1
|
Liaw YS, Augustine GJ. The claustrum and consciousness: An update. Int J Clin Health Psychol 2023; 23:100405. [PMID: 37701759 PMCID: PMC10493512 DOI: 10.1016/j.ijchp.2023.100405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
The seminal paper of Crick and Koch (2005) proposed that the claustrum, an enigmatic and thin grey matter structure that lies beside the insular cortex, may be involved in the processing of consciousness. As a result, this otherwise obscure structure has received ever-increasing interest in the search for neural correlates of consciousness. Here we review theories of consciousness and discuss the possible relationship between the claustrum and consciousness. We review relevant experimental evidence collected since the Crick and Koch (2005) paper and consider whether these findings support or contradict their hypothesis. We also explore how future experimental work can be designed to clarify how consciousness emerges from neural activity and to understand the role of the claustrum in consciousness.
Collapse
Affiliation(s)
- Yin Siang Liaw
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - George J. Augustine
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
2
|
Paparella I, Campbell I, Sharifpour R, Beckers E, Berger A, Aizpurua JFB, Koshmanova E, Mortazavi N, Talwar P, Degueldre C, Lamalle L, Sherif S, Phillips C, Maquet P, Vandewalle G. Light modulates task-dependent thalamo-cortical connectivity during an auditory attentional task. Commun Biol 2023; 6:945. [PMID: 37714936 PMCID: PMC10504287 DOI: 10.1038/s42003-023-05337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Exposure to blue wavelength light stimulates alertness and performance by modulating a widespread set of task-dependent cortical and subcortical areas. How light affects the crosstalk between brain areas to trigger this stimulating effect is not established. Here we record the brain activity of 19 healthy young participants (24.05±2.63; 12 women) while they complete an auditory attentional task in darkness or under an active (blue-enriched) or a control (orange) light, in an ultra-high-field 7 Tesla MRI scanner. We test if light modulates the effective connectivity between an area of the posterior associative thalamus, encompassing the pulvinar, and the intraparietal sulcus (IPS), key areas in the regulation of attention. We find that only the blue-enriched light strengthens the connection from the posterior thalamus to the IPS. To the best of our knowledge, our results provide the first empirical data supporting that blue wavelength light affects ongoing non-visual cognitive activity by modulating task-dependent information flow from subcortical to cortical areas.
Collapse
Affiliation(s)
- Ilenia Paparella
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Islay Campbell
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Roya Sharifpour
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Elise Beckers
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ET, Maastricht, The Netherlands
| | - Alexandre Berger
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
- Synergia Medical SA, 1435, Mont-Saint-Guibert, Belgium
| | | | - Ekaterina Koshmanova
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Nasrin Mortazavi
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Puneet Talwar
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Christian Degueldre
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Laurent Lamalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Siya Sherif
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Christophe Phillips
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
| | - Pierre Maquet
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium
- Neurology Department, CHU de Liège, 4000, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
3
|
Santana NNM, Silva EHA, dos Santos SF, Costa MSMO, Nascimento Junior ES, Engelberth RCJG, Cavalcante JS. Retinorecipient areas in the common marmoset ( Callithrix jacchus): An image-forming and non-image forming circuitry. Front Neural Circuits 2023; 17:1088686. [PMID: 36817647 PMCID: PMC9932520 DOI: 10.3389/fncir.2023.1088686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.
Collapse
Affiliation(s)
- Nelyane Nayara M. Santana
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eryck H. A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Expedito S. Nascimento Junior
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara J. G. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil,*Correspondence: Jeferson S. Cavalcante,
| |
Collapse
|
4
|
Bu X, Liu C, Fu B. Research progress of the paraventricular thalamus in the regulation of sleep-wake and emotional behaviors. IBRAIN 2022; 8:219-226. [PMID: 37786895 PMCID: PMC10529009 DOI: 10.1002/ibra.12034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 10/04/2023]
Abstract
The paraventricular thalamus (PVT) is a major component of the midline structure of the thalamus. It is one of the nonspecific nuclei of the thalamus, which plays a great role in the regulation of cortical arousal. PVT, an important node in the central nervous system, sends widespread outputs to many brain regions and also accepts plentiful inputs from many brain regions to modulate diverse functions, including sleep-wake state, attention, memory, and pain. Recently, with the increasing prevalence of sleep disorders and mood disorders, people pay great attention to PVT, which was implicated in arousal and emotional behaviors. Therefore, the main purpose of this review is to illustrate the characteristic of PVT to provide a reference for future research.
Collapse
Affiliation(s)
- Xiao‐Li Bu
- Department of Intensive Care MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Cheng‐Xi Liu
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
| | - Bao Fu
- Department of Intensive Care MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
5
|
Ni RJ, Shu YM, Luo PH, Zhou JN. Whole-brain mapping of afferent projections to the suprachiasmatic nucleus of the tree shrew. Tissue Cell 2021; 73:101620. [PMID: 34411776 DOI: 10.1016/j.tice.2021.101620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
The suprachiasmatic nucleus (SCN) is essential for the neural control of mammalian circadian timing system. The circadian activity of the SCN is modulated by its afferent projections. In the present study, we examine neuroanatomical characteristics and afferent projections of the SCN in the tree shrew (Tupaia belangeri chinensis) using immunocytochemistry and retrograde tracer Fluoro-Gold (FG). Distribution of the vasoactive intestinal peptide was present in the SCN from rostral to caudal, especially concentrated in its ventral part. FG-labeled neurons were observed in the lateral septal nucleus, septofimbrial nucleus, paraventricular thalamic nucleus, posterior hypothalamic nucleus, posterior complex of the thalamus, ventral subiculum, rostral linear nucleus of the raphe, periaqueductal gray, mesencephalic reticular formation, dorsal raphe nucleus, pedunculopontine tegmental nucleus, medial parabrachial nucleus, locus coeruleus, parvicellular reticular nucleus, intermediate reticular nucleus, and ventrolateral reticular nucleus. In summary, the morphology of the SCN in tree shrews is described from rostral to caudal. In addition, our data demonstrate for the first time that the SCN in tree shrews receives inputs from numerous brain regions in the telencephalon, diencephalon, mesencephalon, metencephalon, and myelencephalon. This comprehensive knowledge of the afferent projections of the SCN in tree shrews provides further insights into the neural organization and physiological processes of circadian rhythms.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Yu-Mian Shu
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610041, China
| | - Peng-Hao Luo
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Jiang-Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
6
|
Zhao T, Zhu Y, Tang H, Xie R, Zhu J, Zhang JH. Consciousness: New Concepts and Neural Networks. Front Cell Neurosci 2019; 13:302. [PMID: 31338025 PMCID: PMC6629860 DOI: 10.3389/fncel.2019.00302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
The definition of consciousness remains a difficult issue that requires urgent understanding and resolution. Currently, consciousness research is an intensely focused area of neuroscience. However, to establish a greater understanding of the concept of consciousness, more detailed, intrinsic neurobiological research is needed. Additionally, an accurate assessment of the level of consciousness may strengthen our awareness of this concept and provide new ideas for patients undergoing clinical treatment of consciousness disorders. In addition, research efforts that help elucidate the concept of consciousness have important scientific and clinical significance. This review presents the latest progress in consciousness research and proposes our assumptions with regard to the network of consciousness.
Collapse
Affiliation(s)
- Tong Zhao
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqian Zhu
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - John H. Zhang
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
7
|
Resende NR, Soares Filho PL, Peixoto PPA, Silva AM, Silva SF, Soares JG, do Nascimento ES, Cavalcante JC, Cavalcante JS, Costa MSMO. Nuclear organization and morphology of cholinergic neurons in the brain of the rock cavy (Kerodon rupestris) (Wied, 1820). J Chem Neuroanat 2018; 94:63-74. [PMID: 30293055 DOI: 10.1016/j.jchemneu.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 11/19/2022]
Abstract
The aim of this study was to conduct cytoarchitectonic studies and choline acetyltransferase (ChAT) immunohistochemical analysis to delimit the cholinergic groups in the encephalon of the rock cavy (Kerodon rupestris), a crepuscular Caviidae rodent native to the Brazilian Northeast. Three young adult animals were anesthetized and transcardially perfused. The encephala were cut in the coronal plane using a cryostat. We obtained 6 series of 30-μm-thick sections. The sections from one series were subjected to Nissl staining. Those from another series were subjected to immunohistochemistry for the enzyme ChAT, which is used in acetylcholine synthesis, to visualize the different cholinergic neural centers of the rock cavy. The slides were analyzed using a light microscope and the results were documented by description and digital photomicrographs. ChAT-immunoreactive neurons were identified in the telencephalon (nucleus accumbens, caudate-putamen, globus pallidus, entopeduncular nucleus and ventral globus pallidus, olfactory tubercle and islands of Calleja, diagonal band of Broca nucleus, nucleus basalis, and medial septal nucleus), diencephalon (ventrolateral preoptic, hypothalamic ventrolateral, and medial habenular nuclei), and brainstem (parabigeminal, laterodorsal tegmental, and pedunculopontine tegmental nuclei). These findings are discussed through both a functional and phylogenetic perspective.
Collapse
Affiliation(s)
- N R Resende
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - P L Soares Filho
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - P P A Peixoto
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - A M Silva
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - S F Silva
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J G Soares
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - E S do Nascimento
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J C Cavalcante
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - J S Cavalcante
- Department of Physiology, Laboratory of Neurochemical Studies, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - M S M O Costa
- Department of Morphology, Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
8
|
Reis MEMD, Araújo LTFD, de Andrade WMG, Resende NDS, Lima RRMD, Nascimento ESD, Costa MSMDO, Cavalcante JC. Distribution of nitric oxide synthase in the rock cavy (Kerodon rupestris) brain I: The diencephalon. Brain Res 2018; 1685:60-78. [DOI: 10.1016/j.brainres.2018.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/27/2022]
|
9
|
Oliveira FG, Nascimento-Júnior ESD, Cavalcante JC, Guzen FP, Cavalcante JDS, Soares JG, Cavalcanti JRLDP, Freitas LMD, Costa MSMDO, Andrade-da-Costa BLDS. Topographic specializations of catecholaminergic cells and ganglion cells and distribution of calcium binding proteins in the crepuscular rock cavy (Kerodon rupestris) retina. J Chem Neuroanat 2017; 90:57-69. [PMID: 29277705 DOI: 10.1016/j.jchemneu.2017.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/16/2023]
Abstract
The rock cavy (Kerodon rupestris) is a crepuscular Hystricomorpha rodent that has been used in comparative analysis of retinal targets, but its retinal organization remains to be investigated. In order to better characterize its visual system, the present study analyzed neurochemical features related to the topographic organization of catecholaminergic cells and ganglion cells, as well the distribution of calcium-binding proteins in the outer and inner retina. Retinal sections and/or wholemounts were processed using tyrosine hydroxylase (TH), GABA, calbindin, parvalbumin and calretinin immunohistochemistry or Nissl staining. Two types of TH-immunoreactive (TH-IR) cells were found which differ in soma size, dendritic arborization, intensity of TH immunoreactivity and stratification pattern in the inner plexiform layer. The topographic distribution of all TH-IR cells defines a visual streak along the horizontal meridian in the superior retina. The ganglion cells are also distributed in a visual streak and the visual acuity estimated considering their peak density is 4.13 cycles/degree. A subset of TH-IR cells express GABA or calbindin. Calretinin is abundant in most of retinal layers and coexists with calbindin in horizontal cells. Parvalbumin is less abundant and expressed by presumed amacrine cells in the INL and some ganglion cells in the GCL. The topographic distribution of TH-IR cells and ganglion cells in the rock cavy retina indicate a suitable adaptation for using a broad extension of its inferior visual field in aspects that involve resolution, adjustment to ambient light intensity and movement detection without specialized eye movements.
Collapse
Affiliation(s)
- Francisco Gilberto Oliveira
- Departamento de Ciências Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Regional do Cariri - URCA, Crato, CE, Brazil; Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Expedito Silva do Nascimento-Júnior
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Judney Cley Cavalcante
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Fausto Pierdoná Guzen
- Faculdade de Ciências da Saúde, Departamento de Ciências Biomédicas, Universidade do Estado do Rio Grande do Norte - UERN, Mossoró, RN, Brazil
| | - Jeferson de Souza Cavalcante
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil; Departamento de Fisiologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Joacil Germano Soares
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | | | - Leandro Moura de Freitas
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Miriam Stela Maris de Oliveira Costa
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | | |
Collapse
|
10
|
Alamilla J, Granados-Fuentes D, Aguilar-Roblero R. The anterior paraventricular thalamus modulates neuronal excitability in the suprachiasmatic nuclei of the rat. Eur J Neurosci 2015; 42:2833-42. [PMID: 26417679 PMCID: PMC4737286 DOI: 10.1111/ejn.13088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 11/28/2022]
Abstract
The suprachiasmatic nucleus (SCN) in mammals is the master clock which regulates circadian rhythms. Neural activity of SCN neurons is synchronized to external light through the retinohypothalamic tract (RHT). The paraventricular thalamic nucleus (PVT) is a neural structure that receives synaptic inputs from, and projects back to, the SCN. Lesioning the anterior PVT (aPVT) modifies the behavioral phase response curve induced by short pulses of bright light. In order to study the influence of the aPVT on SCN neural activity, we addressed whether the stimulation of the aPVT can modulate the electrical response of the SCN to either retinal or RHT stimulation. Using in vitro and in vivo recordings, we found a large population of SCN neurons responsive to the stimulation of either aPVT or RHT pathways. Furthermore, we found that simultaneous stimulation of the aPVT and the RHT increased neuronal responsiveness and spontaneous firing rate (SFR) in neurons with a low basal SFR (which also have more negative membrane potentials), such as quiescent and arrhythmic neurons, but no change was observed in neurons with rhythmic firing patterns and more depolarized membrane potentials. These results suggest that inputs from the aPVT could shift the membrane potential of an SCN neuron to values closer to its firing threshold and thus contribute to integration of the response of the circadian clock to light.
Collapse
Affiliation(s)
- Javier Alamilla
- CONACYT Research Fellow - Centro de Investigaciones Biomédicas de la Universidad de Colima, Colima, México
| | | | - Raúl Aguilar-Roblero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apdo. Postal 70-253, 04510, México, DF, México
| |
Collapse
|
11
|
Limbic thalamus and state-dependent behavior: The paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks. Neurosci Biobehav Rev 2015; 54:3-17. [DOI: 10.1016/j.neubiorev.2014.11.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/09/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
12
|
Okamura-Oho Y, Shimokawa K, Nishimura M, Takemoto S, Sato A, Furuichi T, Yokota H. Broad integration of expression maps and co-expression networks compassing novel gene functions in the brain. Sci Rep 2014; 4:6969. [PMID: 25382412 PMCID: PMC4225549 DOI: 10.1038/srep06969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022] Open
Abstract
Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas.
Collapse
Affiliation(s)
- Yuko Okamura-Oho
- Brain Research Network (BReNt), 2-2-41 Sakurayama, Zushi-shi, Kanagawa, 249-0005, Japan
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Kazuro Shimokawa
- Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-chou Aoba-ku Sendai-shi Miyagi, 980-8573, Japan
| | - Masaomi Nishimura
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Satoko Takemoto
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| | - Akira Sato
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | - Hideo Yokota
- Image Processing Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa Wako-shi Saitama, 351-0198, Japan
| |
Collapse
|
13
|
de Medeiros Silva A, de Santana MAD, de Góis Morais PLA, de Sousa TB, Januário Engelberth RCG, de Souza Lucena EE, Campêlo CLDC, Sousa Cavalcante J, Cavalcante JC, de Oliveira Costa MSM, Nascimento ESD. Serotonergic fibers distribution in the midline and intralaminar thalamic nuclei in the rock cavy (Kerodon rupestris). Brain Res 2014; 1586:99-108. [DOI: 10.1016/j.brainres.2014.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/14/2014] [Accepted: 08/16/2014] [Indexed: 12/19/2022]
|
14
|
Cavalcanti JR, Soares JG, Oliveira FG, Guzen FP, Pontes AL, Sousa TB, Cavalcante JS, Nascimento ES, Cavalcante JC, Costa MS. A cytoarchitectonic and TH-immunohistochemistry characterization of the dopamine cell groups in the substantia nigra, ventral tegmental area and retrorubral field in the rock cavy (Kerodon rupestris). J Chem Neuroanat 2014; 55:58-66. [DOI: 10.1016/j.jchemneu.2014.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/05/2013] [Accepted: 01/06/2014] [Indexed: 12/15/2022]
|
15
|
de Sousa TB, de Santana MAD, Silva ADM, Guzen FP, Oliveira FG, Cavalcante JC, Cavalcante JDS, Costa MSMO, Nascimento ESD. Mediodorsal thalamic nucleus receives a direct retinal input in marmoset monkey (Callithrix jacchus): a subunit B cholera toxin study. Ann Anat 2012; 195:32-8. [PMID: 22726524 DOI: 10.1016/j.aanat.2012.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 02/06/2012] [Accepted: 04/04/2012] [Indexed: 01/23/2023]
Abstract
The mediodorsal thalamic nucleus is a prominent nucleus in the thalamus, positioned lateral to the midline nuclei and medial to the intralaminar thalamic complex in the dorsal thalamus. Several studies identify the mediodorsal thalamic nucleus as a key structure in learning and memory, as well as in emotional mechanisms and alertness due to reciprocal connections with the limbic system and prefrontal cortex. Fibers from the retina to the mediodorsal thalamic nucleus have recently been described for the first time in a crepuscular rodent, suggesting a possible regulation of the mediodorsal thalamic nucleus by visual activity. The present study shows retinal afferents in the mediodorsal thalamic nucleus of a new world primate, the marmoset (Callithrix jacchus), using B subunit of cholera toxin (CTb) as an anterograde tracer. A small population of labeled retinofugal axonal arborizations is consistently labeled in small domains of the medial and lateral periphery of the caudal half of the mediodorsal nucleus. Retinal projections in the mediodorsal thalamic nucleus are exclusively contralateral and the morphology of the afferent endings was examined. Although the functional significance of this projection remains unknown, this retina-mediodorsal thalamic nucleus pathway may be involved in a wide possibility of functional implications.
Collapse
Affiliation(s)
- Twyla Barros de Sousa
- Department of Morphology/Laboratory of Neuroanatomy, Biosciences Center, Federal University of Rio Grande do Norte, RN, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
do Nascimento ES, Cavalcante JS, Cavalcante JC, Costa MSMO. Retinal afferents to the thalamic mediodorsal nucleus in the rock cavy (Kerodon rupestris). Neurosci Lett 2010; 475:38-43. [PMID: 20338219 DOI: 10.1016/j.neulet.2010.03.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/12/2010] [Accepted: 03/14/2010] [Indexed: 11/17/2022]
Abstract
The MD has reciprocal connections with the ventromedial prefrontal cortex (PFC) and with limbic cortices and appears to participate in learning and memory-related processes. In this study, we report the identification of a hitherto not reported direct retinal projection to the MD of the rock cavy, a typical rodent species of the Northeast region of Brazil. After unilateral intravitreal injections of cholera toxin subunit B (CTb), anterogradely transported CTb-imunoreactive fibers and presumptive terminals were seen in the MD. A few labeled retinal fibers/terminals detected in the MD of the rock cavy brain show clear varicosities, suggesting terminal fields. The present work is the first to show a direct retinal projection to the MD of rodents and may contribute for elucidating the anatomical substrate of the functional involvement of this thalamic nucleus in the modulation of the visual recognition, emotional learning and object-reward association memory.
Collapse
Affiliation(s)
- Expedito Silva do Nascimento
- Department of Morphology/Laboratory of Chronobiology, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal-RN, Brazil.
| | | | | | | |
Collapse
|
17
|
Nascimento ES, Souza AP, Duarte RB, Magalhães MA, Silva SF, Cavalcante JC, Cavalcante JS, Costa MS. The suprachiasmatic nucleus and the intergeniculate leaflet in the rock cavy (Kerodon rupestris): Retinal projections and immunohistochemical characterization. Brain Res 2010; 1320:34-46. [DOI: 10.1016/j.brainres.2010.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 01/13/2010] [Accepted: 01/13/2010] [Indexed: 11/29/2022]
|
18
|
Vandewalle G, Maquet P, Dijk DJ. Light as a modulator of cognitive brain function. Trends Cogn Sci 2009; 13:429-38. [PMID: 19748817 DOI: 10.1016/j.tics.2009.07.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 11/20/2022]
Abstract
Humans are a diurnal species usually exposed to light while engaged in cognitive tasks. Light not only guides performance on these tasks through vision but also exerts non-visual effects that are mediated in part by recently discovered retinal ganglion cells maximally sensitive to blue light. We review recent neuroimaging studies which demonstrate that the wavelength, duration and intensity of light exposure modulate brain responses to (non-visual) cognitive tasks. These responses to light are initially observed in alertness-related subcortical structures (hypothalamus, brainstem, thalamus) and limbic areas (amygdala and hippocampus), followed by modulations of activity in cortical areas, which can ultimately affect behaviour. Light emerges as an important modulator of brain function and cognition.
Collapse
Affiliation(s)
- Gilles Vandewalle
- Cyclotron Research Centre, University of Liège, 8 Allée du 6 Août, Bâtiment B30, B-4000 Liège, Belgium.
| | | | | |
Collapse
|