1
|
The Impact of P-Glycoprotein on Opioid Analgesics: What's the Real Meaning in Pain Management and Palliative Care? Int J Mol Sci 2022; 23:ijms232214125. [PMID: 36430602 PMCID: PMC9695906 DOI: 10.3390/ijms232214125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Opioids are widely used in cancer and non-cancer pain management. However, many transporters at the blood-brain barrier (BBB), such as P-glycoprotein (P-gp, ABCB1/MDR1), may impair their delivery to the brain, thus leading to opioid tolerance. Nonetheless, opioids may regulate P-gp expression, thus altering the transport of other compounds, namely chemotherapeutic agents, resulting in pharmacoresistance. Other kinds of painkillers (e.g., acetaminophen, dexamethasone) and adjuvant drugs used for neuropathic pain may act as P-gp substrates and modulate its expression, thus making pain management challenging. Inflammatory conditions are also believed to upregulate P-gp. The role of P-gp in drug-drug interactions is currently under investigation, since many P-gp substrates may also act as substrates for the cytochrome P450 enzymes, which metabolize a wide range of xenobiotics and endobiotics. Genetic variability of the ABCB1/MDR1 gene may be accountable for inter-individual variation in opioid-induced analgesia. P-gp also plays a role in the management of opioid-induced adverse effects, such as constipation. Peripherally acting mu-opioid receptors antagonists (PAMORAs), such as naloxegol and naldemedine, are substrates of P-gp, which prevent their penetration in the central nervous system. In our review, we explore the interactions between P-gp and opioidergic drugs, with their implications in clinical practice.
Collapse
|
2
|
Ronaldson PT, Davis TP. Transport Mechanisms at the Blood-Brain Barrier and in Cellular Compartments of the Neurovascular Unit: Focus on CNS Delivery of Small Molecule Drugs. Pharmaceutics 2022; 14:1501. [PMID: 35890396 PMCID: PMC9324459 DOI: 10.3390/pharmaceutics14071501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a primary origin of morbidity and mortality in the United States and around the world. Indeed, several research projects have attempted to discover new drugs or repurpose existing therapeutics to advance stroke pharmacotherapy. Many of these preclinical stroke studies have reported positive results for neuroprotective agents; however, only one compound (3K3A-activated protein C (3K3A-APC)) has advanced to Phase III clinical trial evaluation. One reason for these many failures is the lack of consideration of transport mechanisms at the blood-brain barrier (BBB) and neurovascular unit (NVU). These endogenous transport processes function as a "gateway" that is a primary determinant of efficacious brain concentrations for centrally acting drugs. Despite the knowledge that some neuroprotective agents (i.e., statins and memantine) are substrates for these endogenous BBB transporters, preclinical stroke studies have largely ignored the role of transporters in CNS drug disposition. Here, we review the current knowledge on specific BBB transporters that either limit drug uptake into the brain (i.e., ATP-binding cassette (ABC) transporters) or can be targeted for optimized drug delivery (i.e., solute carrier (SLC) transporters). Additionally, we highlight the current knowledge on transporter expression in astrocytes, microglia, pericytes, and neurons with an emphasis on transport mechanisms in these cell types that can influence drug distribution within the brain.
Collapse
Affiliation(s)
- Patrick T. Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724-5050, USA;
| | | |
Collapse
|
3
|
Li QY, Chen SX, Liu JY, Yao PW, Duan YW, Li YY, Zang Y. Neuroinflammation in the anterior cingulate cortex: the potential supraspinal mechanism underlying the mirror-image pain following motor fiber injury. J Neuroinflammation 2022; 19:162. [PMID: 35725625 PMCID: PMC9210588 DOI: 10.1186/s12974-022-02525-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Peripheral nerve inflammation or lesion can affect contralateral healthy structures, and thus result in mirror-image pain. Supraspinal structures play important roles in the occurrence of mirror pain. The anterior cingulate cortex (ACC) is a first-order cortical region that responds to painful stimuli. In the present study, we systematically investigate and compare the neuroimmune changes in the bilateral ACC region using unilateral- (spared nerve injury, SNI) and mirror-(L5 ventral root transection, L5-VRT) pain models, aiming to explore the potential supraspinal neuroimmune mechanism underlying the mirror-image pain. Methods The up-and-down method with von Frey hairs was used to measure the mechanical allodynia. Viral injections for the designer receptors exclusively activated by designer drugs (DREADD) were used to modulate ACC glutamatergic neurons. Immunohistochemistry, immunofluorescence, western blotting, protein microarray were used to detect the regulation of inflammatory signaling. Results Increased expressions of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and chemokine CX3CL1 in ACC induced by unilateral nerve injury were observed on the contralateral side in the SNI group but on the bilateral side in the L5-VRT group, representing a stronger immune response to L5-VRT surgery. In remote ACC, both SNI and L5-VRT induced robust bilateral increase in the protein level of Nav1.6 (SCN8A), a major voltage-gated sodium channel (VGSC) that regulates neuronal activity in the mammalian nervous system. However, the L5-VRT-induced Nav1.6 response occurred at PO 3d, earlier than the SNI-induced one, 7 days after surgery. Modulating ACC glutamatergic neurons via DREADD-Gq or DREADD-Gi greatly changed the ACC CX3CL1 levels and the mechanical paw withdrawal threshold. Neutralization of endogenous ACC CX3CL1 by contralateral anti-CX3CL1 antibody attenuated the induction and the maintenance of mechanical allodynia and eliminated the upregulation of CX3CL1, TNF-α and Nav1.6 protein levels in ACC induced by SNI. Furthermore, contralateral ACC anti-CX3CL1 also inhibited the expression of ipsilateral spinal c-Fos, Iba1, CD11b, TNF-α and IL-6. Conclusions The descending facilitation function mediated by CX3CL1 and its downstream cascade may play a pivotal role, leading to enhanced pain sensitization and even mirror-image pain. Strategies that target chemokine-mediated ACC hyperexcitability may lead to novel therapies for the treatment of neuropathic pain. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02525-8.
Collapse
Affiliation(s)
- Qiao-Yun Li
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Shao-Xia Chen
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jin-Yu Liu
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Pei-Wen Yao
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Yi-Wen Duan
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Yong-Yong Li
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Ying Zang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
4
|
Blood-Brain Barrier Transporters: Opportunities for Therapeutic Development in Ischemic Stroke. Int J Mol Sci 2022; 23:ijms23031898. [PMID: 35163820 PMCID: PMC8836701 DOI: 10.3390/ijms23031898] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Globally, stroke is a leading cause of death and long-term disability. Over the past decades, several efforts have attempted to discover new drugs or repurpose existing therapeutics to promote post-stroke neurological recovery. Preclinical stroke studies have reported successes in identifying novel neuroprotective agents; however, none of these compounds have advanced beyond a phase III clinical trial. One reason for these failures is the lack of consideration of blood-brain barrier (BBB) transport mechanisms that can enable these drugs to achieve efficacious concentrations in ischemic brain tissue. Despite the knowledge that drugs with neuroprotective properties (i.e., statins, memantine, metformin) are substrates for endogenous BBB transporters, preclinical stroke research has not extensively studied the role of transporters in central nervous system (CNS) drug delivery. Here, we review current knowledge on specific BBB uptake transporters (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents); organic cation transporters (OCTs in humans; Octs in rodents) that can be targeted for improved neuroprotective drug delivery. Additionally, we provide state-of-the-art perspectives on how transporter pharmacology can be integrated into preclinical stroke research. Specifically, we discuss the utility of in vivo stroke models to transporter studies and considerations (i.e., species selection, co-morbid conditions) that will optimize the translational success of stroke pharmacotherapeutic experiments.
Collapse
|
5
|
Lochhead JJ, Yang J, Ronaldson PT, Davis TP. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Front Physiol 2020; 11:914. [PMID: 32848858 PMCID: PMC7424030 DOI: 10.3389/fphys.2020.00914] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB) allows the brain to selectively import nutrients and energy critical to neuronal function while simultaneously excluding neurotoxic substances from the peripheral circulation. In contrast to the highly permeable vasculature present in most organs that reside outside of the central nervous system (CNS), the BBB exhibits a high transendothelial electrical resistance (TEER) along with a low rate of transcytosis and greatly restricted paracellular permeability. The property of low paracellular permeability is controlled by tight junction (TJ) protein complexes that seal the paracellular route between apposing brain microvascular endothelial cells. Although tight junction protein complexes are principal contributors to physical barrier properties, they are not static in nature. Rather, tight junction protein complexes are highly dynamic structures, where expression and/or localization of individual constituent proteins can be modified in response to pathophysiological stressors. These stressors induce modifications to tight junction protein complexes that involve de novo synthesis of new protein or discrete trafficking mechanisms. Such responsiveness of BBB tight junctions to diseases indicates that these protein complexes are critical for maintenance of CNS homeostasis. In fulfillment of this vital role, BBB tight junctions are also a major obstacle to therapeutic drug delivery to the brain. There is an opportunity to overcome this substantial obstacle and optimize neuropharmacology via acquisition of a detailed understanding of BBB tight junction structure, function, and regulation. In this review, we discuss physiological characteristics of tight junction protein complexes and how these properties regulate delivery of therapeutics to the CNS for treatment of neurological diseases. Specifically, we will discuss modulation of tight junction structure, function, and regulation both in the context of disease states and in the setting of pharmacotherapy. In particular, we will highlight how these properties can be potentially manipulated at the molecular level to increase CNS drug levels via paracellular transport to the brain.
Collapse
|
6
|
Greene C, Hanley N, Campbell M. Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS 2019; 16:3. [PMID: 30691500 PMCID: PMC6350359 DOI: 10.1186/s12987-019-0123-z] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Tight junction proteins of the blood–brain barrier are vital for maintaining integrity of endothelial cells lining brain blood vessels. The presence of these protein complexes in the space between endothelial cells creates a dynamic, highly regulated and restrictive microenvironment that is vital for neural homeostasis. By limiting paracellular diffusion of material between blood and brain, tight junction proteins provide a protective barrier preventing the passage of unwanted and potentially damaging material. Simultaneously, this protective barrier hinders the therapeutic effectiveness of central nervous system acting drugs with over 95% of small molecule therapeutics unable to bypass the blood–brain barrier. At the blood–brain barrier, claudin-5 is the most enriched tight junction protein and its dysfunction has been implicated in neurodegenerative disorders such as Alzheimer’s disease, neuroinflammatory disorders such as multiple sclerosis as well as psychiatric disorders including depression and schizophrenia. By regulating levels of claudin-5, it is possible to abrogate disease symptoms in many of these disorders. This review will give an overview of the blood–brain barrier and the role of tight junction complexes in maintaining blood–brain barrier integrity before focusing on the role of claudin-5 and its regulation in homeostatic and pathological conditions. We will also summarise therapeutic strategies to restore integrity of cerebral vessels by targeting tight junction protein complexes.
Collapse
Affiliation(s)
- Chris Greene
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin 2, Ireland
| | - Nicole Hanley
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin 2, Ireland
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin 2, Ireland.
| |
Collapse
|
7
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:407-466. [PMID: 31571171 DOI: 10.1007/978-981-13-7647-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood-brain interfaces comprise the cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Their main functions are to impede free diffusion between brain fluids and blood; to provide transport processes for essential nutrients, ions, and metabolic waste products; and to regulate the homeostasis of central nervous system (CNS), all of which are attributed to absent fenestrations, high expression of tight junction proteins at cell-cell contacts, and expression of multiple transporters, receptors, and enzymes. Existence of BBB is an important reason that systemic drug administration is not suitable for the treatment of CNS diseases. Some diseases, such epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and diabetes, alter BBB function via affecting tight junction proteins or altering expression and function of these transporters. This chapter will illustrate function of BBB, expression of transporters, as well as their alterations under disease status.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
8
|
Modulation of Opioid Transport at the Blood-Brain Barrier by Altered ATP-Binding Cassette (ABC) Transporter Expression and Activity. Pharmaceutics 2018; 10:pharmaceutics10040192. [PMID: 30340346 PMCID: PMC6321372 DOI: 10.3390/pharmaceutics10040192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Opioids are highly effective analgesics that have a serious potential for adverse drug reactions and for development of addiction and tolerance. Since the use of opioids has escalated in recent years, it is increasingly important to understand biological mechanisms that can increase the probability of opioid-associated adverse events occurring in patient populations. This is emphasized by the current opioid epidemic in the United States where opioid analgesics are frequently abused and misused. It has been established that the effectiveness of opioids is maximized when these drugs readily access opioid receptors in the central nervous system (CNS). Indeed, opioid delivery to the brain is significantly influenced by the blood-brain barrier (BBB). In particular, ATP-binding cassette (ABC) transporters that are endogenously expressed at the BBB are critical determinants of CNS opioid penetration. In this review, we will discuss current knowledge on the transport of opioid analgesic drugs by ABC transporters at the BBB. We will also examine how expression and trafficking of ABC transporters can be modified by pain and/or opioid pharmacotherapy, a novel mechanism that can promote opioid-associated adverse drug events and development of addiction and tolerance.
Collapse
|
9
|
Brzica H, Abdullahi W, Reilly BG, Ronaldson PT. A Simple and Reproducible Method to Prepare Membrane Samples from Freshly Isolated Rat Brain Microvessels. J Vis Exp 2018. [PMID: 29782001 DOI: 10.3791/57698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The blood-brain barrier (BBB) is a dynamic barrier tissue that responds to various pathophysiological and pharmacological stimuli. Such changes resulting from these stimuli can greatly modulate drug delivery to the brain and, by extension, cause considerable challenges in the treatment of central nervous system (CNS) diseases. Many BBB changes that affect pharmacotherapy, involve proteins that are localized and expressed at the level of endothelial cells. Indeed, such knowledge on BBB physiology in health and disease has sparked considerable interest in the study of these membrane proteins. From a basic science research standpoint, this implies a requirement for a simple but robust and reproducible method for isolation of microvessels from brain tissue harvested from experimental animals. In order to prepare membrane samples from freshly isolated microvessels, it is essential that sample preparations be enriched in endothelial cells but limited in the presence of other cell types of the neurovascular unit (i.e., astrocytes, microglia, neurons, pericytes). An added benefit is the ability to prepare samples from individual animals in order to capture the true variability of protein expression in an experimental population. In this manuscript, details regarding a method that is utilized for isolation of rat brain microvessels and preparation of membrane samples are provided. Microvessel enrichment, from samples derived, is achieved by using four centrifugation steps where dextran is included in the sample buffer. This protocol can easily be adapted by other laboratories for their own specific applications. Samples generated from this protocol have been shown to yield robust experimental data from protein analysis experiments that can greatly aid the understanding of BBB responses to physiological, pathophysiological, and pharmacological stimuli.
Collapse
Affiliation(s)
- Hrvoje Brzica
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson
| | - Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson
| | - Bianca G Reilly
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson;
| |
Collapse
|
10
|
Schaefer CP, Arkwright NB, Jacobs LM, Jarvis CK, Hunn KC, Largent-Milnes TM, Tome ME, Davis TP. Chronic morphine exposure potentiates p-glycoprotein trafficking from nuclear reservoirs in cortical rat brain microvessels. PLoS One 2018; 13:e0192340. [PMID: 29414996 PMCID: PMC5802945 DOI: 10.1371/journal.pone.0192340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/22/2018] [Indexed: 11/19/2022] Open
Abstract
The rates of opioid prescription and use have continued to increase over the last few decades resulting in a greater number of opioid tolerant patients. Treatment of acute pain from surgery and injury is a clinical challenge for these patients. Several pain management strategies including prescribing increased opioids are used clinically with limited success; all currently available strategies have significant limitations. Many opioids are a substrate for p-glycoprotein (p-gp), an efflux transporter at the blood-brain barrier (BBB). Increased p-gp is associated with a decreased central nervous system uptake and analgesic efficacy of morphine. Our laboratory previously found that acute peripheral inflammatory pain (PIP) induces p-gp trafficking from the nucleus to the luminal surface of endothelial cells making up the BBB concomitant with increased p-gp activity and decreased morphine analgesic efficacy. In the current study, we tested whether PIP-induced p-gp trafficking could contribute to decreased opioid efficacy in morphine tolerant rats. A 6-day continuous dosing of morphine from osmotic minipumps was used to establish morphine tolerance in female rats. PIP induced p-gp trafficking away from nuclear stores showed a 2-fold increase in morphine tolerant rats. This observation suggests that p-gp trafficking contributes to the decreased morphine analgesic effects in morphine tolerant rats experiencing an acute pain stimulus. Attenuating p-gp trafficking during an acute pain stimulus could improve pain management by increasing the amount of opioid that could reach CNS analgesic targets and decrease the need for the dose escalation that is a serious challenge in pain management.
Collapse
Affiliation(s)
- Charles P. Schaefer
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Nathan B. Arkwright
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Leigh M. Jacobs
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Chelsea K. Jarvis
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Kristen C. Hunn
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Tally M. Largent-Milnes
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Margaret E. Tome
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Thomas P. Davis
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
11
|
Bidirectional modulation between infiltrating CD3 + T-lymphocytes and astrocytes in the spinal cord drives the development of allodynia in monoarthritic rats. Sci Rep 2018; 8:51. [PMID: 29311654 PMCID: PMC5758647 DOI: 10.1038/s41598-017-18357-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/11/2017] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggests that T cells and glia participate in the process of neuropathic pain. However, little is known about the involvement of T cells or the interaction between glia and T cells at the molecular level. Here we investigated the phenotype of T cell infiltration into the spinal cord in inflammatory pain and explored potential crosstalk between glia and T cells. The establishment of monoarthritis produced T cell infiltration and astrocyte activation, exhibiting similar kinetics in the spinal cord. T-cell-deficient (Rag1−/−) mice significantly attenuated MA-induced mechanical allodynia and GFAP upregulation. Double immunofluorescence staining showed that CD3 mainly colocalized with interferon-gamma (IFN-γ). Western blot and flow cytometry showed that multiple intrathecal administrations of astrocytic inhibitor fluorocitrate decreased IFN-γ-production without decreasing T cell number in the spinal cord. Spinal IFN-γ blockade reduced MA-induced mechanical allodynia and astroglial activation. In contrast, treatment with rIFN-γ directly elicited persistent mechanical allodynia and upregulation of GFAP and pJNK1/2 in naïve rats. Furthermore, rIFN-γ upregulated the phosphorylation of NF-κB p65 in cultured astrocytes vitro and spinal dorsal horn vivo. The results suggest that Th1 cells and astrocytes maintain inflammatory pain and imply that there may be a positive feedback loop between these cells via IFN-γ.
Collapse
|
12
|
Allegri M, Bugada D, De Gregori M, Avanzini MA, De Silvestri A, Petroni A, Sala A, Filisetti C, Icaro Cornaglia A, Cobianchi L. Continuous wound infusion with chloroprocaine in a pig model of surgical lesion: drug absorption and effects on inflammatory response. J Pain Res 2017; 10:2515-2524. [PMID: 29184436 PMCID: PMC5673045 DOI: 10.2147/jpr.s139856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Continuous wound infusion (CWI) may protect from inflammation, hyperalgesia and persistent pain. Current local anesthetics display suboptimal pharmacokinetic profile during CWI; chloroprocaine (CP) has ideal characteristics, but has never been tested for CWI. We performed an animal study to investigate the pharmacokinetic profile and anti-inflammatory effect of CP during CWI. A total of 14 piglets received an infusion catheter after pararectal laparotomy and were randomly allocated to one of three groups: 5 mL/h infusion of saline (group A), CP 1.5% (group B) and CP 0.5% (group C). Blood sampling was performed to assess absorption and systemic inflammation at 0, 3, 6, 12, 24, 48, 72, 96, 102 and 108 hours. The wound and contralateral healthy abdominal wall were sampled for histological analyses. Absorption of CP from the site of infusion, evaluated as the plasmatic concentrations of CP and its metabolite, 4-amino-2-chlorobenzoic acid (CABA), showed a peak during the first 6 hours, but both CP and its metabolite rapidly disappeared after stopping CP infusion. Local inflammation was reduced in groups B and C (CP-treated p < 0.001), in a CP dose-dependent fashion. While CP inhibited in a dose-dependent manner pig mononuclear cells (MNCs) in vitro proliferation to a polyclonal activator, no effect on systemic cytokines’ concentrations or on ex vivo monocytes’ responsiveness was observed, suggesting the lack of systemic effects, in line with the very short half-life of CP in plasma. CP showed a very good profile for use in CWI, with dose-dependent local anti-inflammatory effects, limited absorption and rapid clearance from the bloodstream upon discontinuation. No cytotoxicity or side effects were observed. CP, therefore, may represent an optimal choice for clinical CWI, adaptable to each patient’s need, and protective on wound inflammatory response (and hyperalgesia) after surgery.
Collapse
Affiliation(s)
- Massimo Allegri
- Department of Medicine and Surgery, University of Parma, Parma.,SIMPAR Group (Study in Multidisciplinary PAin Research)
| | - Dario Bugada
- Department of Medicine and Surgery, University of Parma, Parma.,SIMPAR Group (Study in Multidisciplinary PAin Research).,Department of Anaesthesia and ICU, ASST Papa Giovanni XXIII, Bergamo
| | - Manuela De Gregori
- SIMPAR Group (Study in Multidisciplinary PAin Research).,Pain Therapy Service, Fondazione IRCCS Policlinico San Matteo
| | - Maria A Avanzini
- Laboratory of Transplant Immunology/Cell Factory, IRCCS Foundation Policlinico San Matteo
| | - Annalisa De Silvestri
- Clinical epidemiology and Biometrics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Anna Petroni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan
| | - Angelo Sala
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan.,I.B.I.M., C.N.R., Palermo
| | - Claudia Filisetti
- PhD School, University of Pavia.,Department of Pediatric Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia.,Department of Pediatric Surgery, "V. Buzzi" Children's Hospital, Milan
| | | | - Lorenzo Cobianchi
- Department of Surgical, Clinical, Paediatric and Diagnostic Science, University of Pavia.,General Surgery 1, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
13
|
Zhao H, Alam A, Chen Q, Eusman M, Pal A, Eguchi S, Wu L, Ma D. The role of microglia in the pathobiology of neuropathic pain development: what do we know? Br J Anaesth 2017; 118:504-516. [DOI: 10.1093/bja/aex006] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
14
|
Lochhead JJ, Ronaldson PT, Davis TP. Hypoxic Stress and Inflammatory Pain Disrupt Blood-Brain Barrier Tight Junctions: Implications for Drug Delivery to the Central Nervous System. AAPS JOURNAL 2017; 19:910-920. [PMID: 28353217 DOI: 10.1208/s12248-017-0076-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 02/08/2023]
Abstract
A functional blood-brain barrier (BBB) is necessary to maintain central nervous system (CNS) homeostasis. Many diseases affecting the CNS, however, alter the functional integrity of the BBB. It has been shown that various diseases and physiological stressors can impact the BBB's ability to selectively restrict passage of substances from the blood to the brain. Modifications of the BBB's permeability properties can potentially contribute to the pathophysiology of CNS diseases and result in altered brain delivery of therapeutic agents. Hypoxia and/or inflammation are central components of a number of diseases affecting the CNS. A number of studies indicate hypoxia or inflammatory pain increase BBB paracellular permeability, induce changes in the expression and/or localization of tight junction proteins, and affect CNS drug uptake. In this review, we look at what is currently known with regard to BBB disruption following a hypoxic or inflammatory insult in vivo. Potential mechanisms involved in altering tight junction components at the BBB are also discussed. A more detailed understanding of the mediators involved in changing BBB functional integrity in response to hypoxia or inflammatory pain could potentially lead to new treatments for CNS diseases with hypoxic or inflammatory components. Additionally, greater insight into the mechanisms involved in TJ rearrangement at the BBB may lead to novel strategies to pharmacologically increase delivery of drugs to the CNS.
Collapse
Affiliation(s)
| | | | - Thomas P Davis
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
15
|
Davis TP, Abbruscato TJ, Egleton RD. Peptides at the blood brain barrier: Knowing me knowing you. Peptides 2015; 72:50-6. [PMID: 25937599 PMCID: PMC4627938 DOI: 10.1016/j.peptides.2015.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/15/2022]
Abstract
When the Davis Lab was first asked to contribute to this special edition of Peptides to celebrate the career and influence of Abba Kastin on peptide research, it felt like a daunting task. It is difficult to really understand and appreciate the influence that Abba has had, not only on a generation of peptide researchers, but also on the field of blood brain barrier (BBB) research, unless you lived it as we did. When we look back at our careers and those of our former students, one can truly see that several of Abba's papers played an influential role in the development of our personal research programs.
Collapse
Affiliation(s)
- Thomas P Davis
- The Davis Lab, Department of Medical Pharmacology, University of Arizona, Tucson, AZ 85724-5050.
| | - Thomas J Abbruscato
- Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106
| | - Richard D Egleton
- Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755
| |
Collapse
|
16
|
DosSantos MF, Holanda-Afonso RC, Lima RL, DaSilva AF, Moura-Neto V. The role of the blood-brain barrier in the development and treatment of migraine and other pain disorders. Front Cell Neurosci 2014; 8:302. [PMID: 25339863 PMCID: PMC4189386 DOI: 10.3389/fncel.2014.00302] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022] Open
Abstract
The function of the blood-brain barrier (BBB) related to chronic pain has been explored for its classical role in regulating the transcellular and paracellular transport, thus controlling the flow of drugs that act at the central nervous system, such as opioid analgesics (e.g., morphine) and non-steroidal anti-inflammatory drugs. Nonetheless, recent studies have raised the possibility that changes in the BBB permeability might be associated with chronic pain. For instance, changes in the relative amounts of occludin isoforms, resulting in significant increases in the BBB permeability, have been demonstrated after inflammatory hyperalgesia. Furthermore, inflammatory pain produces structural changes in the P-glycoprotein, the major efflux transporter at the BBB. One possible explanation for these findings is the action of substances typically released at the site of peripheral injuries that could lead to changes in the brain endothelial permeability, including substance P, calcitonin gene-related peptide, and interleukin-1 beta. Interestingly, inflammatory pain also results in microglial activation, which potentiates the BBB damage. In fact, astrocytes and microglia play a critical role in maintaining the BBB integrity and the activation of those cells is considered a key mechanism underlying chronic pain. Despite the recent advances in the understanding of BBB function in pain development as well as its interference in the efficacy of analgesic drugs, there remain unknowns regarding the molecular mechanisms involved in this process. In this review, we explore the connection between the BBB as well as the blood-spinal cord barrier and blood-nerve barrier, and pain, focusing on cellular and molecular mechanisms of BBB permeabilization induced by inflammatory or neuropathic pain and migraine.
Collapse
Affiliation(s)
- Marcos F. DosSantos
- Universidade Federal do Rio de Janeiro – Campus MacaéRio de Janeiro, Brazil
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences and Michigan Center for Oral Health Research, School of Dentistry, University of MichiganAnn Arbor, MI, USA
| | - Rosenilde C. Holanda-Afonso
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Rodrigo L. Lima
- Departamento de Ortodontia e Odontopediatria, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Alexandre F. DaSilva
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences and Michigan Center for Oral Health Research, School of Dentistry, University of MichiganAnn Arbor, MI, USA
| | - Vivaldo Moura-Neto
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Estadual do Cérebro Paulo NiemeyerRio de Janeiro, Brazil
| |
Collapse
|
17
|
Carcamo CR. Mirror-image pain is mediated by nerve growth factor produced from tumor necrosis factor-α-activated satellite glia after peripheral nerve injury. Pain 2014; 155:1675. [PMID: 24837844 DOI: 10.1016/j.pain.2014.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/05/2014] [Accepted: 05/08/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Cesar R Carcamo
- Mutual de Seguridad Hospital, Chronic Pain Unit, Santiago, Chile
| |
Collapse
|
18
|
Slosky LM, Thompson BJ, Sanchez-Covarrubias L, Zhang Y, Laracuente ML, Vanderah TW, Ronaldson PT, Davis TP. Acetaminophen modulates P-glycoprotein functional expression at the blood-brain barrier by a constitutive androstane receptor-dependent mechanism. Mol Pharmacol 2013; 84:774-86. [PMID: 24019224 DOI: 10.1124/mol.113.086298] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Effective pharmacologic treatment of pain with opioids requires that these drugs attain efficacious concentrations in the central nervous system (CNS). A primary determinant of CNS drug permeation is P-glycoprotein (P-gp), an endogenous blood-brain barrier (BBB) efflux transporter that is involved in brain-to-blood transport of opioid analgesics (i.e., morphine). Recently, the nuclear receptor constitutive androstane receptor (CAR) has been identified as a regulator of P-gp functional expression at the BBB. This is critical to pharmacotherapy of pain/inflammation, as patients are often administered acetaminophen (APAP), a CAR-activating ligand, in conjunction with an opioid. Our objective was to investigate, in vivo, the role of CAR in regulation of P-gp at the BBB. Following APAP treatment, P-gp protein expression was increased up to 1.4-1.6-fold in a concentration-dependent manner. Additionally, APAP increased P-gp transport of BODIPY-verapamil in freshly isolated rat brain capillaries. This APAP-induced increase in P-gp expression and activity was attenuated in the presence of CAR pathway inhibitor okadaic acid or transcriptional inhibitor actinomycin D, suggesting P-gp regulation is CAR-dependent. Furthermore, morphine brain accumulation was enhanced by P-gp inhibitors in APAP-treated animals, suggesting P-gp-mediated transport. A warm-water (50°C) tail-flick assay revealed a significant decrease in morphine analgesia in animals treated with morphine 3 or 6 hours after APAP treatment, as compared with animals treated concurrently. Taken together, our data imply that inclusion of APAP in a pain treatment regimen activates CAR at the BBB and increases P-gp functional expression, a clinically significant drug-drug interaction that modulates opioid analgesic efficacy.
Collapse
Affiliation(s)
- Lauren M Slosky
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, Arizona
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tenorio G, Kulkarni A, Kerr BJ. Resident glial cell activation in response to perispinal inflammation leads to acute changes in nociceptive sensitivity: implications for the generation of neuropathic pain. Pain 2012; 154:71-81. [PMID: 23103436 DOI: 10.1016/j.pain.2012.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 08/01/2012] [Accepted: 09/20/2012] [Indexed: 12/31/2022]
Abstract
Injury or disease affecting the spinal cord is often accompanied by abnormal, chronic pain. Recent estimates suggest that approximately 60% of patients with multiple sclerosis are affected by significant changes in pain sensitivity or experience ongoing neuropathic pain of unknown etiology. Chronic pain is also a significant concern after direct spinal cord trauma. Inflammatory events and the changes in astrocyte and microglia reactivity at the spinal level in response to injury or disease are now recognized as important processes that can initiate pain hypersensitivity. Changes in the structural integrity or permeability of the blood-brain barrier/blood-spinal cord barrier (BBB/BSCB) can facilitate the inflammatory events that result in these abnormal pain states. It remains unclear, however, whether chronic pain in these disorders is dependent on the influx of peripheral leukocytes or whether changes in the reactivity of resident glial cells within the central nervous system alone are sufficient. To address this question, we generated a model of perispinal inflammation that resulted in significant changes in the reactivity of resident astrocytes and microglia within the spinal cord but maintained the integrity of the BSCB. A number of similar changes at the behavioural and cellular level occur in this model that mimic the responses seen in animal models of multiple sclerosis or spinal cord injury (SCI). However, these changes are short lived and resolve over the course of a 2-week observation period. Our findings suggest that the chronicity of pain after injury or disease in the nervous system is dependent on the integrity of the BBB/BSCB.
Collapse
Affiliation(s)
- Gustavo Tenorio
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
20
|
Hamrah P, Cruzat A, Dastjerdi MH, Prüss H, Zheng L, Shahatit BM, Bayhan HA, Dana R, Pavan-Langston D. Unilateral herpes zoster ophthalmicus results in bilateral corneal nerve alteration: an in vivo confocal microscopy study. Ophthalmology 2012; 120:40-7. [PMID: 22999636 DOI: 10.1016/j.ophtha.2012.07.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/13/2012] [Accepted: 07/13/2012] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Herpes zoster ophthalmicus (HZO), thought to be a unilateral disease, results in loss of corneal sensation, leading to neurotrophic keratopathy. This study aimed to analyze bilateral corneal nerve changes in patients with HZO by in vivo confocal microscopy (IVCM) and their correlation with corneal sensation as a measure of nerve function. DESIGN Prospective, cross-sectional, controlled, single-center study. PARTICIPANTS Twenty-seven eyes with the diagnosis of HZO and their contralateral clinically unaffected eyes were studied and compared with normal controls (n = 15). METHODS In vivo confocal microscopy (Confoscan 4; Nidek Technologies, Gamagori, Japan) and corneal esthesiometry (Cochet-Bonnet; Luneau Ophthalmologie, Chartres, France) of the central cornea were performed bilaterally in all patients and controls. Patients were grouped into normal (>5.5 cm), mild (>2.5-5.5 cm), and severe (<2.5 cm) loss of sensation. MAIN OUTCOME MEASURES Changes in corneal nerve density, total nerve number, main nerve trunks, branching, and tortuosity were evaluated after IVCM and were correlated to corneal sensation, disease duration, and number of recurrences. RESULTS Eyes with herpes zoster ophthalmicus had a significant (P<0.001) decrease in total nerve length (595.8±358.1 vs. 2258.4±989.0 μm/frame), total number of nerves (5.4±2.8 vs. 13.1±3.8), number of main nerve trunks (2.3±1.1 vs. 4.7±1.2), and number of nerve branches (3.2±2.3 vs. 8.4±3.7) as compared with controls. In the contralateral clinically unaffected eyes, total nerve length (1053.1±441.4 μm/frame), total number of nerves (8.3±2.9), and main nerve trunks (3.1±1.0) also were decreased significantly as compared with controls (P<0.01). Reduced nerve density, total nerve count, main trunks, and tortuosity was correlated significantly with corneal sensation across all subgroups (P<0.001). CONCLUSIONS Patients with unilateral HZO demonstrated a profound and significant bilateral loss of the corneal nerve plexus as compared with controls, demonstrating bilateral changes in a clinically unilateral disease. Loss of corneal sensation strongly correlated with subbasal nerve plexus alterations as shown by IVCM. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Pedram Hamrah
- Ocular Surface Imaging Center and Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Quintão NL, Antonialli CS, da Silva GF, Rocha LW, de Souza MM, Malheiros A, Meyre-Silva C, Lucinda-Silva RM, Bresolin TM, Filho VC. Aleurites moluccana and its main active ingredient, the flavonoid 2″-O-rhamnosylswertisin, have promising antinociceptive effects in experimental models of hypersensitivity in mice. Pharmacol Biochem Behav 2012; 102:302-11. [DOI: 10.1016/j.pbb.2012.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/02/2012] [Accepted: 05/09/2012] [Indexed: 01/09/2023]
|
22
|
Transient opening of the perineurial barrier for analgesic drug delivery. Proc Natl Acad Sci U S A 2012; 109:E2018-27. [PMID: 22733753 DOI: 10.1073/pnas.1120800109] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selective targeting of sensory or nociceptive neurons in peripheral nerves remains a clinically desirable goal. Delivery of promising analgesic drugs is often impeded by the perineurium, which functions as a diffusion barrier attributable to tight junctions. We used perineurial injection of hypertonic saline as a tool to open the perineurial barrier transiently in rats and elucidated the molecular action principle in mechanistic detail: Hypertonic saline acts via metalloproteinase 9 (MMP9). The noncatalytic hemopexin domain of MMP9 binds to the low-density lipoprotein receptor-related protein-1, triggers phosphorylation of extracellular signal-regulated kinase 1/2, and induces down-regulation of the barrier-forming tight junction protein claudin-1. Perisciatic injection of any component of this pathway, including MMP9 hemopexin domain or claudin-1 siRNA, enables an opioid peptide ([D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin) and a selective sodium channel (NaV1.7)-blocking toxin (ProToxin-II) to exert antinociceptive effects without motor impairment. The latter, as well as the classic TTX, blocked compound action potentials in isolated nerves only after disruption of the perineurial barrier, which, in return, allowed endoneurally released calcitonin gene-related peptide to pass through the nerve sheaths. Our data establish the function and regulation of claudin-1 in the perineurium as the major sealing component, which could be modulated to facilitate drug delivery or, potentially, reseal the barrier under pathological conditions.
Collapse
|
23
|
Xanthos DN, Püngel I, Wunderbaldinger G, Sandkühler J. Effects of peripheral inflammation on the blood-spinal cord barrier. Mol Pain 2012; 8:44. [PMID: 22713725 PMCID: PMC3407004 DOI: 10.1186/1744-8069-8-44] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022] Open
Abstract
Background Changes in the blood-central nervous system barriers occur under pathological conditions including inflammation and contribute to central manifestations of various diseases. After short-lasting peripheral and neurogenic inflammation, the evidence is mixed whether there are consistent blood-spinal cord changes. In the current study, we examine changes in the blood-spinal cord barrier after intraplantar capsaicin and λ-carrageenan using several methods: changes in occludin protein, immunoglobulin G accumulation, and fluorescent dye penetration. We also examine potential sex differences in male and female adult rats. Results After peripheral carrageenan inflammation, but not capsaicin inflammation, immunohistochemistry shows occludin protein in lumbar spinal cord to be significantly altered at 72 hours post-injection. In addition, there is also significant immunoglobulin G detected in lumbar and thoracic spinal cord at this timepoint in both male and female rats. However, acute administration of sodium fluorescein or Evans Blue dyes is not detected in the parenchyma at this timepoint. Conclusions Our results show that carrageenan inflammation induces changes in tight junction protein and immunoglobulin G accumulation, but these may not be indicative of a blood-spinal cord barrier breakdown. These changes appear transiently after peak nociception and may be indicative of reversible pathology that resolves together with inflammation.
Collapse
Affiliation(s)
- Dimitris N Xanthos
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | | | | | | |
Collapse
|
24
|
Lochhead JJ, McCaffrey G, Sanchez-Covarrubias L, Finch JD, Demarco KM, Quigley CE, Davis TP, Ronaldson PT. Tempol modulates changes in xenobiotic permeability and occludin oligomeric assemblies at the blood-brain barrier during inflammatory pain. Am J Physiol Heart Circ Physiol 2011; 302:H582-93. [PMID: 22081706 DOI: 10.1152/ajpheart.00889.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our laboratory has shown that λ-carrageenan-induced peripheral inflammatory pain (CIP) can alter tight junction (TJ) protein expression and/or assembly leading to changes in blood-brain barrier xenobiotic permeability. However, the role of reactive oxygen species (ROS) and subsequent oxidative stress during CIP is unknown. ROS (i.e., superoxide) are known to cause cellular damage in response to pain/inflammation. Therefore, we examined oxidative stress-associated effects at the blood-brain barrier (BBB) in CIP rats. During CIP, increased staining of nitrosylated proteins was detected in hind paw tissue and enhanced presence of protein adducts containing 3-nitrotyrosine occurred at two molecular weights (i.e., 85 and 44 kDa) in brain microvessels. Tempol, a pharmacological ROS scavenger, attenuated formation of 3-nitrotyrosine-containing proteins in both the hind paw and in brain microvessels when administered 10 min before footpad injection of λ-carrageenan. Similarly, CIP increased 4-hydroxynoneal staining in brain microvessels and this effect was reduced by tempol. Brain permeability to [(14)C]sucrose and [(3)H]codeine was increased, and oligomeric assemblies of occludin, a critical TJ protein, were altered after 3 h CIP. Tempol attenuated both [(14)C]sucrose and [(3)H]codeine brain uptake as well as protected occludin oligomers from disruption in CIP animals, suggesting that ROS production/oxidative stress is involved in modulating BBB functional integrity during pain/inflammation. Interestingly, tempol administration reduced codeine analgesia in CIP animals, indicating that oxidative stress during pain/inflammation may affect opioid delivery to the brain and subsequent efficacy. Taken together, our data show for the first time that ROS pharmacological scavenging is a viable approach for maintaining BBB integrity and controlling central nervous system drug delivery during acute inflammatory pain.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Dept. of Medical Pharmacology, College of Medicine, Univ. of Arizona, 1501 North Campbell Ave., P.O. Box 245050, Tucson, AZ 85724-5050, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ronaldson PT, Davis TP. Targeting blood-brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery. Ther Deliv 2011; 2:1015-41. [PMID: 22468221 PMCID: PMC3313594 DOI: 10.4155/tde.11.67] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB) is the most significant obstacle to effective CNS drug delivery. It possesses structural and biochemical features (i.e., tight-junction protein complexes and, influx and efflux transporters) that restrict xenobiotic permeation. Pathophysiological stressors (i.e., peripheral inflammatory pain) can alter BBB tight junctions and transporters, which leads to drug-permeation changes. This is especially critical for opioids, which require precise CNS concentrations to be safe and effective analgesics. Recent studies have identified molecular targets (i.e., endogenous transporters and intracellular signaling systems) that can be exploited for optimization of CNS drug delivery. This article summarizes current knowledge in this area and emphasizes those targets that present the greatest opportunity for controlling drug permeation and/or drug transport across the BBB in an effort to achieve optimal CNS opioid delivery.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 N Campbell Avenue, PO Box 245050, Tucso, AZ, USA.
| | | |
Collapse
|
26
|
Ronaldson PT, Finch JD, Demarco KM, Quigley CE, Davis TP. Inflammatory pain signals an increase in functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier. J Pharmacol Exp Ther 2010; 336:827-39. [PMID: 21131267 DOI: 10.1124/jpet.110.174151] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pain is a dominant symptom associated with inflammatory conditions. Pharmacotherapy with opioids may be limited by poor blood-brain barrier (BBB) permeability. One approach that may improve central nervous system (CNS) delivery is to target endogenous BBB transporters such as organic anion-transporting polypeptide 1a4 (Oatp1a4). It is critical to identify and characterize biological mechanisms that enable peripheral pain/inflammation to "transmit" upstream signals and alter CNS drug transport processes. Our goal was to investigate, in vivo, BBB functional expression of Oatp1a4 in animals subjected to peripheral inflammatory pain. Inflammatory pain was induced in female Sprague-Dawley rats (200-250 g) by subcutaneous injection of 3% λ-carrageenan into the right hind paw; control animals were injected with 0.9% saline. In rat brain microvessels, Oatp1a4 expression was increased during acute pain/inflammation. Uptake of taurocholate and [d-penicillamine(2,5)]-enkephalin, two established Oatp substrates, was increased in animals subjected to peripheral pain, suggesting increased Oatp1a4-mediated transport. Inhibition of inflammatory pain with the anti-inflammatory drug diclofenac attenuated these changes in Oatp1a4 functional expression, suggesting that inflammation in the periphery can modulate BBB transporters. In addition, diclofenac prevented changes in the peripheral signaling cytokine transforming growth factor-β1 (TGF-β1) levels and brain microvascular TGF-β receptor expression induced by inflammatory pain. Pretreatment with the pharmacological TGF-β receptor inhibitor 4-[4-(1,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide (SB431542) increased Oatp1a4 functional expression in λ-carrageenan-treated animals and saline controls, suggesting that TGF-β signaling is involved in Oatp1a4 regulation at the BBB. Our findings indicate that BBB transporters (i.e., Oatp1a4) can be targeted during drug development to improve CNS delivery of highly promising therapeutics.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724-5050, USA.
| | | | | | | | | |
Collapse
|
27
|
Buczynski MW, Svensson CI, Dumlao DS, Fitzsimmons BL, Shim JH, Scherbart TJ, Jacobsen FE, Hua XY, Yaksh TL, Dennis EA. Inflammatory hyperalgesia induces essential bioactive lipid production in the spinal cord. J Neurochem 2010; 114:981-93. [PMID: 20492349 DOI: 10.1111/j.1471-4159.2010.06815.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lipid molecules play an important role in regulating the sensitivity of sensory neurons and enhancing pain perception, and growing evidence indicates that the effect occurs both at the site of injury and in the spinal cord. Using high-throughput mass spectrometry methodology, we sought to determine the contribution of spinal bioactive lipid species to inflammation-induced hyperalgesia in rats. Quantitative analysis of CSF and spinal cord tissue for eicosanoids, ethanolamides and fatty acids revealed the presence of 102 distinct lipid species. After induction of peripheral inflammation by intra-plantar injection of carrageenan to the ipsilateral hind paw, lipid changes in cyclooxygenase (COX) and 12-lipoxygenase (12-LOX) signaling pathways peaked at 4 h in the CSF. In contrast, changes occurred in a temporally disparate manner in the spinal cord with LOX-derived hepoxilins followed by COX-derived prostaglandin E(2), and subsequently the ethanolamine anandamide. Systemic treatment with the mu opioid agonist morphine, the COX inhibitor ketorolac, or the LOX inhibitor nordihydroguaiaretic acid significantly reduced tactile allodynia, while their effects on the lipid metabolites were different. Morphine did not alter the lipid profile in the presence or absence of carrageenan inflammation. Ketorolac caused a global reduction in eicosanoid metabolism in naïve animals that remained suppressed following injection of carrageenan. Nordihydroguaiaretic acid-treated animals also displayed reduced basal levels of COX and 12-LOX metabolites, but only 12-LOX metabolites remained decreased after carrageenan treatment. These findings suggest that both COX and 12-LOX play an important role in the induction of carrageenan-mediated hyperalgesia through these pathways.
Collapse
Affiliation(s)
- Matthew W Buczynski
- Department of Pharmacology, Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hansson E. Long-term pain, neuroinflammation and glial activation. Scand J Pain 2010; 1:67-72. [PMID: 29913949 DOI: 10.1016/j.sjpain.2010.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
Nociceptive and neuropathic pain signals are known to result from noxious stimuli, which are converted into electrical impulses within tissue nociceptors. There is a complex equilibrium of pain-signalling and pain-relieving pathways connecting PNS and CNS. Drugs against long-term pain are today directed against increased neuronal excitability, mostly with less success. An injury often starts with acute physiological pain, which becomes inflammatory, nociceptive, or neuropathic, and may be transferred into long-term pain. Recently a low-grade inflammation was identified in the spinal cord and along the pain pathways to thalamus and the parietal cortex. This neuroinflammation is due to activation of glial cells, especially microglia, with production of cytokines and other inflammatory mediators within the CNS. Additionally, substances released to the blood from the injured region influence the blood-brain barrier, and give rise to an increased permeability of the tight junctions of the capillary endothelial cells, leading to passage of blood cells into the CNS. These cells are transformed into reactive microglia. If the inflammation turns into a pathological state the astrocytes will be activated. They are coupled into networks and respond to substances released by the capillary endothelial cells, to cytokines released from microglia, and to neurotransmitters and peptides released from neurons. As the astrocytes occupy a strategic position between the vasculature and synapses, they monitor the neuronal activity and transmitter release. Increased release of glutamate and ATP leads to disturbances in Ca2+ signalling, increased production of cytokines and free radicals, attenuation of the astrocyte glutamate transport capacity, and conformational changes in the astrocytic cytoskeleton, the actin filaments, which can lead to formation and rebuilding of new synapses. New neuronal contacts are established for maintaining and spreading pain sensation with the astrocytic networks as bridges. Thereby the glial cells can maintain the pain sensation even after the original injury has healed, and convert the pain into long-term by altering neuronal excitability. It can even be experienced from other parts of the body. As astrocytes are intimate co-players with neurons in the CNS, more knowledge on astrocyte responses to inflammatory activators may give new insight in our understanding of mechanisms of low-grade inflammation underlying long-term pain states and pain spreading. Novel treatment strategies would be to restore glial cell function and thereby attenuate the neuroinflammation.
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Per Dubbsgatan 14, 1tr, SE 413 45, Gothenburg, Sweden
| |
Collapse
|
29
|
Lu P, Gonzales C, Chen Y, Adedoyin A, Hummel M, Kennedy JD, Whiteside GT. CNS penetration of small molecules following local inflammation, widespread systemic inflammation or direct injury to the nervous system. Life Sci 2009; 85:450-6. [PMID: 19632245 DOI: 10.1016/j.lfs.2009.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/14/2009] [Accepted: 07/20/2009] [Indexed: 11/15/2022]
Abstract
AIMS We sought to investigate effects of local and systemic inflammation on CNS permeability of small molecules and compare these to effects of direct injury to the nervous system. MAIN METHODS Evans blue was used to determine the integrity of the blood-brain barrier (BBB) following local inflammation, systemic inflammation, injury to the L5 spinal nerve or transient occlusion of the middle cerebral artery. In addition, three compounds having low, medium and high brain permeability (atenolol, morphine and oxycodone, respectively) were used. Following model establishment (4-hr post-carrageenan, 24-hr post-FCA, 2-, 4- and 24-hr post-LPS, 21 days post-nerve injury) compounds were administered and 30 min later the brain, spinal cord and blood removed. The plasma and tissue concentrations of compounds were quantified by LC/MS/MS. KEY FINDINGS Localized inflammation did not affect Evans blue penetration into the CNS but significantly increased morphine penetration into the spinal cord. Systemic inflammation increased the quantity of Evans blue in the CNS but also decreased the penetration of atenolol, morphine and oxycodone into the brain 4-hr post-insult. Nerve injury had no effect on Evans blue or compound penetration, while middle cerebral artery occlusion resulted in a large but short lived increase in Evans blue penetration into both the cortex and striatum. SIGNIFICANCE The presence of inflammation may affect the CNS penetration of some compounds but is unlikely to lead to a large non-selective BBB breakdown. As a result, it is appropriate to test for side-effects, and conduct brain pharmacokinetic determinations, in naïve rats.
Collapse
Affiliation(s)
- Peimin Lu
- Neuroscience Discovery Research, Wyeth Research, CN8000, Princeton, NJ 08543, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Transforming growth factor-beta signaling alters substrate permeability and tight junction protein expression at the blood-brain barrier during inflammatory pain. J Cereb Blood Flow Metab 2009; 29:1084-98. [PMID: 19319146 PMCID: PMC3910515 DOI: 10.1038/jcbfm.2009.32] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Our laboratory has shown that peripheral inflammatory pain induced by lambda-carrageenan (CIP) can increase blood-brain barrier (BBB) permeability and alter tight junction (TJ) protein expression leading to changes in BBB functional integrity. However, the intracellular signaling mechanisms involved in this pathophysiologic response have not been elucidated. Transforming growth factor (TGF)-beta signaling pathways are known to regulate vascular integrity and permeability. Therefore, we examined the function of TGF-beta signaling at the BBB in rats subjected to CIP. During CIP, serum TGF-beta1 and protein expression of the TGF-beta receptor activin receptor-like kinase-5 (ALK5) were reduced. Brain permeability to (14)C-sucrose was increased and expression of TJ proteins (i.e., claudin-5, occludin, zonula occluden (ZO-1)) were also altered after 3 h CIP. Pharmacological inhibition of ALK5 with the selective inhibitor SB431542 further enhanced brain uptake of (14)C-sucrose, increased TJ protein expression (i.e., claudin-3, claudin-5, occludin, ZO-1), and decreased nuclear expression of TGF-beta/ALK5 signaling molecules (i.e., Smad2, Smad3), which suggests a role for TGF-beta/ALK5 signaling in the regulation of BBB integrity. Interestingly, administration of exogenous TGF-beta1 before CIP activated the TGF-beta/ALK5 pathway and reduced BBB permeability to (14)C-sucrose. Taken together, our data show that TGF-beta/ALK5 signaling is, in part, involved in the regulation of BBB functional integrity.
Collapse
|