjects. Laser capture microdissection of noradrenergic neurons, astrocytes, and oligodendrocytes from the LC revealed that BMP7 gene expression was highest in LC astrocytes relative to the other cell types, and that the MDD-associated reduction in BMP7 gene expression was limited to astrocytes. Rats exposed to chronic social defeat exhibited a similar reduction in BMP7 gene expression in the LC. BMP7 has unique developmental and trophic actions on catecholamine neurons and these findings suggest that reduced astrocyte support for pontine LC neurons may contribute to pathology of brain noradrenergic neurons in MDD.
Collapse
|
29
|
Docherty SJ, Davis OS, Haworth CM, Plomin R, D'Souza U, Mill J. A genetic association study of DNA methylation levels in the DRD4 gene region finds associations with nearby SNPs. Behav Brain Funct 2012; 8:31. [PMID: 22691691 PMCID: PMC3538530 DOI: 10.1186/1744-9081-8-31] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/28/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Dopamine receptor D4(DRD4) polymorphisms have been associated with a number of psychiatric disorders, but little is known about the mechanism of these associations. DNA methylation is linked to the regulation of gene expression and plays a vital role in normal cellular function, with abnormal DNA methylation patterns implicated in a range of disorders. Recent evidence suggests DNA methylation can be influenced by cis-acting DNA sequence variation, that is, DNA sequence variation located nearby on the same chromosome. METHODS To investigate the potential influence of cis-acting genetic elements within DRD4, we analysed DRD4 promoter DNA methylation levels in the transformed lymphoblastoid cell-line DNA of 89 individuals (from 30 family-trios). Five SNPs located +/- 10kb of the promoter region were interrogated for associations with DNA methylation levels. RESULTS Four significant SNP associations were found with DNA methylation (rs3758653, rs752306, rs11246228 and rs936465). The associations of rs3758653 and rs936465 with DNA methylation were tested and nominally replicated (p-value < 0.05) in post-mortem brain tissue from an independent sample (N = 18). Interestingly, the DNA methylation patterns observed in post-mortem brain tissue were similar to those observed in transformed lymphoblastoid cell line DNA. CONCLUSIONS The link reported between DNA sequence and DNA methylation offers a possible functional role to seemingly non-functional SNP associations. DRD4 has been implicated in several psychiatric disease phenotypes and our results shed light upon the possible mode of action of SNP associations in this region.
Collapse
Affiliation(s)
- Sophia J Docherty
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre,, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Lee TW, Yu YWY, Hong CJ, Tsai SJ, Wu HC, Chen TJ. The influence of dopamine receptor d4 polymorphism on resting EEG in healthy young females. Open Neuroimag J 2012; 6:19-25. [PMID: 22448208 PMCID: PMC3308261 DOI: 10.2174/1874440001206010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/22/2011] [Accepted: 01/24/2012] [Indexed: 01/15/2023] Open
Abstract
The polymorphism of variable number of tandem repeat (VNTR) in dopamine receptor D4 (DRD4) gene exon III has been linked to various neuro-psychiatric conditions with disinhibition/impulsivity as one of the core features. This study examined the modulatory effects of long-allele variant of DRD4 VNTR on the regional neural activity as well as inter-regional neural interactions in a young female population. Blood sample and resting state eyes-closed EEG signals were collected in 233 healthy females, stratified into two groups by polymerase chain reaction: long-allele carriers (>4- repeat) and non-carriers (<=4-repeat/<=4-repeat). The values of mean power of 18 electrodes and mutual information of 38 channel pairs across theta, alpha, and beta frequencies were analyzed. Our connectivity analysis was based on information theory, which combined Morlet wavelet transform and mutual information calculation. Between-group differences of regional power and connectivity strength were quantified by independent t-test, while between-group differences in global trends were examined by non-parametric analyses. We noticed that DRD4 VNTR long-allele was associated with decreased global connectivity strength (from non-parametric analysis), especially over bi-frontal, biparietal and right fronto-parietal and right fronto-temporal connections (from independent t-tests). The between-group differences in regional power were not robust. Our findings fit with the networks of response inhibition, providing evidence bridging DRD4 long-allele and disinhibition/impulsivity in neuropsychiatric disorders. We suggest future DRD4 studies of imaging genetics incorporate connectivity analysis to unveil its impact on cerebral network.
Collapse
Affiliation(s)
- Tien-Wen Lee
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | | | | | | | | | | |
Collapse
|
31
|
Gallagher DA, Schrag A. Psychosis, apathy, depression and anxiety in Parkinson's disease. Neurobiol Dis 2012; 46:581-9. [PMID: 22245219 DOI: 10.1016/j.nbd.2011.12.041] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 02/06/2023] Open
Abstract
Psychiatric symptoms are important non-motor features in PD, which occur at high frequency and have significant impact on health related quality of life. This review concentrates on the prevalence, pathophysiology, diagnosis and treatment of depression, anxiety, apathy and psychosis. The pathophysiology of these disorders is complex, reflecting the widespread brainstem and cortical pathology in PD, with involvement of several neurotransmitters, including dopaminergic, serotonergic, noradrenergic and cholinergic systems. The diagnosis of psychiatric conditions, in particular affective disorders, is challenging because of the overlap of somatic features of psychiatric disorders and underlying movement disorder. The pathogenesis is likely to differ considerably from non-PD patients, and treatments used in general psychiatry services may not be as effective in PD and will require clearer clarification in well-designed clinical studies. Management strategies include adjustment of dopaminergic medication, use of psychotropic treatments and behavioural and psychological approaches. However, the future challenge will be to develop treatments developed specifically for the pathogenesis of these disorders in PD.
Collapse
|
32
|
Liu J, Perez SM, Zhang W, Lodge DJ, Lu XY. Selective deletion of the leptin receptor in dopamine neurons produces anxiogenic-like behavior and increases dopaminergic activity in amygdala. Mol Psychiatry 2011; 16:1024-38. [PMID: 21483433 PMCID: PMC3432580 DOI: 10.1038/mp.2011.36] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The leptin receptor (Lepr) is expressed on midbrain dopamine neurons. However, the specific role of Lepr signaling in dopamine neurons remains to be clarified. In the present study, we generated a line of conditional knockout mice lacking functional Lepr selectively on dopamine neurons (Lepr(DAT-Cre)). These mice exhibit normal body weight and feeding. Behaviorally, Lepr(DAT-Cre) mice display an anxiogenic-like phenotype in the elevated plus-maze, light-dark box, social interaction and novelty-suppressed feeding tests. Depression-related behaviors, as assessed by chronic stress-induced anhedonia, forced swim and tail-suspension tests, were not affected by deletion of Lepr in dopamine neurons. In vivo electrophysiological recordings of dopamine neurons in the ventral tegmental area revealed an increase in burst firing in Lepr(DAT-Cre) mice. Moreover, blockade of D1-dependent dopamine transmission in the central amygdala by local microinjection of the D1 antagonist SCH23390 attenuated the anxiogenic phenotype of Lepr(DAT-Cre) mice. These findings suggest that Lepr signaling in midbrain dopamine neurons has a crucial role for the expression of anxiety and for the dopamine modulation of amygdala function.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Stephanie M. Perez
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Wei Zhang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Daniel J. Lodge
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Xin-Yun Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229,Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
33
|
Brown RW, Noel DM, Smith JJ, Smith ML, Huggins KN, Szebeni K, Szebeni A, Duffourc M, Chandley M, Ordway GA. Eszopiclone facilitation of the antidepressant efficacy of fluoxetine using a social defeat stress model. Pharmacol Biochem Behav 2011; 99:648-58. [PMID: 21699914 DOI: 10.1016/j.pbb.2011.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/24/2011] [Accepted: 06/08/2011] [Indexed: 11/28/2022]
Abstract
This study analyzed the interaction of the sleep aid eszopiclone (ESZ) and antidepressant fluoxetine (FLX) on social defeat stress (SDS) in the mouse. Beta adrenoreceptors, brain-derived neurotrophic factor (BDNF) and cAMP response element binding protein (CREB) expression in the hippocampus and frontal cortex were also analyzed. Subjects were adult male 'intruder' C57/B6 mice that were exposed to a retired 'resident' male breeder ICR mouse in this animal's home cage for a 5 min period for each of 10 consecutive days, and the resident established physical dominance. The following day, all animals were assigned to one of four drug treatment groups, and treatment was given for up to 18 days: vehicle, ESZ only (3mg/kg), FLX (10mg/kg) only, or ESZ+FLX. A social interaction test was given on days 1, 5, 10, and 15 of drug treatment to assess SDS. Results showed that the ESZ+FLX group spent less time in avoidance zones during the interaction test at days 1 and 5, and more time in the interaction zone at day 5 compared to defeated mice given vehicle. All drug treatment groups spent more time in the interaction zone compared to defeated mice given vehicle on day 1 as well as day 10. SDS completely dissipated by the fourth interaction test according to both behavioral measures. Neurochemically, SDS did not produce changes in any marker analyzed. This study shows the combination of ESZ and FLX alleviated SDS, but a neurochemical correlate remains elusive.
Collapse
Affiliation(s)
- Russell W Brown
- Department of Psychology, East Tennessee State University, Johnson City, TN 37614, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ellis JA, Olsson CA, Moore E, Greenwood P, Van De Ven MOM, Patton GC. A Role for the DRD4 Exon III VNTR in Modifying the Association Between Nicotine Dependence and Neuroticism. Nicotine Tob Res 2010; 13:64-9. [DOI: 10.1093/ntr/ntq210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Simpson J, Vetuz G, Wilson M, Brookes KJ, Kent L. The DRD4 receptor Exon 3 VNTR and 5' SNP variants and mRNA expression in human post-mortem brain tissue. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1228-33. [PMID: 20468066 DOI: 10.1002/ajmg.b.31084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic variation within the dopamine D4 receptor (DRD4) gene has been implicated in many neuropsychiatric disorders and behavioral traits. This variation includes the extensively studied exon 3 variably numbered tandem repeat (VNTR), and several 5' polymorphisms including a120-bp duplication and two single-nucleotide polymorphisms at -521 C/T (rs1800955) and -616 C/G (rs747302). Several reports have provided evidence for a functional role for some of these variants using in vitro techniques. This study investigated the functionality of these polymorphisms in 28 human post-mortem brain tissue samples by quantifying DRD4 mRNA expression in relation to genotype. No statistically significant relationship between genotype and mRNA expression levels was found for these four polymorphisms although a weak trend toward the 7-repeat of the exon 3 VNTR reducing DRD4 mRNA expression was found. Employing post-mortem brain tissue, rather than using in vitro techniques may provide a more relevant paradigm to study functional effects of reported risk alleles.
Collapse
Affiliation(s)
- Jennifer Simpson
- Bute Medical School, University of St. Andrews, St. Andrews, Scotland, UK
| | | | | | | | | |
Collapse
|
36
|
Lai JH, Zhu YS, Huo ZH, Sun RF, Yu B, Wang YP, Chai ZQ, Li SB. Association study of polymorphisms in the promoter region of DRD4 with schizophrenia, depression, and heroin addiction. Brain Res 2010; 1359:227-32. [PMID: 20801104 DOI: 10.1016/j.brainres.2010.08.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 11/25/2022]
Abstract
This study investigated the possible association between three functional polymorphisms in the promoter region of the dopamine D4 receptor (DRD4) gene and schizophrenia, depression, and heroin addiction. Genomic DNA was isolated from the venous blood leukocytes of 322 unrelated patients with schizophrenia, 156 patients with depression, 300 patients with heroin addiction, and 300 healthy unrelated individuals. Polymorphisms in the promoter region of DRD4 (-120 bp duplication, -616C/G, and -521C/T) were genotyped using allele-specific polymerase chain reaction analysis. Genotype and allele were analyzed using SPSS 11.5 software. Results of this analysis indicated that there is a strong finding of -120 bp duplication allele frequencies with schizophrenia (p=0.008) and weak finding with -1240 L/S and for paranoid schizophrenia (p=0.022). Interestingly, there is a stronger finding with -521 C/T allele frequencies with heroin dependence (p=0.0002). These observations strongly suggest that the -120-bp duplication polymorphism of DRD4 is associated with schizophrenia and that the -521 C/T polymorphism is associated with heroin addiction.
Collapse
Affiliation(s)
- J H Lai
- Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: Structural and functional analysis. Prog Neurobiol 2010; 90:198-216. [DOI: 10.1016/j.pneurobio.2009.10.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 06/05/2009] [Accepted: 10/09/2009] [Indexed: 11/18/2022]
|
38
|
Lauzon NM, Laviolette SR. Dopamine D4-receptor modulation of cortical neuronal network activity and emotional processing: Implications for neuropsychiatric disorders. Behav Brain Res 2009; 208:12-22. [PMID: 19948192 DOI: 10.1016/j.bbr.2009.11.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/18/2009] [Accepted: 11/20/2009] [Indexed: 11/18/2022]
Abstract
Dopamine (DA) transmission within cortical and subcortical structures is involved critically in the processing of emotionally relevant sensory information. Three interconnected neural regions, the medial prefrontal cortex (mPFC), basolateral nucleus of the amygdala (BLA) and the ventral tegmental area (VTA) have received considerable experimental attention, both in animal and clinical research models, as essential interconnected processors of emotional information. Neuronal network activity within both the mPFC and BLA are strongly modified by DA inputs from the VTA through both DA D(2)-like and D(1)-like receptors. However, emerging evidence from clinical, genetic, behavioral and electrophysiological investigations demonstrates a critical role for the DA D(4)-receptor subtype as a crucial modulator of emotional memory encoding and expression, both at the level of the single neuron, and at the systems level. In this review, we will examine recent evidence at the neuronal, behavioral and genetic levels of analysis that increasingly demonstrates an important role for DA D(4) transmission within cortical and subcortical emotional processing circuits. We will present evidence and some theoretical frameworks suggesting how disturbances in D(4)-receptor related neural circuitry may be involved in the neuropathological manifestations common in many neuropsychiatric disorders including schizophrenia, attention-deficit hyperactivity disorder (ADHD) and addiction.
Collapse
Affiliation(s)
- Nicole M Lauzon
- Department of Anatomy & Cell Biology, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
39
|
Braszko JJ. Participation of D 1-4 dopamine receptors in the pro-cognitive effects of angiotensin IV and des-Phe 6 angiotensin IV. Neurosci Biobehav Rev 2009; 34:343-50. [PMID: 19686774 DOI: 10.1016/j.neubiorev.2009.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 08/10/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
Abstract
Angiotensin IV (Ang IV) and des-Phe(6)Ang IV are naturally occurring neuroactive peptides of the renin-angiotensin system (RAS) involved in memory processing. However, the relevant mechanisms are poorly understood. In this review it is proposed that the pro-cognitive effects of these peptides are, at least partly, mediated by dopamine (DA). Recent studies demonstrated that the improvement of several memory aspects; recall of appetitively and aversively motivated behaviors and learning of spatial tasks by Ang IV and des-Phe(6)Ang IV was abolished, or significantly diminished by behaviorally inactive per se doses of the D(1) and D(2) receptor blockers SCH 23390 (R-[+]-7-chloro-8-hydroxy-3 methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine) and remoxipride, respectively. The D(3) receptor inhibition with nafadotride was almost ineffective but again, the D(4) receptor blockade by L745,870 hydrochloride (3-{[4-(4-chlorophenyl)piperazin-1-yl]methyl}-1H-pyrrolo[2,3-b]pyridine hydrochloride) diminished all, except for spatial memory, improving actions of the peptides. These results suggest that Ang IV and des-Phe(6)Ang IV enhance memory in a brain region-specific manner, dependent on local DA receptor subpopulations and the memory aspects controlled by them. The data reviewed here, demonstrating DA-Ang IV and des-Phe(6)Ang IV interactions in brain, strongly suggest probability of clinically relevant effects of concomitant use of antipsychotic and RAS affecting drugs.
Collapse
Affiliation(s)
- Jan J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15 A, 15274 Bialystok, Poland.
| |
Collapse
|
40
|
Braszko JJ. Dopamine D4 receptor antagonist L745,870 abolishes cognitive effects of intracerebroventricular angiotensin IV and des-Phe(6)-Ang IV in rats. Eur Neuropsychopharmacol 2009; 19:85-91. [PMID: 18835699 DOI: 10.1016/j.euroneuro.2008.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/04/2008] [Accepted: 08/24/2008] [Indexed: 11/28/2022]
Abstract
In this study effect of L745,870, a selective D(4) dopamine (DA) receptor blocker, on the pro-cognitive action of intracerebroventricularly (icv) injected angiotensin IV (Ang IV) and des-Phe(6)-Ang IV was examined. Male Wistar rats weighing 180-200 g were used. Both peptides given at the dose of 1 nmol facilitated recall of a passive avoidance (PA) behaviour, improved object recognition (OR) memory, decreased number of errors, increased number of sequential correct entries and shortened time-to-goal in an eight-arm radial maze (RM). In the auxiliary tests performed to control for the participation of unspecific motor (open field, OF) and emotional ('plus' maze, PM) effects of our treatment in the results of memory tests they had either no (OF) or negligible (PM) effects. Intraperitoneal pretreatment of the animals with 1 mg/kg of L745,870 abolished effects of both peptides on PA and OR and slightly diminished those observed in the eight-arm RM.
Collapse
Affiliation(s)
- Jan J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland.
| |
Collapse
|