1
|
Zhang W, Sun M, Liu N, Li X, Sun J, Wang M. Curcumin ameliorates astrocyte inflammation through AXL in cuprizone-induced mice. Toxicol Appl Pharmacol 2025; 494:117170. [PMID: 39586379 DOI: 10.1016/j.taap.2024.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Curcumin has gained global attention owning to its anti-inflammatory, antioxidant, anticancer, and antimicrobial activities. Curcumin has recently been shown to have well-documented effects on neuroinflammation in multiple sclerosis (MS). Astrocytes, the most widely distributed glial cells in the brain, have a significant influence on the regulation of neuroinflammation in MS. However, it is unknown how curcumin exerts neuroprotective effects in astrocytes. To elucidate the mechanism underlying the effects of curcumin on astrocytes, we explored the effect of curcumin on cuprizone (CPZ)-induced mice in vivo and on primary astrocytes in vitro. In this study, we observed that curcumin significantly ameliorated myelin loss and reduced astrocyte activation in the corpus callosum (CC) region in mice induced with CPZ, and in primary astrocytes stimulated with lipopolysaccharide (LPS). Meanwhile, our research indicated that curcumin may exert neuroprotective effects in CPZ-induced mice by downregulating astrocyte-mediated inflammation by AXL. This study provides new insights into possible targeted therapies for MS.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Mengjiao Sun
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Ning Liu
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Jing Sun
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, 730030 Lanzhou, China.
| |
Collapse
|
2
|
Rosenstein I, Novakova L, Kvartsberg H, Nordin A, Rasch S, Rembeza E, Sandgren S, Malmeström C, Fruhwürth S, Axelsson M, Blennow K, Zetterberg H, Lycke J. Tyro3 and Gas6 are associated with white matter and myelin integrity in multiple sclerosis. J Neuroinflammation 2024; 21:320. [PMID: 39673059 PMCID: PMC11645787 DOI: 10.1186/s12974-024-03315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND The Gas6/TAM (Tyro3, Axl, and Mer) receptor system has been implicated in demyelination and delayed remyelination in experimental animal models, but data in humans are scarce. We aimed to investigate the role of Gas6/TAM in neurodegenerative processes in multiple sclerosis (MS). METHODS From a prospective 5-year follow-up study, soluble Gas6/TAM biomarkers were analyzed in cerebrospinal fluid (CSF) by enzyme-linked immunosorbent assay (ELISA) at baseline in patients with relapsing-remitting MS (RRMS) (n = 40), progressive MS (PMS) (n = 20), and healthy controls (HC) (n = 25). Brain volumes, including myelin content (MyC) and white matter (WM) were measured by synthetic magnetic resonance imaging at baseline, 12 months, and 60-month follow-up. Associations with brain volume changes were investigated in multivariable linear regression models. Gas6/TAM concentrations were also determined at 12 months follow-up in RRMS to assess treatment response. RESULTS Baseline concentrations of Tyro3, Axl, and Gas6 were significantly higher in PMS vs. RRMS and HC. Mer was higher in PMS vs. HC. Tyro3 and Gas6 were associated with reduced WM (β = 25.5, 95% confidence interval [CI] [6.11-44.96, p = 0.012; β = 11.4, 95% CI [0.42-22.4], p = 0.042, respectively) and MyC (β = 7.95, 95%CI [1.84-14.07], p = 0.012; β = 4.4, 95%CI [1.04-7.75], p = 0.012 respectively) at 60 months. Patients with evidence of remyelination at last follow-up had lower baseline soluble Tyro3 (p = 0.033) and Gas6 (p = 0.014). Except Mer, Gas6/TAM concentrations did not change with treatment in RRMS. DISCUSSION Our data indicate a potential role for the Gas6/TAM receptor system in neurodegenerative processes influencing demyelination and ineffective remyelination.
Collapse
Affiliation(s)
- Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden.
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hlin Kvartsberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Anna Nordin
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
| | - Sofia Rasch
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Elzbieta Rembeza
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sofia Sandgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Hong Kong Centre for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 413 45, Gothenburg, Sweden
- Region Västra Götaland, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
3
|
Asadian N, Aprico A, Chen M, Yuen D, Johnston APR, Kilpatrick TJ, Binder MD. The therapeutic effect of GAS6 in remyelination is dependent upon Tyro3. Glia 2024; 72:1392-1401. [PMID: 38572807 DOI: 10.1002/glia.24534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Multiple sclerosis is an autoimmune disease of the central nervous system (CNS) characterized by demyelination, axonal damage and, for the majority of people, a decline in neurological function in the long-term. Remyelination could assist in the protection of axons and their functional recovery, but such therapies are not, as yet, available. The TAM (Tyro3, Axl, and MERTK) receptor ligand GAS6 potentiates myelination in vitro and promotes recovery in pre-clinical models of MS. However, it has remained unclear which TAM receptor is responsible for transducing this effect and whether post-translational modification of GAS6 is required. In this study, we show that the promotion of myelination requires post-translational modification of the GLA domain of GAS6 via vitamin K-dependent γ-carboxylation. We also confirmed that the intracerebroventricular provision of GAS6 for 2 weeks to demyelinated wild-type (WT) mice challenged with cuprizone increased the density of myelinated axons in the corpus callosum by over 2-fold compared with vehicle control. Conversely, the provision of GAS6 to Tyro3 KO mice did not significantly improve the density of myelinated axons. The improvement in remyelination following the provision of GAS6 to WT mice was also accompanied by an increased density of CC1+ve mature oligodendrocytes compared with vehicle control, whereas this improvement was not observed in the absence of Tyro3. This effect occurs independent of any influence on microglial activation. This work therefore establishes that the remyelinative activity of GAS6 is dependent on Tyro3 and includes potentiation of oligodendrocyte numbers.
Collapse
Affiliation(s)
- Negar Asadian
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Andrea Aprico
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Moore Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Daniel Yuen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Michele D Binder
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Olveda GE, Barasa MN, Hill RA. Microglial phagocytosis of single dying oligodendrocytes is mediated by CX3CR1 but not MERTK. Cell Rep 2024; 43:114385. [PMID: 38935500 PMCID: PMC11304498 DOI: 10.1016/j.celrep.2024.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/10/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Oligodendrocyte death is common in aging and neurodegenerative disease. In these conditions, dying oligodendrocytes must be efficiently removed to allow remyelination and to prevent a feedforward degenerative cascade. Removal of this cellular debris is thought to primarily be carried out by resident microglia. To investigate the cellular dynamics underlying how microglia do this, we use a single-cell cortical demyelination model combined with longitudinal intravital imaging of dual-labeled transgenic mice. Following phagocytosis, single microglia clear the targeted oligodendrocyte and its myelin sheaths in one day via a precise, rapid, and stereotyped sequence. Deletion of the fractalkine receptor, CX3CR1, delays the microglial phagocytosis of the cell soma but has no effect on clearance of myelin sheaths. Unexpectedly, deletion of the phosphatidylserine receptor, MERTK, has no effect on oligodendrocyte or myelin sheath clearance. Thus, separate molecular signals are used to detect, engage, and clear distinct sub-compartments of dying oligodendrocytes to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Genaro E Olveda
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Maryanne N Barasa
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
5
|
Olveda GE, Barasa MN, Hill RA. Microglial phagocytosis of single dying oligodendrocytes is mediated by CX3CR1 but not MERTK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.570620. [PMID: 38168326 PMCID: PMC10760041 DOI: 10.1101/2023.12.11.570620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Oligodendrocyte death is common in aging and neurodegenerative diseases. In these conditions, single dying oligodendrocytes must be efficiently removed to allow remyelination and prevent a feed-forward degenerative cascade. Here we used a single-cell cortical demyelination model combined with longitudinal intravital imaging of dual-labeled transgenic mice to investigate the cellular dynamics underlying how brain resident microglia remove these cellular debris. Following phagocytic engagement, single microglia cleared the targeted oligodendrocyte and its myelin sheaths in one day via a precise, rapid, and stereotyped sequence. Deletion of the fractalkine receptor, CX3CR1, delayed microglia engagement with the cell soma but unexpectedly did not affect the clearance of myelin sheaths. Furthermore, and in contrast to previous reports in other demyelination models, deletion of the phosphatidylserine receptor, MERTK, did not affect oligodendrocyte or myelin sheath clearance. Thus, distinct molecular signals are used to detect, engage, and clear sub-compartments of dying oligodendrocytes to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Genaro E. Olveda
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Maryanne N. Barasa
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Robert A. Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
6
|
Nguyen LT, Aprico A, Nwoke E, Walsh AD, Blades F, Avneri R, Martin E, Zalc B, Kilpatrick TJ, Binder MD. Mertk-expressing microglia influence oligodendrogenesis and myelin modelling in the CNS. J Neuroinflammation 2023; 20:253. [PMID: 37926818 PMCID: PMC10626688 DOI: 10.1186/s12974-023-02921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Microglia, an immune cell found exclusively within the CNS, initially develop from haematopoietic stem cell precursors in the yolk sac and colonise all regions of the CNS early in development. Microglia have been demonstrated to play an important role in the development of oligodendrocytes, the myelin producing cells in the CNS, as well as in myelination. Mertk is a receptor expressed on microglia that mediates immunoregulatory functions, including myelin efferocytosis. FINDINGS Here we demonstrate an unexpected role for Mertk-expressing microglia in both oligodendrogenesis and myelination. The selective depletion of Mertk from microglia resulted in reduced oligodendrocyte production in early development and the generation of pathological myelin. During demyelination, mice deficient in microglial Mertk had thinner myelin and showed signs of impaired OPC differentiation. We established that Mertk signalling inhibition impairs oligodendrocyte repopulation in Xenopus tadpoles following demyelination. CONCLUSION These data highlight the importance of microglia in myelination and are the first to identify Mertk as a regulator of oligodendrogenesis and myelin ultrastructure.
Collapse
Affiliation(s)
- Linda T Nguyen
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, Australia
| | - Andrea Aprico
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Eze Nwoke
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
- Crux Biolabs, Bayswater, VIC, 3153, Australia
| | - Alexander D Walsh
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Farrah Blades
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
- Centre for Solar Biotechnology, Institute for Molecular Biosciences, University of Queensland, St Lucia, Brisbane, Australia
| | - Raphael Avneri
- Inserm, CNRS, Institut du Cerveau, AP-HP Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
- Department of Molecular Biology, Ariel University, 40700, Ariel, Israel
| | - Elodie Martin
- Inserm, CNRS, Institut du Cerveau, AP-HP Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Bernard Zalc
- Inserm, CNRS, Institut du Cerveau, AP-HP Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Michele D Binder
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia.
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
7
|
DeRyckere D, Huelse JM, Earp HS, Graham DK. TAM family kinases as therapeutic targets at the interface of cancer and immunity. Nat Rev Clin Oncol 2023; 20:755-779. [PMID: 37667010 DOI: 10.1038/s41571-023-00813-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/06/2023]
Abstract
Novel treatment approaches are needed to overcome innate and acquired mechanisms of resistance to current anticancer therapies in cancer cells and the tumour immune microenvironment. The TAM (TYRO3, AXL and MERTK) family receptor tyrosine kinases (RTKs) are potential therapeutic targets in a wide range of cancers. In cancer cells, TAM RTKs activate signalling pathways that promote cell survival, metastasis and resistance to a variety of chemotherapeutic agents and targeted therapies. TAM RTKs also function in innate immune cells, contributing to various mechanisms that suppress antitumour immunity and promote resistance to immune-checkpoint inhibitors. Therefore, TAM antagonists provide an unprecedented opportunity for both direct and immune-mediated therapeutic activity provided by inhibition of a single target, and are likely to be particularly effective when used in combination with other cancer therapies. To exploit this potential, a variety of agents have been designed to selectively target TAM RTKs, many of which have now entered clinical testing. This Review provides an essential guide to the TAM RTKs for clinicians, including an overview of the rationale for therapeutic targeting of TAM RTKs in cancer cells and the tumour immune microenvironment, a description of the current preclinical and clinical experience with TAM inhibitors, and a perspective on strategies for continued development of TAM-targeted agents for oncology applications.
Collapse
Affiliation(s)
- Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Paediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Justus M Huelse
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Paediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - H Shelton Earp
- Department of Medicine, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Paediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Deciphering the Genetic Crosstalk between Microglia and Oligodendrocyte Precursor Cells during Demyelination and Remyelination Using Transcriptomic Data. Int J Mol Sci 2022; 23:ijms232314868. [PMID: 36499195 PMCID: PMC9738937 DOI: 10.3390/ijms232314868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Demyelinating disorders show impaired remyelination due to failure in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature myelin-forming oligodendrocytes, a process driven by microglia-OPC crosstalk. Through conducting a transcriptomic analysis of microarray studies on the demyelination-remyelination cuprizone model and using human samples of multiple sclerosis (MS), we identified molecules involved in this crosstalk. Differentially expressed genes (DEGs) of specific regions/cell types were detected in GEO transcriptomic raw data after cuprizone treatment and in MS samples, followed by functional analysis with GO terms and WikiPathways. Additionally, microglia-OPC crosstalk between microglia ligands, OPC receptors and target genes was examined with the NicheNet model. We identified 108 and 166 DEGs in the demyelinated corpus callosum (CC) at 2 and 4 weeks of cuprizone treatment; 427 and 355 DEGs in the remyelinated (4 weeks of cuprizone treatment + 14 days of normal diet) compared to 2- and 4-week demyelinated CC; 252 DEGs in MS samples and 2730 and 12 DEGs in OPC and microglia of 4-week demyelinated CC. At this time point, we found 95 common DEGs in the CC and OPCs, and one common DEG in microglia and OPCs, mostly associated with myelin and lipid metabolism. Crosstalk analysis identified 47 microglia ligands, 43 OPC receptors and 115 OPC target genes, all differentially expressed in cuprizone-treated samples and associated with myelination. Our differential expression pipeline identified demyelination/remyelination transcriptomic biomarkers in studies using diverse platforms and cell types/tissues. Cellular crosstalk analysis yielded novel markers of microglia ligands, OPC receptors and target genes.
Collapse
|
9
|
Kohno K, Shirasaka R, Yoshihara K, Mikuriya S, Tanaka K, Takanami K, Inoue K, Sakamoto H, Ohkawa Y, Masuda T, Tsuda M. A spinal microglia population involved in remitting and relapsing neuropathic pain. Science 2022; 376:86-90. [PMID: 35357926 DOI: 10.1126/science.abf6805] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuropathic pain is often caused by injury and diseases that affect the somatosensory system. Although pain development has been well studied, pain recovery mechanisms remain largely unknown. Here, we found that CD11c-expressing spinal microglia appear after the development of behavioral pain hypersensitivity following nerve injury. Nerve-injured mice with spinal CD11c+ microglial depletion failed to recover spontaneously from this hypersensitivity. CD11c+ microglia expressed insulin-like growth factor-1 (IGF1), and interference with IGF1 signaling recapitulated the impairment in pain recovery. In pain-recovered mice, the depletion of CD11c+ microglia or the interruption of IGF1 signaling resulted in a relapse in pain hypersensitivity. Our findings reveal a mechanism for the remission and recurrence of neuropathic pain, providing potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- Keita Kohno
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoji Shirasaka
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Yoshihara
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satsuki Mikuriya
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiko Takanami
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi, Japan.,Mouse Genomics Resources Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Kazuhide Inoue
- Kyushu University Institute for Advanced Study, Fukuoka, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Setouchi, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takahiro Masuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Ziaei A, Garcia-Miralles M, Radulescu CI, Sidik H, Silvin A, Bae HG, Bonnard C, Yusof NABM, Ferrari Bardile C, Tan LJ, Ng AYJ, Tohari S, Dehghani L, Henry L, Yeo XY, Lee S, Venkatesh B, Langley SR, Shaygannejad V, Reversade B, Jung S, Ginhoux F, Pouladi MA. Ermin deficiency leads to compromised myelin, inflammatory milieu, and susceptibility to demyelinating insult. Brain Pathol 2022; 32:e13064. [PMID: 35285112 PMCID: PMC9425013 DOI: 10.1111/bpa.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/09/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Ermin is an actin-binding protein found almost exclusively in the central nervous system (CNS) as a component of myelin sheaths. Although Ermin has been predicted to play a role in the formation and stability of myelin sheaths, this has not been directly examined in vivo. Here, we show that Ermin is essential for myelin sheath integrity and normal saltatory conduction. Loss of Ermin in mice caused de-compacted and fragmented myelin sheaths and led to slower conduction along with progressive neurological deficits. RNA sequencing of the corpus callosum, the largest white matter structure in the CNS, pointed to inflammatory activation in aged Ermin-deficient mice, which was corroborated by increased levels of microgliosis and astrogliosis. The inflammatory milieu and myelin abnormalities were further associated with increased susceptibility to immune-mediated demyelination insult in Ermin knockout mice. Supporting a possible role of Ermin deficiency in inflammatory white matter disorders, a rare inactivating mutation in the ERMN gene was identified in multiple sclerosis patients. Our findings demonstrate a critical role for Ermin in maintaining myelin integrity. Given its near-exclusive expression in myelinating oligodendrocytes, Ermin deficiency represents a compelling "inside-out" model of inflammatory dysmyelination and may offer a new paradigm for the development of myelin stability-targeted therapies.
Collapse
Affiliation(s)
- Amin Ziaei
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore.,UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Marta Garcia-Miralles
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Carola I Radulescu
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Harwin Sidik
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Aymeric Silvin
- Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore
| | - Han-Gyu Bae
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore.,Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Carine Bonnard
- Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Nur Amirah Binte Mohammad Yusof
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Costanza Ferrari Bardile
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore.,Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liang Juin Tan
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Alvin Yu Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Leila Dehghani
- Department of Neurology, Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lily Henry
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Xin Yi Yeo
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Sejin Lee
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Vahid Shaygannejad
- Department of Neurology, Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Sangyong Jung
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore.,Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore.,Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Konishi H, Koizumi S, Kiyama H. Phagocytic astrocytes: Emerging from the shadows of microglia. Glia 2022; 70:1009-1026. [PMID: 35142399 PMCID: PMC9305589 DOI: 10.1002/glia.24145] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
Elimination of dead or live cells take place in both a healthy and diseased central nervous system (CNS). Dying or dead cells are quickly cleared by phagocytosis for the maintenance of a healthy CNS or for recovery after injury. Live cells or parts thereof, such as the synapses and myelin, are appropriately eliminated by phagocytosis to maintain or refine neural networks during development and adulthood. Microglia, the specific population of resident macrophages in the CNS, are classically considered as primary phagocytes; however, astrocytes have also been highlighted as phagocytes in the last decade. Phagocytic targets and receptors are reported to be mostly common between astrocytes and microglia, which raises the question of how astrocytic phagocytosis differs from microglial phagocytosis, and how these two phagocytic systems cooperate. In this review, we address the consequences of astrocytic phagocytosis, particularly focusing on these elusive points.
Collapse
Affiliation(s)
- Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, University of Yamanashi, Yamanashi, Japan.,GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
12
|
Cong H, Liang M, Wang Y, Chang H, Du L, Zhang X, Yin L. Icariin ameliorates the cuprizone-induced acute brain demyelination and modulates the number of oligodendrocytes, microglia and astrocytes in the brain of C57BL/6J mice. Brain Res Bull 2021; 175:37-47. [PMID: 34274431 DOI: 10.1016/j.brainresbull.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
This study aimed at testing the hypothesis that treatment with icariin (ICA, a type of flavonoid) could mitigate the cuprizone (CPZ)-induced acute demyelination in the brain of mice and the potential mechanisms. Female C57BL/6J mice were fed continually with regular rodent chow or the chow supplemented with CPZ (0.2 % w/w) for six weeks to induce acute demyelination. The CPZ-fed mice were treated with vehicle or ICA at 12.5 or 25 mg/kg beginning at three weeks post CPZ feeding daily for three weeks. Their brain tissue sections were stained with oil red O, luxol-fast blue (LFB) and immunohistochemistry to characterize the levels of brain demyelination, myelin basic protein (MBP) and brain-derived neurotrophic factor (BDNF) and the numbers of oligodendrocytes (Ols), oligodendrocyte progenitor cells (OPCs), microglia and astrocytes in mice. Compared with the healthy controls, CPZ feeding caused the brain demyelination by increasing NG2+ OPCs, but decreased oil red O and LFB staining, MBP level and GST-pi+ Ols in the brain corpus callosum region of mice. Furthermore, CPZ feeding decreased the number of BDNF+ cells in the brain cortex and hippocampus regions, but increased microglia in the brain corpus callosum, cortex and caudate putamen, and astrocytes in the corpus callosum regions of mice. Treatment with ICA significantly mitigated or abrogated the toxic demyelination of CPZ by preserving MBP and BDNF proteins and modulating the numbers of Ols, OPCs, microglia and astrocytes in the brain of mice. ICA treatment significantly ameliorated the CPZ-mediated demyelination and modulated the number of Ols, microglia and astrocytes in the brain of mice.
Collapse
Affiliation(s)
- Hengri Cong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Institute of Brain Disorders, Capital Medical University, No.119 South 4(th) Ring West Road, Fengtai District, Beijing, 100160, China
| | - Mengru Liang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing Institute of Brain Disorders, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yupeng Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Institute of Brain Disorders, Capital Medical University, No.119 South 4(th) Ring West Road, Fengtai District, Beijing, 100160, China
| | - Haoxiao Chang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Institute of Brain Disorders, Capital Medical University, No.119 South 4(th) Ring West Road, Fengtai District, Beijing, 100160, China; Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing Institute of Brain Disorders, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Li Du
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Institute of Brain Disorders, Capital Medical University, No.119 South 4(th) Ring West Road, Fengtai District, Beijing, 100160, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Institute of Brain Disorders, Capital Medical University, No.119 South 4(th) Ring West Road, Fengtai District, Beijing, 100160, China
| | - Linlin Yin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Institute of Brain Disorders, Capital Medical University, No.119 South 4(th) Ring West Road, Fengtai District, Beijing, 100160, China; Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing Institute of Brain Disorders, No.45 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
13
|
Zhou L, Matsushima GK. Tyro3, Axl, Mertk receptor-mediated efferocytosis and immune regulation in the tumor environment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:165-210. [PMID: 34074493 DOI: 10.1016/bs.ircmb.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three structurally related tyrosine receptor cell surface kinases, Tyro3, Axl, and Mertk (TAM) have been recognized to modulate immune function, tissue homeostasis, cardiovasculature, and cancer. The TAM receptor family appears to operate in adult mammals across multiple cell types, suggesting both widespread and specific regulation of cell functions and immune niches. TAM family members regulate tissue homeostasis by monitoring the presence of phosphatidylserine expressed on stressed or apoptotic cells. The detection of phosphatidylserine on apoptotic cells requires intermediary molecules that opsonize the dying cells and tether them to TAM receptors on phagocytes. This complex promotes the engulfment of apoptotic cells, also known as efferocytosis, that leads to the resolution of inflammation and tissue healing. The immune mechanisms dictating these processes appear to fall upon specific family members or may involve a complex of different receptors acting cooperatively to resolve and repair damaged tissues. Here, we focus on the role of TAM receptors in triggering efferocytosis and its consequences in the regulation of immune responses in the context of inflammation and cancer.
Collapse
Affiliation(s)
- Liwen Zhou
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC, United States
| | - Glenn K Matsushima
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC, United States; UNC Department of Microbiology & Immunology, University of North Carolina-CH, Chapel Hill, NC, United States; UNC Integrative Program for Biological & Genome Sciences, University of North Carolina-CH, Chapel Hill, NC, United States.
| |
Collapse
|
14
|
Liang L, Zhang J, Tian L, Wang S, Xu L, Wang Y, Guo-Shuai Q, Dong Y, Chen Y, Jia H, Yang X, Yuan C. AXL signaling in primary sensory neurons contributes to chronic compression of dorsal root ganglion-induced neuropathic pain in rats. Mol Pain 2021; 16:1744806919900814. [PMID: 31884887 PMCID: PMC6970473 DOI: 10.1177/1744806919900814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Low back pain is a chronic, highly prevalent, and hard-to-treat condition in the elderly. Clinical studies indicate that AXL, which belongs to the tyrosine kinase receptor subfamily, mediates pathological pain. However, it is not clear exactly how AXL regulates pain behaviors. In this study, we used a model of chronic compression of dorsal root ganglion-induced neuropathic pain to recreate clinical intervertebral foramen stenosis and related lumbocrural pain to explore whether AXL in primary sensory neurons contributes to this neuropathic pain in rats. Using double-labeling immunofluorescence, we observed that both phosphorylated AXL and AXL were localized primarily on isolectin B4-positive and calcitonin gene-related peptide-positive neurons, while AXL was also localized in neurofilament-200-positive neurons. Chronic compression of dorsal root ganglion-induced pain was associated with the upregulation of AXL mRNA and protein in injured dorsal root ganglia. Repeated intrathecal administration of the AXL inhibitor, TP0903, or the AXL small interfering RNA effectively alleviated chronic compression of dorsal root ganglion-induced pain hypersensitivities. Moreover, repeated intrathecal administration of either TP0903 or AXL small interfering RNA reduced the expression of mammalian target of rapamycin in injured dorsal root ganglia, suggesting that mammalian target of rapamycin may mediate AXL’s actions. These results indicate that the upregulation of dorsal root ganglion AXL may be part of a peripheral mechanism of neuropathic pain via an intracellular mammalian target of rapamycin-signaling pathway. Thus, while AXL inhibitors have so far primarily shown clinical efficacy in tumor treatment, AXL intervention could also serve as a potential target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Lingli Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, PR China
| | - Jun Zhang
- Department of Pain Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, PR China
| | - Lixia Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, PR China
| | - Shuo Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, PR China
| | - Linping Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, PR China
| | - Yingxuan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Qingying Guo-Shuai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Yue Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Yu Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Hong Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Beijing, PR China
| | - Xuewei Yang
- Department of Pain Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, PR China
| | - Chunmei Yuan
- Department of Pain Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, PR China
| |
Collapse
|
15
|
Li XL, Zhang B, Liu W, Sun MJ, Zhang YL, Liu H, Wang MX. Rapamycin Alleviates the Symptoms of Multiple Sclerosis in Experimental Autoimmune Encephalomyelitis (EAE) Through Mediating the TAM-TLRs-SOCS Pathway. Front Neurol 2020; 11:590884. [PMID: 33329339 PMCID: PMC7728797 DOI: 10.3389/fneur.2020.590884] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Our research aimed to find an immunomodulatory therapy for MS. An experimental autoimmune encephalomyelitis (EAE) mouse model of MS was established induced with the syntheticmyelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55). Fifty C57BL/6 mice were randomly divided into the Normal group, EAE group, and Rapamycin group (EAE mice treated with three different doses of rapamycin). Hematoxylin and eosin staining and Weil myelin staining were performed on the brain tissues of mice after 21 days post-immunization. The protein expression of Gas6, Tyro3, Axl, Mer in paraventricular tissues were analyzed by immunohistochemistry. The mRNA and protein expression of Gas6, Tyro3, Axl, Mer, SOCS1, SOCS3, Toll-like receptor (TLR) 3, and TLR4 were detected by quantitative real-time PCR (qRT-PCR) and Western blot, respectively. An enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of the inflammatory factors IFN-γ and IL-17. Rapamycin treatment could ameliorate the behavior impairment in EAE mice induced by MOG35-55. The expression of Gas6, Tyro3, Axl, Mer, SOCS1, and SOCS3 were decreased in EAE mice at 21 days post-immunization, while the expression of Gas6, Tyro3, Axl, and Mer in rapamycin group was higher than that in EAE group. It was accompanied by an increase in anti-inflammatory proteins SOCS1 and SOCS3, a decrease in the inflammatory proteins TLR-3, TLR-4 and in the amount of IFN-γ, and IL-17. Rapamycin injection relieved the nerve function of and the loss of myelin sheath in the EAE mice, mainly through mediating the TAM-TLRs-SOCS signaling pathway to regulate natural immunity.
Collapse
Affiliation(s)
- Xiao-ling Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Bo Zhang
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wei Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Meng-jiao Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ya-lan Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hui Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Man-xia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
16
|
Recent advancements in role of TAM receptors on efferocytosis, viral infection, autoimmunity, and tissue repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 357:1-19. [PMID: 33234241 DOI: 10.1016/bs.ircmb.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Evolutionarily conserved highly regulated process of apoptosis has been a major physiological process throughout the entire evolutionary history of living beings that has impacted the process of evolution itself. One of the key features of this highly researched field of science is the process of phosphatidylserine (PS) externalization by the different membrane bound enzymes. The process is a result of series of biological events and is associated with various biological outcomes depending on the proper recognition of this ligand. In this review, we will briefly summarize the recent advancement in the field pertaining to the set of receptors, known as TAM (Tyro3, Axl and Mertk) receptors, for their influence in the recognition of various PS externalization events and mediation of pathological outcomes such as autoimmunity, cancer, and tissue repair.
Collapse
|
17
|
DuBois JC, Ray AK, Davies P, Shafit-Zagardo B. Anti-Axl antibody treatment reduces the severity of experimental autoimmune encephalomyelitis. J Neuroinflammation 2020; 17:324. [PMID: 33121494 PMCID: PMC7599105 DOI: 10.1186/s12974-020-01982-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple sclerosis is an immune-mediated disease of the central nervous system (CNS) characterized by inflammation, oligodendrocytes loss, demyelination, and damaged axons. Tyro3, Axl, and MerTK belong to a family of receptor tyrosine kinases that regulate innate immune responses and CNS homeostasis. During experimental autoimmune encephalomyelitis (EAE), the mRNA expression of MerTK, Gas6, and Axl significantly increase, whereas Tyro3 and ProS1 remain unchanged. We have shown that Gas6 is neuroprotective during EAE, and since Gas6 activation of Axl may be necessary for conferring neuroprotection, we sought to determine whether α-Axl or α-MerTK antibodies, shown by others to activate their respective receptors in vivo, could effectively reduce inflammation and neurodegeneration. METHODS Mice received either α-Axl, α-MerTK, IgG isotype control, or PBS before the onset of EAE symptoms. EAE clinical course, axonal damage, demyelination, cytokine production, and immune cell activation in the CNS were used to determine the severity of EAE. RESULTS α-Axl antibody treatment significantly decreased the EAE clinical indices of female mice during chronic EAE and of male mice during both acute and chronic phases. The number of days mice were severely paralyzed also significantly decreased with α-Axl treatment. Inflammatory macrophages/microglia and the extent of demyelination significantly decreased in the spinal cords of α-Axl-treated mice during chronic EAE, with no differences in the production of pro-inflammatory cytokines. α-MerTK antibody did not influence EAE induction or progression. CONCLUSION Our data suggests that the beneficial effect of Gas6/Axl signaling observed in mice administered with Gas6 can be partially preserved by administering an activating α-Axl antibody, but not α-MerTK.
Collapse
Affiliation(s)
- Juwen C. DuBois
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461 USA
| | - Alex K. Ray
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY USA
| | - Peter Davies
- North Shore-LIJ Health System, Feinstein Institute for Medical Research, Manhasset, NY USA
| | - Bridget Shafit-Zagardo
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461 USA
| |
Collapse
|
18
|
Di Stasi R, De Rosa L, D'Andrea LD. Therapeutic aspects of the Axl/Gas6 molecular system. Drug Discov Today 2020; 25:2130-2148. [PMID: 33002607 DOI: 10.1016/j.drudis.2020.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022]
Abstract
Axl receptor tyrosine kinase (RTK) and its ligand, growth arrest-specific protein 6 (Gas6), are involved in several biological functions and participate in the development and progression of a range of malignancies and autoimmune disorders. In this review, we present this molecular system from a drug discovery perspective, highlighting its therapeutic implications and challenges that need to be addressed. We provide an update on Axl/Gas6 axis biology, exploring its role in fields ranging from angiogenesis, cancer development and metastasis, immune response and inflammation to viral infection. Finally, we summarize the molecules that have been developed to date to target the Axl/Gas6 molecular system for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luca D D'Andrea
- Istituto di Biostrutture e Bioimmagini, CNR, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
19
|
Tyrosine Kinase Receptors Axl and MerTK Mediate the Beneficial Effect of Electroacupuncture in a Cuprizone-Induced Demyelinating Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3205176. [PMID: 32714402 PMCID: PMC7355344 DOI: 10.1155/2020/3205176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Electroacupuncture has been shown to promote remyelination in a demyelinating model of multiple sclerosis (MS) through enhanced microglial clearance of degraded myelin debris. However, the mechanisms involved in this process are yet to be clearly elucidated. It has been revealed that TAM receptor tyrosine kinases (Tyro3, Axl, and MerTK) play pivotal roles in regulating multiple features of microglia, including the phagocytic function and myelin clearance. Therefore, the aim of this study is to further confirm whether electroacupuncture improves functional recovery in this model and to characterise the involvement of the TAM receptor during this process. In addition to naive control mice, a cuprizone-induced demyelinating model was established, and long-term electroacupuncture treatment was administrated. To evaluate the efficiency of functional recovery following demyelination, we performed beam-walking test and rotarod performance test; to objectify the degree of remyelination, we performed transmission electron microscopy and protein quantification of mature oligodendrocyte markers. Oil Red O staining was used to evaluate the deposit of myelin debris. We confirmed that, in cuprizone-treated mice, electroacupuncture significantly ameliorates motor-coordinative dysfunction and counteracts demyelinating processes, with less deposit of myelin debris accumulating in the corpus callosum. Surprisingly, mRNA expression of TAM receptors was significantly upregulated after electroacupuncture treatment, and we further confirmed an increased protein expression of Axl and MerTK after electroacupuncture treatment, indicating their involvement during electroacupuncture treatment. Finally, LDC1267, a selective TAM kinase inhibitor, abolished the therapeutic effect of electroacupuncture on motor-coordinative dysfunction. Overall, our data demonstrate that electroacupuncture could mitigate the progression of demyelination by enhancing the TAM receptor expression to facilitate the clearance of myelin debris. Our results also suggest that electroacupuncture may be a potential curative treatment for MS patients.
Collapse
|
20
|
TAM Receptor Pathways at the Crossroads of Neuroinflammation and Neurodegeneration. DISEASE MARKERS 2019; 2019:2387614. [PMID: 31636733 PMCID: PMC6766163 DOI: 10.1155/2019/2387614] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/04/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that pathogenic mechanisms underlying neurodegeneration are strongly linked with neuroinflammatory responses. Tyro3, Axl, and Mertk (TAM receptors) constitute a subgroup of the receptor tyrosine kinase family, cell surface receptors which transmit signals from the extracellular space to the cytoplasm and nucleus. TAM receptors and the corresponding ligands, Growth Arrest Specific 6 and Protein S, are expressed in different tissues, including the nervous system, playing complex roles in tissue repair, inflammation and cell survival, proliferation, and migration. In the nervous system, TAM receptor signalling modulates neurogenesis and neuronal migration, synaptic plasticity, microglial activation, phagocytosis, myelination, and peripheral nerve repair, resulting in potential interest in neuroinflammatory and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. In Alzheimer and Parkinson diseases, a role of TAM receptors in neuronal survival and pathological protein aggregate clearance has been suggested, while in Multiple Sclerosis TAM receptors are involved in myelination and demyelination processes. To better clarify roles and pathways involving TAM receptors may have important therapeutic implications, given the fine modulation of multiple molecular processes which could be reached. In this review, we summarise the roles of TAM receptors in the central nervous system, focusing on the regulation of immune responses and microglial activities and analysing in vitro and in vivo studies regarding TAM signalling involvement in neurodegeneration.
Collapse
|
21
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
22
|
Martin NA, Nawrocki A, Molnar V, Elkjaer ML, Thygesen EK, Palkovits M, Acs P, Sejbaek T, Nielsen HH, Hegedus Z, Sellebjerg F, Molnar T, Barbosa EGV, Alcaraz N, Gallyas F, Svenningsen AF, Baumbach J, Lassmann H, Larsen MR, Illes Z. Orthologous proteins of experimental de- and remyelination are differentially regulated in the CSF proteome of multiple sclerosis subtypes. PLoS One 2018; 13:e0202530. [PMID: 30114292 PMCID: PMC6095600 DOI: 10.1371/journal.pone.0202530] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Here, we applied a multi-omics approach (i) to examine molecular pathways related to de- and remyelination in multiple sclerosis (MS) lesions; and (ii) to translate these findings to the CSF proteome in order to identify molecules that are differentially expressed among MS subtypes. METHODS To relate differentially expressed genes in MS lesions to de- and remyelination, we compared transcriptome of MS lesions to transcriptome of cuprizone (CPZ)-induced de- and remyelination. Protein products of the overlapping orthologous genes were measured within the CSF by quantitative proteomics, parallel reaction monitoring (PRM). Differentially regulated proteins were correlated with molecular markers of inflammation by using MesoScale multiplex immunoassay. Expression kinetics of differentially regulated orthologous genes and proteins were examined in the CPZ model. RESULTS In the demyelinated and remyelinated corpus callosum, we detected 1239 differentially expressed genes; 91 orthologues were also differentially expressed in MS lesions. Pathway analysis of these orthologues suggested that the TYROBP (DAP12)-TREM2 pathway, TNF-receptor 1, CYBA and the proteasome subunit PSMB9 were related to de- and remyelination. We designed 129 peptides representing 51 orthologous proteins, measured them by PRM in 97 individual CSF, and compared their levels between relapsing (n = 40) and progressive MS (n = 57). Four proteins were differentially regulated among relapsing and progressive MS: tyrosine protein kinase receptor UFO (UFO), TIMP-1, apolipoprotein C-II (APOC2), and beta-2-microglobulin (B2M). The orthologous genes/proteins in the mouse brain peaked during acute remyelination. UFO, TIMP-1 and B2M levels correlated inversely with inflammation in the CSF (IL-6, MCP-1/CCL2, TARC/CCL17). APOC2 showed positive correlation with IL-2, IL-16 and eotaxin-3/CCL26. CONCLUSIONS Pathology-based multi-omics identified four CSF markers that were differentially expressed in MS subtypes. Upregulated TIMP-1, UFO and B2M orthologues in relapsing MS were associated with reduced inflammation and reflected reparatory processes, in contrast to the upregulated orthologue APOC2 in progressive MS that reflected changes in lipid metabolism associated with increased inflammation.
Collapse
Affiliation(s)
- Nellie A. Martin
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Arkadiusz Nawrocki
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Viktor Molnar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Eva K. Thygesen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Miklos Palkovits
- Laboratory of Neuromorphology and Human Brain Tissue Bank/Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Peter Acs
- Department of Neurology, University of Pecs, Pecs, Hungary
| | - Tobias Sejbaek
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Helle H. Nielsen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Zoltan Hegedus
- Laboratory of Bioinformatics, Biological Research Centre, Szeged, Hungary
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Therapy, University of Pecs, Pecs, Hungary
| | - Eudes G. V. Barbosa
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Nicolas Alcaraz
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Asa F. Svenningsen
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Neurology, University of Pecs, Pecs, Hungary
- Department of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
23
|
Shafit-Zagardo B, Gruber RC, DuBois JC. The role of TAM family receptors and ligands in the nervous system: From development to pathobiology. Pharmacol Ther 2018. [PMID: 29514053 DOI: 10.1016/j.pharmthera.2018.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyro3, Axl, and Mertk, referred to as the TAM family of receptor tyrosine kinases, are instrumental in maintaining cell survival and homeostasis in mammals. TAM receptors interact with multiple signaling molecules to regulate cell migration, survival, phagocytosis and clearance of metabolic products and cell debris called efferocytosis. The TAMs also function as rheostats to reduce the expression of proinflammatory molecules and prevent autoimmunity. All three TAM receptors are activated in a concentration-dependent manner by the vitamin K-dependent growth arrest-specific protein 6 (Gas6). Gas6 and the TAMs are abundantly expressed in the nervous system. Gas6, secreted by neurons and endothelial cells, is the sole ligand for Axl. ProteinS1 (ProS1), another vitamin K-dependent protein functions mainly as an anti-coagulant, and independent of this function can activate Tyro3 and Mertk, but not Axl. This review will focus on the role of the TAM receptors and their ligands in the nervous system. We highlight studies that explore the function of TAM signaling in myelination, the visual cortex, neural cancers, and multiple sclerosis (MS) using Gas6-/- and TAM mutant mice models.
Collapse
Affiliation(s)
- Bridget Shafit-Zagardo
- Albert Einstein College of Medicine, Department of Pathology, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| | - Ross C Gruber
- Sanofi, Neuroinflammation and MS Research, 49 New York Ave, Framingham, MA 01701, United States
| | - Juwen C DuBois
- Albert Einstein College of Medicine, Department of Pathology, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| |
Collapse
|
24
|
Ray AK, DuBois JC, Gruber RC, Guzik HM, Gulinello ME, Perumal G, Raine C, Kozakiewicz L, Williamson J, Shafit-Zagardo B. Loss of Gas6 and Axl signaling results in extensive axonal damage, motor deficits, prolonged neuroinflammation, and less remyelination following cuprizone exposure. Glia 2017; 65:2051-2069. [PMID: 28925029 DOI: 10.1002/glia.23214] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 01/08/2023]
Abstract
The TAM (Tyro3, Axl, and MerTK) family of receptor tyrosine kinases (RTKs) and their ligands, Gas6 and ProS1, are important for innate immune responses and central nervous system (CNS) homeostasis. While only Gas6 directly activates Axl, ProS1 activation of Tyro3/MerTK can indirectly activate Axl through receptor heterodimerization. Therefore, we generated Gas6-/- Axl-/- double knockout (DKO) mice to specifically examine the contribution of this signaling axis while retaining ProS1 signaling through Tyro3 and MerTK. We found that naïve young adult DKO and WT mice have comparable myelination and equal numbers of axons and oligodendrocytes in the corpus callosum. Using the cuprizone model of demyelination/remyelination, transmission electron microscopy revealed extensive axonal swellings containing autophagolysosomes and multivesicular bodies, and fewer myelinated axons in brains of DKO mice at 3-weeks recovery from a 6-week cuprizone diet. Analysis of immunofluorescent staining demonstrated more SMI32+ and APP+ axons and less myelin in the DKO mice. There were no significant differences in the number of GFAP+ astrocytes or Iba1+ microglia/macrophages between the groups of mice. However, at 6-weeks cuprizone and recovery, DKO mice had increased proinflammatory cytokine and altered suppressor of cytokine signaling (SOCS) mRNA expression supporting a role for Gas6-Axl signaling in proinflammatory cytokine suppression. Significant motor deficits in DKO mice relative to WT mice on cuprizone were also observed. These data suggest that Gas6-Axl signaling plays an important role in maintaining axonal integrity and regulating and reducing CNS inflammation that cannot be compensated for by ProS1/Tyro3/MerTK signaling.
Collapse
Affiliation(s)
- Alex K Ray
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, 10461
| | - Juwen C DuBois
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, 10461
| | - Ross C Gruber
- Neuroimmunology and MS Research, Sanofi, Framingham, Massachusetts, 01701
| | - Hillary M Guzik
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Maria E Gulinello
- Rodent Behavioral Core, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Geoffrey Perumal
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Cedric Raine
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, 10461
| | - Lauren Kozakiewicz
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, 10461
| | - Julie Williamson
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, 10461
| | - Bridget Shafit-Zagardo
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, 10461
| |
Collapse
|
25
|
The Gas6/TAM System and Multiple Sclerosis. Int J Mol Sci 2016; 17:ijms17111807. [PMID: 27801848 PMCID: PMC5133808 DOI: 10.3390/ijms17111807] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/22/2016] [Accepted: 10/26/2016] [Indexed: 01/25/2023] Open
Abstract
Growth arrest specific 6 (Gas6) is a multimodular circulating protein, the biological actions of which are mediated by the interaction with three transmembrane tyrosine kinase receptors: Tyro3, Axl, and MerTK, collectively named TAM. Over the last few decades, many progresses have been done in the understanding of the biological activities of this highly pleiotropic system, which plays a role in the regulation of immune response, inflammation, coagulation, cell growth, and clearance of apoptotic bodies. Recent findings have further related Gas6 and TAM receptors to neuroinflammation in general and, specifically, to multiple sclerosis (MS). In this paper, we review the biology of the Gas6/TAM system and the current evidence supporting its potential role in the pathogenesis of MS.
Collapse
|
26
|
Goudarzi S, Rivera A, Butt AM, Hafizi S. Gas6 Promotes Oligodendrogenesis and Myelination in the Adult Central Nervous System and After Lysolecithin-Induced Demyelination. ASN Neuro 2016; 8:8/5/1759091416668430. [PMID: 27630207 PMCID: PMC5027908 DOI: 10.1177/1759091416668430] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/11/2016] [Indexed: 01/24/2023] Open
Abstract
A key aim of therapy for multiple sclerosis (MS) is to promote the regeneration of oligodendrocytes and remyelination in the central nervous system (CNS). The present study provides evidence that the vitamin K-dependent protein growth arrest specific 6 (Gas6) promotes such repair in in vitro cultures of mouse optic nerve and cerebellum. We first determined expression of Gas6 and TAM (Tyro3, Axl, Mer) receptors in the mouse CNS, with all three TAM receptors increasing in expression through postnatal development, reaching maximal levels in the adult. Treatment of cultured mouse optic nerves with Gas6 resulted in significant increases in oligodendrocyte numbers as well as expression of myelin basic protein (MBP). Gas6 stimulation also resulted in activation of STAT3 in optic nerves as well as downregulation of multiple genes involved in MS development, including matrix metalloproteinase-9 (MMP9), which may decrease the integrity of the blood-brain barrier and is found upregulated in MS lesions. The cytoprotective effects of Gas6 were examined in in vitro mouse cerebellar slice cultures, where lysolecithin was used to induce demyelination. Cotreatment of cerebellar slices with Gas6 significantly attenuated demyelination as determined by MBP immunostaining, and Gas6 activated Tyro3 receptor through its phosphorylation. In conclusion, these results demonstrate that Gas6/TAM signaling stimulates the generation of oligodendrocytes and increased myelin production via Tyro3 receptor in the adult CNS, including repair after demyelinating injury. Furthermore, the effects of Gas6 on STAT3 signaling and matrix MMP9 downregulation indicate potential glial cell repair and immunoregulatory roles for Gas6, indicating that Gas6-TAM signaling could be a potential therapeutic target in MS and other neuropathologies.
Collapse
Affiliation(s)
- Salman Goudarzi
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Science, University of Portsmouth, UK
| | - Andrea Rivera
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Science, University of Portsmouth, UK
| | - Arthur M Butt
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Science, University of Portsmouth, UK
| | - Sassan Hafizi
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Science, University of Portsmouth, UK
| |
Collapse
|
27
|
Crotti A, Ransohoff RM. Microglial Physiology and Pathophysiology: Insights from Genome-wide Transcriptional Profiling. Immunity 2016; 44:505-515. [DOI: 10.1016/j.immuni.2016.02.013] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/06/2016] [Accepted: 02/17/2016] [Indexed: 12/22/2022]
|
28
|
Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 2015; 47:485-505. [PMID: 25445182 DOI: 10.1016/j.neubiorev.2014.10.004] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 01/30/2023]
Abstract
The cuprizone mouse model allows the investigation of the complex molecular mechanisms behind nonautoimmune-mediated demyelination and spontaneous remyelination. While it is generally accepted that oligodendrocytes are specifically vulnerable to cuprizone intoxication due to their high metabolic demands, a comprehensive overview of the etiology of cuprizone-induced pathology is still missing to date. In this review we extensively describe the physico-chemical mode of action of cuprizone and discuss the molecular and enzymatic mechanisms by which cuprizone induces metabolic stress, oligodendrocyte apoptosis, myelin degeneration and eventually axonal and neuronal pathology. In addition, we describe the dual effector function of the immune system which tightly controls demyelination by effective induction of oligodendrocyte apoptosis, but in contrast also paves the way for fast and efficient remyelination by the secretion of neurotrophic factors and the clearance of cellular and myelinic debris. Finally, we discuss the many clinical symptoms that can be observed following cuprizone treatment, and how these strengthened the cuprizone model as a useful tool to study human multiple sclerosis, schizophrenia and epilepsy.
Collapse
|
29
|
Ma GZ, Giuffrida LL, Gresle MM, Haartsen J, Laverick L, Butzkueven H, Field J, Binder MD, Kilpatrick TJ. Association of plasma levels of Protein S with disease severity in multiple sclerosis. Mult Scler J Exp Transl Clin 2015; 1:2055217315596532. [PMID: 28607700 PMCID: PMC5433335 DOI: 10.1177/2055217315596532] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background The TAM family of receptor tyrosine kinases (TYRO3, AXL and MERTK) play important roles in modulating innate immune responses and central demyelination. The TAM receptor ligand Protein S (PROS) has also been shown to modulate innate immune cell responses. Objectives We assessed whether plasma levels of PROS are changed in multiple sclerosis (MS) patients and whether changes are associated with disease severity. Methods Plasma levels of total and free PROS were measured using enzyme-linked immunosorbent assay in a discovery cohort (MS: 65, control: 14) and an independent replication cohort (MS: 29, control: 29). The Multiple Sclerosis Severity Score (MSSS) was used to evaluate associations between plasma PROS levels and disease severity. Results We found plasma levels of total, but not free PROS, were decreased in MS patients compared with controls. In female MS patients, we observed decreases in total and free PROS levels compared with controls. In addition, we also observed higher MSSS in patients with very low levels of plasma free PROS. Conclusions These data suggest PROS may represent a potential marker of disease severity in MS.
Collapse
Affiliation(s)
- Gerry Zm Ma
- Multiple Sclerosis Division, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Lauren L Giuffrida
- Multiple Sclerosis Division, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | | | - Jodi Haartsen
- Eastern Clinical Research Unit, Department of Neurology, Box Hill Hospital, Monash University, Australia
| | - Louise Laverick
- The Department of Medicine, University of Melbourne, Australia
| | | | - Judith Field
- Multiple Sclerosis Division, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Michele D Binder
- Multiple Sclerosis Division, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Trevor J Kilpatrick
- Multiple Sclerosis Division, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| |
Collapse
|
30
|
Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, Brouwer N, Wes PD, Möller T, Orre M, Kamphuis W, Hol EM, Boddeke EWGM, Eggen BJL. Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathol Commun 2015; 3:31. [PMID: 26001565 PMCID: PMC4489356 DOI: 10.1186/s40478-015-0203-5] [Citation(s) in RCA: 427] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/12/2015] [Indexed: 12/16/2022] Open
Abstract
Introduction Microglia are tissue macrophages of the central nervous system that monitor brain homeostasis and react upon neuronal damage and stress. Aging and neurodegeneration induce a hypersensitive, pro-inflammatory phenotype, referred to as primed microglia. To determine the gene expression signature of priming, the transcriptomes of microglia in aging, Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS) mouse models were compared using Weighted Gene Co-expression Network Analysis (WGCNA). Results A highly consistent consensus transcriptional profile of up-regulated genes was identified, which prominently differed from the acute inflammatory gene network induced by lipopolysaccharide (LPS). Where the acute inflammatory network was significantly enriched for NF-κB signaling, the primed microglia profile contained key features related to phagosome, lysosome, antigen presentation, and AD signaling. In addition, specific signatures for aging, AD, and ALS were identified. Conclusion Microglia priming induces a highly conserved transcriptional signature with aging- and disease-specific aspects. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0203-5) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Poliani PL, Wang Y, Fontana E, Robinette ML, Yamanishi Y, Gilfillan S, Colonna M. TREM2 sustains microglial expansion during aging and response to demyelination. J Clin Invest 2015; 125:2161-70. [PMID: 25893602 DOI: 10.1172/jci77983] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/17/2015] [Indexed: 12/31/2022] Open
Abstract
Microglia contribute to development, homeostasis, and immunity of the CNS. Like other tissue-resident macrophage populations, microglia express the surface receptor triggering receptor expressed on myeloid cells 2 (TREM2), which binds polyanions, such as dextran sulphate and bacterial LPS, and activates downstream signaling cascades through the adapter DAP12. Individuals homozygous for inactivating mutations in TREM2 exhibit demyelination of subcortical white matter and a lethal early onset dementia known as Nasu-Hakola disease. How TREM2 deficiency mediates demyelination and disease is unknown. Here, we addressed the basis for this genetic association using Trem2(-/-) mice. In WT mice, microglia expanded in the corpus callosum with age, whereas aged Trem2(-/-) mice had fewer microglia with an abnormal morphology. In the cuprizone model of oligodendrocyte degeneration and demyelination, Trem2(-/-) microglia failed to amplify transcripts indicative of activation, phagocytosis, and lipid catabolism in response to myelin damage. As a result, Trem2(-/-) mice exhibited impaired myelin debris clearance, axonal dystrophy, oligodendrocyte reduction, and persistent demyelination after prolonged cuprizone treatment. Moreover, myelin-associated lipids robustly triggered TREM2 signaling in vitro, suggesting that TREM2 may directly sense lipid components exposed during myelin damage. We conclude that TREM2 is required for promoting microglial expansion during aging and microglial response to insults of the white matter.
Collapse
|
32
|
Targeted GAS6 delivery to the CNS protects axons from damage during experimental autoimmune encephalomyelitis. J Neurosci 2015; 34:16320-35. [PMID: 25471571 DOI: 10.1523/jneurosci.2449-14.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growth arrest-specific protein 6 (GAS6) is a soluble agonist of the TYRO3, AXL, MERTK (TAM) family of receptor tyrosine kinases identified to have anti-inflammatory, neuroprotective, and promyelinating properties. During experimental autoimmune encephalomyelitis (EAE), wild-type (WT) mice demonstrate a significant induction of Gas6, Axl, and Mertk but not Pros1 or Tyro3 mRNA. We tested the hypothesis that intracerebroventricular delivery of GAS6 directly into the CNS of WT mice during myelin oligodendrocyte glycoprotein (MOG)-induced EAE would improve the clinical course of disease relative to artificial CSF (ACSF)-treated mice. GAS6 did not delay disease onset, but significantly reduced the clinical scores during peak and chronic EAE. Mice receiving GAS6 for 28 d had preserved SMI31(+) neurofilament immunoreactivity, significantly fewer SMI32(+) axonal swellings and spheroids and less demyelination relative to ACSF-treated mice. Alternate-day subcutaneous IFNβ injection did not enhance GAS6 treatment effectiveness. Gas6(-/-) mice sensitized with MOG35-55 peptide exhibit higher clinical scores during late peak to early chronic disease, with significantly increased SMI32(+) axonal swellings and Iba1(+) microglia/macrophages, enhanced expression of several proinflammatory mRNA molecules, and decreased expression of early oligodendrocyte maturation markers relative to WT mouse spinal cords with scores for 8 consecutive days. During acute EAE, flow cytometry showed significantly more macrophages but not T-cell infiltrates in Gas6(-/-) spinal cords than WT spinal cords. Our data are consistent with GAS6 being protective during EAE by dampening the inflammatory response, thereby preserving axonal integrity and myelination.
Collapse
|
33
|
Rothlin CV, Carrera-Silva EA, Bosurgi L, Ghosh S. TAM receptor signaling in immune homeostasis. Annu Rev Immunol 2015; 33:355-91. [PMID: 25594431 DOI: 10.1146/annurev-immunol-032414-112103] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The TAM receptor tyrosine kinases (RTKs)-TYRO3, AXL, and MERTK-together with their cognate agonists GAS6 and PROS1 play an essential role in the resolution of inflammation. Deficiencies in TAM signaling have been associated with chronic inflammatory and autoimmune diseases. Three processes regulated by TAM signaling may contribute, either independently or collectively, to immune homeostasis: the negative regulation of the innate immune response, the phagocytosis of apoptotic cells, and the restoration of vascular integrity. Recent studies have also revealed the function of TAMs in infectious diseases and cancer. Here, we review the important milestones in the discovery of these RTKs and their ligands and the studies that underscore the functional importance of this signaling pathway in physiological immune settings and disease.
Collapse
|
34
|
Abstract
The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context.
Collapse
|
35
|
Barrette B, Nave KA, Edgar JM. Molecular triggers of neuroinflammation in mouse models of demyelinating diseases. Biol Chem 2014; 394:1571-81. [PMID: 23959664 DOI: 10.1515/hsz-2013-0219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/15/2013] [Indexed: 12/20/2022]
Abstract
Myelinating cells wrap axons with multi-layered myelin sheaths for rapid impulse propagation. Dysfunctions of oligodendrocytes or Schwann cells are often associated with neuroinflammation, as observed in animal models of leukodystrophies and peripheral neuropathies, respectively. The neuroinflammatory response modulates the pathological changes, including demyelination and axonal injury, but also remyelination and repair. Here we discuss different immune mechanisms as well as factors released or exposed by myelinating glia in disease conditions. The spectrum of inflammatory mediators varies with different myelin disorders and has a major impact on the beneficial or detrimental role of immune cells in keeping nervous system integrity.
Collapse
|
36
|
Pierce AM, Keating AK. TAM receptor tyrosine kinases: expression, disease and oncogenesis in the central nervous system. Brain Res 2013; 1542:206-20. [PMID: 24184575 DOI: 10.1016/j.brainres.2013.10.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 01/10/2023]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface proteins that tightly regulate a variety of downstream intra-cellular processes; ligand-receptor interactions result in cascades of signaling events leading to growth, proliferation, differentiation and migration. There are 58 described RTKs, which are further categorized into 20 different RTK families. When dysregulated or overexpressed, these RTKs are implicated in disordered growth, development, and oncogenesis. The TAM family of RTKs, consisting of Tyro3, Axl, and MerTK, is prominently expressed during the development and function of the central nervous system (CNS). Aberrant expression and dysregulated activation of TAM family members has been demonstrated in a variety of CNS-related disorders and diseases, including the most common but least treatable brain cancer in children and adults: glioblastoma multiforme.
Collapse
Affiliation(s)
- Angela M Pierce
- University of Colorado School of Medicine, Department of Pediatrics, 12800 E. 19th Avenue, P18-4105, MS 8302 Aurora, CO 80045, USA.
| | - Amy K Keating
- University of Colorado School of Medicine, Department of Pediatrics, 12800 E. 19th Avenue, P18-4105, MS 8302 Aurora, CO 80045, USA.
| |
Collapse
|
37
|
Weinger JG, Brosnan CF, Loudig O, Goldberg MF, Macian F, Arnett HA, Prieto AL, Tsiperson V, Shafit-Zagardo B. Loss of the receptor tyrosine kinase Axl leads to enhanced inflammation in the CNS and delayed removal of myelin debris during experimental autoimmune encephalomyelitis. J Neuroinflammation 2011; 8:49. [PMID: 21569627 PMCID: PMC3121615 DOI: 10.1186/1742-2094-8-49] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/15/2011] [Indexed: 12/31/2022] Open
Abstract
Background Axl, together with Tyro3 and Mer, constitute the TAM family of receptor tyrosine kinases. In the nervous system, Axl and its ligand Growth-arrest-specific protein 6 (Gas6) are expressed on multiple cell types. Axl functions in dampening the immune response, regulating cytokine secretion, clearing apoptotic cells and debris, and maintaining cell survival. Axl is upregulated in various disease states, such as in the cuprizone toxicity-induced model of demyelination and in multiple sclerosis (MS) lesions, suggesting that it plays a role in disease pathogenesis. To test for this, we studied the susceptibility of Axl-/- mice to experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Methods WT and Axl-/- mice were immunized with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide emulsified in complete Freund's adjuvant and injected with pertussis toxin on day 0 and day 2. Mice were monitored daily for clinical signs of disease and analyzed for pathology during the acute phase of disease. Immunological responses were monitored by flow cytometry, cytokine analysis and proliferation assays. Results Axl-/- mice had a significantly more severe acute phase of EAE than WT mice. Axl-/- mice had more spinal cord lesions with larger inflammatory cuffs, more demyelination, and more axonal damage than WT mice during EAE. Strikingly, lesions in Axl-/- mice had more intense Oil-Red-O staining indicative of inefficient clearance of myelin debris. Fewer activated microglia/macrophages (Iba1+) were found in and/or surrounding lesions in Axl-/- mice relative to WT mice. In contrast, no significant differences were noted in immune cell responses between naïve and sensitized animals. Conclusions These data show that Axl alleviates EAE disease progression and suggests that in EAE Axl functions in the recruitment of microglia/macrophages and in the clearance of debris following demyelination. In addition, these data provide further support that administration of the Axl ligand Gas6 could be therapeutic for immune-mediated demyelinating diseases.
Collapse
Affiliation(s)
- Jason G Weinger
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Binder MD, Xiao J, Kemper D, Ma GZM, Murray SS, Kilpatrick TJ. Gas6 increases myelination by oligodendrocytes and its deficiency delays recovery following cuprizone-induced demyelination. PLoS One 2011; 6:e17727. [PMID: 21423702 PMCID: PMC3053381 DOI: 10.1371/journal.pone.0017727] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/08/2011] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS) is a complex demyelinating disease of the central nervous system. Current research has shown that at least in some cases, the primary insult in MS could be directed at the oligodendrocyte, and that the earliest immune responses are primarily via innate immune cells. We have identified a family of receptor protein tyrosine kinases, known as the TAM receptors (Tyro3, Axl and Mertk), as potentially important in regulating both the oligodendrocyte and immune responses. We have previously shown that Gas6, a ligand for the TAM receptors, can affect the severity of demyelination in mice, with a loss of signalling via Gas6 leading to decreased oligodendrocyte survival and increased microglial activation during cuprizone-induced demyelination. We hypothesised TAM receptor signalling would also influence the extent of recovery in mice following demyelination. A significant effect of the absence of Gas6 was detected upon remyelination, with a lower level of myelination after 4 weeks of recovery in comparison with wild-type mice. The delay in remyelination was accompanied by a reduction in oligodendrocyte numbers. To understand the molecular mechanisms that drive the observed effects, we also examined the effect of exogenous Gas6 in in vitro myelination assays. We found that Gas6 significantly increased myelination in a dose-dependent manner, suggesting that TAM receptor signalling could be directly involved in myelination by oligodendrocytes. The reduced rate of remyelination in the absence of Gas6 could thus result from a lack of Gas6 at a critical time during myelin production after injury. These findings establish Gas6 as an important regulator of both CNS demyelination and remyelination.
Collapse
Affiliation(s)
- Michele D Binder
- Multiple Sclerosis Division, Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
39
|
Ma GZM, Stankovich J, Kilpatrick TJ, Binder MD, Field J. Polymorphisms in the receptor tyrosine kinase MERTK gene are associated with multiple sclerosis susceptibility. PLoS One 2011; 6:e16964. [PMID: 21347448 PMCID: PMC3035668 DOI: 10.1371/journal.pone.0016964] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/10/2011] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating, chronic demyelinating disease of the central nervous system affecting over 2 million people worldwide. The TAM family of receptor tyrosine kinases (TYRO3, AXL and MERTK) have been implicated as important players during demyelination in both animal models of MS and in the human disease. We therefore conducted an association study to identify single nucleotide polymorphisms (SNPs) within genes encoding the TAM receptors and their ligands associated with MS. Analysis of genotype data from a genome-wide association study which consisted of 1618 MS cases and 3413 healthy controls conducted by the Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene) revealed several SNPs within the MERTK gene (Chromosome 2q14.1, Accession Number NG_011607.1) that showed suggestive association with MS. We therefore interrogated 28 SNPs in MERTK in an independent replication cohort of 1140 MS cases and 1140 healthy controls. We found 12 SNPs that replicated, with 7 SNPs showing p-values of less than 10−5 when the discovery and replication cohorts were combined. All 12 replicated SNPs were in strong linkage disequilibrium with each other. In combination, these data suggest the MERTK gene is a novel risk gene for MS susceptibility.
Collapse
Affiliation(s)
- Gerry Z. M. Ma
- Multiple Sclerosis Division, Florey Neuroscience Institutes, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Jim Stankovich
- Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Trevor J. Kilpatrick
- Multiple Sclerosis Division, Florey Neuroscience Institutes, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Michele D. Binder
- Multiple Sclerosis Division, Florey Neuroscience Institutes, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Judith Field
- Multiple Sclerosis Division, Florey Neuroscience Institutes, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
40
|
Tsiperson V, Li X, Schwartz GJ, Raine CS, Shafit-Zagardo B. GAS6 enhances repair following cuprizone-induced demyelination. PLoS One 2010; 5:e15748. [PMID: 21203420 PMCID: PMC3009745 DOI: 10.1371/journal.pone.0015748] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/26/2010] [Indexed: 11/18/2022] Open
Abstract
Growth arrest-specific protein 6 (gas6) activities are mediated through the Tyro3, Axl, and Mer family of receptor tyrosine kinases. Gas6 is expressed and secreted by a wide variety of cell types, including cells of the central nervous system (CNS). In this study, we tested the hypothesis that administration of recombinant human Gas6 (rhGas6) protein into the CNS improves recovery following cuprizone withdrawal. After a 4-week cuprizone diet, cuprizone was removed and PBS or rhGas6 (400 ng/ml, 4 µg/ml and 40 µg/ml) was delivered by osmotic mini-pump into the corpus callosum of C57Bl6 mice for 14 days. Nine of 11 (82%) PBS-treated mice had abundant lipid-associated debris in the corpus callosum by Oil-Red-O staining while only 4 of 19 (21%) mice treated with rhGas6 had low Oil-Red-O positive droplets. In rhGas6-treated mice, SMI32-positive axonal spheroids and APP-positive deposits were reduced in number relative to PBS-treated mice. Compared to PBS, rhGas6 enhanced remyelination as revealed by MBP immunostaining and electron microscopy. The rhGas6-treated mice had more oligodendrocytes expressing Olig1 in the cytoplasm, indicative of oligodendrocyte progenitor cell maturation. Relative to PBS-treated mice, rhGas6-treated mice had fewer activated microglia in the corpus callosum by Iba1 immunostaining. The data show that rhGas6 treatment resulted in more efficient repair following cuprizone-induced injury.
Collapse
Affiliation(s)
- Vladislav Tsiperson
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Xiaosong Li
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gary J. Schwartz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Cedric S. Raine
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bridget Shafit-Zagardo
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Merson TD, Binder MD, Kilpatrick TJ. Role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination of the CNS. Neuromolecular Med 2010; 12:99-132. [PMID: 20411441 DOI: 10.1007/s12017-010-8112-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 02/26/2010] [Indexed: 12/11/2022]
Abstract
As the resident innate immune cells of the central nervous system (CNS), microglia fulfil a critical role in maintaining tissue homeostasis and in directing and eliciting molecular responses to CNS damage. The human disease Multiple Sclerosis and animal models of inflammatory demyelination are characterized by a complex interplay between degenerative and regenerative processes, many of which are regulated and mediated by microglia. Cellular communication between microglia and other neural and immune cells is controlled to a large extent by the activity of cytokines. Here we review the role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination, highlighting their importance in potentiating cell damage, promoting neuroprotection and enhancing cellular repair in a context-dependent manner.
Collapse
Affiliation(s)
- Tobias D Merson
- Florey Neuroscience Institutes, Centre for Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.
| | | | | |
Collapse
|
42
|
Weinger JG, Omari KM, Marsden K, Raine CS, Shafit-Zagardo B. Up-regulation of soluble Axl and Mer receptor tyrosine kinases negatively correlates with Gas6 in established multiple sclerosis lesions. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:283-93. [PMID: 19541935 DOI: 10.2353/ajpath.2009.080807] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis is a disease that is characterized by inflammation, demyelination, and axonal damage; it ultimately forms gliotic scars and lesions that severely compromise the function of the central nervous system. Evidence has shown previously that altered growth factor receptor signaling contributes to lesion formation, impedes recovery, and plays a role in disease progression. Growth arrest-specific protein 6 (Gas6), the ligand for the TAM receptor tyrosine kinase family, consisting of Tyro3, Axl, and Mer, is important for cell growth, survival, and clearance of debris. In this study, we show that levels of membrane-bound Mer (205 kd), soluble Mer ( approximately 150 kd), and soluble Axl (80 kd) were all significantly elevated in homogenates from established multiple sclerosis lesions comprised of both chronic active and chronic silent lesions. Whereas in normal tissue Gas6 positively correlated with soluble Axl and Mer, there was a negative correlation between Gas6 and soluble Axl and Mer in established multiple sclerosis lesions. In addition, increased levels of soluble Axl and Mer were associated with increased levels of mature ADAM17, mature ADAM10, and Furin, proteins that are associated with Axl and Mer solubilization. Soluble Axl and Mer are both known to act as decoy receptors and block Gas6 binding to membrane-bound receptors. These data suggest that in multiple sclerosis lesions, dysregulation of protective Gas6 receptor signaling may prolong lesion activity.
Collapse
Affiliation(s)
- Jason G Weinger
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|