1
|
Wang J, Zhang Q, Yao L, He T, Chen X, Su Y, Sun S, Fan M, Yan J, Wang T, Zhang M, Guo F, Mo S, Lu M, Zou M, Li L, Yuan Q, Pan H, Chen Y. Modulating activity of PVN neurons prevents atrial fibrillation induced circulation dysfunction by electroacupuncture at BL15. Chin Med 2023; 18:135. [PMID: 37848944 PMCID: PMC10580609 DOI: 10.1186/s13020-023-00841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Circulation dysfunction is a major contributing factor to thrombosis in patients with atrial fibrillation (AF) for which effective interventions are lacking. Growing evidence indicates that regulating the paraventricular nucleus (PVN), an autonomic control center, could offer a novel strategy for treating cardiovascular and circulatory diseases. Concurrently, electroacupuncture (EA) at Xinshu (BL15), a form of peripheral nerve stimulation, has shown efficacy in treating several cardiovascular conditions, although its specific mechanism remains unclear. This study aimed to assess the impact of EA at BL15 on circulatory dysfunction in a rat AF model and investigate the pivotal role of PVN neuronal activity. METHODS To mimic the onset of AF, male SD rats received tail intravenous injection of ACh-CaCl2 and were then subjected to EA at BL15, sham EA, or EA at Shenshu (BL23). Macro- and micro-circulation function were evaluated using in vivo ultrasound imaging and laser doppler testing, respectively. Vasomotricity was assessed by measuring dimension changes during vascular relaxation and contraction. Vascular endothelial function was measured using myograph, and the activation of the autonomic nerve system was evaluated through nerve activity signals. Additionally, chemogenetic manipulation was used to block PVN neuronal activation to further elucidate the role of PVN activation in the prevention of AF-induced blood circulation dysfunction through EA treatment. RESULTS Our data demonstrate that EA at BL15, but not BL23 or sham EA, effectively prevented AF-induced macro- and micro-circulation dysfunction. Furthermore, EA at BL15 restored AF-induced vasomotricity impairment. Additionally, EA treatment prevented abnormal activation of the autonomic nerve system induced by AF, although it did not address vascular endothelial dysfunction. Importantly, excessive activation of PVN neurons negated the protective effects of EA treatment on AF-induced circulation dysfunction in rats. CONCLUSION These results indicate that EA treatment at BL15 modulates PVN neuronal activity and provides protection against AF-induced circulatory dysfunction.
Collapse
Affiliation(s)
- Jingya Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qiumei Zhang
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Institute of Physical and Health, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Guangdong Chaozhou Health Vocational College, Chaozhou, 521000, People's Republic of China
| | - Lin Yao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Teng He
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Xinyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yang Su
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Shengxuan Sun
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Mengyue Fan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Taiyi Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Meng Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Feng Guo
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Shiqing Mo
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Manqi Lu
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Meixia Zou
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Liangjie Li
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qing Yuan
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Huashan Pan
- Institute of Physical and Health, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
- Guangdong Chaozhou Health Vocational College, Chaozhou, 521000, People's Republic of China.
| | - Yongjun Chen
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
2
|
Savić B, Murphy D, Japundžić-Žigon N. The Paraventricular Nucleus of the Hypothalamus in Control of Blood Pressure and Blood Pressure Variability. Front Physiol 2022; 13:858941. [PMID: 35370790 PMCID: PMC8966844 DOI: 10.3389/fphys.2022.858941] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
The paraventricular nucleus (PVN) is a highly organized structure of the hypothalamus that has a key role in regulating cardiovascular and osmotic homeostasis. Functionally, the PVN is divided into autonomic and neuroendocrine (neurosecretory) compartments, both equally important for maintaining blood pressure (BP) and body fluids in the physiological range. Neurosecretory magnocellular neurons (MCNs) of the PVN are the main source of the hormones vasopressin (VP), responsible for water conservation and hydromineral balance, and oxytocin (OT), involved in parturition and milk ejection during lactation. Further, neurosecretory parvocellular neurons (PCNs) take part in modulation of the hypothalamic–pituitary–adrenal axis and stress responses. Additionally, the PVN takes central place in autonomic adjustment of BP to environmental challenges and contributes to its variability (BPV), underpinning the PVN as an autonomic master controller of cardiovascular function. Autonomic PCNs of the PVN modulate sympathetic outflow toward heart, blood vessels and kidneys. These pre-autonomic neurons send projections to the vasomotor nucleus of rostral ventrolateral medulla and to intermediolateral column of the spinal cord, where postganglionic fibers toward target organs arise. Also, PVN PCNs synapse with NTS neurons which are the end-point of baroreceptor primary afferents, thus, enabling the PVN to modify the function of baroreflex. Neuroendocrine and autonomic parts of the PVN are segregated morphologically but they work in concert when the organism is exposed to environmental challenges via somatodendritically released VP and OT by MCNs. The purpose of this overview is to address both neuroendocrine and autonomic PVN roles in BP and BPV regulation.
Collapse
Affiliation(s)
- Bojana Savić
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Nina Japundžić-Žigon
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Nina Japundžić-Žigon,
| |
Collapse
|
3
|
Yan L, Zhang S, Huang X, Tang Y, Wu J. Clinical Study of Autonomic Dysfunction in Patients With Anti-NMDA Receptor Encephalitis. Front Neurol 2021; 12:609750. [PMID: 33613429 PMCID: PMC7894204 DOI: 10.3389/fneur.2021.609750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives: Autonomic dysfunction is a common symptom of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis; however, it has been poorly researched. The purpose of this study was to compare the clinical features, tumor occurrence, intensive care unit (ICU) admission, mechanical ventilation, imaging assessment, cerebrospinal fluid examination, disease severity, and immunotherapy in patients with anti-NMDAR encephalitis with or without autonomic dysfunction. Methods: A retrospective study of anti-NMDAR encephalitis patients diagnosed between January 2016 and April 2020 was performed at the First Affiliated Hospital of Zhengzhou University. Patients were divided into two groups according to whether they had autonomic dysfunction, and their clinical features, treatment, and prognosis were compared. Results: A total of 119 patients with anti-NMDAR encephalitis were included in this study. Seventy-three patients (61.3%) had autonomic dysfunction, while the remaining 46 (38.7%) did not. Sinus tachycardia (69.9%) was the autonomic dysfunction with the highest incidence, while the incidences of symptoms including constipation, central hypopnea, and others gradually decreased. Compared to the group without autonomic dysfunction, the prevalence of the main clinical symptoms such as epileptic seizure (P = 0.003), involuntary movement (P = 0.028), and decreased consciousness (P < 0.001) were higher in the group with autonomic dysfunction, which also more frequently presented with complications such as pulmonary infection (P < 0.001) and abnormal liver function (P = 0.001). Moreover, the rates of ICU admission (P < 0.001) and mechanical ventilation (P = 0.001), as well as the modified Rankin scale (mRS) scores at admission (P < 0.001), maximum mRS scores during the course of disease (P < 0.001), and mRS scores at discharge (P < 0.001) were higher in the patients with autonomic dysfunction than in those without. The number of patients in the autonomic dysfunction group who underwent ≥2 immunotherapies was also higher than that in the group without autonomic dysfunction (P < 0.001). Conclusion: Sinus tachycardia is the most common type of autonomic dysfunction in anti-NMDAR encephalitis. Compared to patients without autonomic dysfunction, those with autonomic dysfunction had a higher incidence of epilepsy, involuntary movements, decreased consciousness, pulmonary infections, abnormal liver function, ICU admissions, and mechanical ventilation; moreover, the severity of the disease was greater, and their prognosis worse. Therefore, such patients require intensive immunotherapy.
Collapse
Affiliation(s)
- Lulu Yan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoxue Huang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Azizi Z, Alipour P, Terricabras M, Khaykin Y. Pseudoaneurysm of thoracic aorta presenting as inappropriate sinus tachycardia: a case report. J Med Case Rep 2019; 13:239. [PMID: 31375131 PMCID: PMC6679445 DOI: 10.1186/s13256-019-2167-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudoaneurysm of thoracic aorta as a complication of blunt trauma to the chest, can present with a variety of symptoms due to mass compression effect. Here we report the first pseudoaneurysm of thoracic aorta presenting with chronic cough and inappropriate sinus tachycardia. The purpose of this case report is to highlight pseudoaneurysm of thoracic aorta as a rare differential diagnosis for inappropriate sinus tachycardia. CASE PRESENTATION Here we report a case of 29-year-old white woman, a nurse, with history of a motor vehicle accident. She initially presented to medical attention with inappropriate sinus tachycardia 2 years following the motor vehicle accident during her pregnancy. Six years later she underwent sinoatrial node modification after failing a number of medications. Days prior to the ablation she developed a mild cough which became constant within a week following ablation. A computed tomography scan of her chest performed as part of a workup revealed an outpouching of the inferomedial aspect of the aortic arch, which was compressing her left main bronchus. She underwent arch repair surgery and recovered without complications. Four years later she presented with significant symptomatic sinus bradycardia requiring pacemaker placement. CONCLUSIONS This is the first reported case of thoracic pseudoaneurysm of aorta presenting with inappropriate sinus tachycardia due to compression of the vagal nerve and cough as a result of the left main bronchus compressive effect; it highlights the importance of considering structural abnormalities in a differential diagnosis of inappropriate sinus tachycardia before any interventions.
Collapse
Affiliation(s)
- Zahra Azizi
- Southlake Regional Health Centre, 602-581 Davis Drive, Newmarket, Ontario, L3Y 2P6, Canada.,York University Faculty of Heath, Toronto, Ontario, Canada
| | - Pouria Alipour
- Southlake Regional Health Centre, 602-581 Davis Drive, Newmarket, Ontario, L3Y 2P6, Canada.,York University Faculty of Heath, Toronto, Ontario, Canada
| | - Maria Terricabras
- Southlake Regional Health Centre, 602-581 Davis Drive, Newmarket, Ontario, L3Y 2P6, Canada
| | - Yaariv Khaykin
- Southlake Regional Health Centre, 602-581 Davis Drive, Newmarket, Ontario, L3Y 2P6, Canada.
| |
Collapse
|
5
|
Affiliation(s)
- Brian Olshansky
- Professor Emeritus, Cardiology, University of Iowa Hospitals, 200 Hawkins Drive, Iowa, IA, USA
- Mercy Hospital-North Iowa, 1000 4th St SW, Mason, IA, USA
| | - Renee M Sullivan
- Medical Director, Clinical development Services, Covance, 2501 McGavock Pike, Nashville, TN, USA
| |
Collapse
|
6
|
Feetham CH, O'Brien F, Barrett-Jolley R. Ion Channels in the Paraventricular Hypothalamic Nucleus (PVN); Emerging Diversity and Functional Roles. Front Physiol 2018; 9:760. [PMID: 30034342 PMCID: PMC6043726 DOI: 10.3389/fphys.2018.00760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is critical for the regulation of homeostatic function. Although also important for endocrine regulation, it has been referred to as the "autonomic master controller." The emerging consensus is that the PVN is a multifunctional nucleus, with autonomic roles including (but not limited to) coordination of cardiovascular, thermoregulatory, metabolic, circadian and stress responses. However, the cellular mechanisms underlying these multifunctional roles remain poorly understood. Neurones from the PVN project to and can alter the function of sympathetic control regions in the medulla and spinal cord. Dysfunction of sympathetic pre-autonomic neurones (typically hyperactivity) is linked to several diseases including hypertension and heart failure and targeting this region with specific pharmacological or biological agents is a promising area of medical research. However, to facilitate future medical exploitation of the PVN, more detailed models of its neuronal control are required; populated by a greater compliment of constituent ion channels. Whilst the cytoarchitecture, projections and neurotransmitters present in the PVN are reasonably well documented, there have been fewer studies on the expression and interplay of ion channels. In this review we bring together an up to date analysis of PVN ion channel studies and discuss how these channels may interact to control, in particular, the activity of the sympathetic system.
Collapse
Affiliation(s)
- Claire H Feetham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Fiona O'Brien
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Kawabe T, Iwasa M, Kawabe K, Sapru HN. Attenuation of angiotensin type 2 receptor function in the rostral ventrolateral medullary pressor area of the spontaneously hypertensive rat. Clin Exp Hypertens 2016; 38:209-17. [PMID: 26818039 DOI: 10.3109/10641963.2015.1081229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We hypothesized that blockade of angiotensin II type 2 receptors (AT2Rs) in the rostral ventrolateral medullary pressor area (RVLM) may elicit sympathoexcitatory responses which are smaller in hypertensive rats compared to normotensive rats. This hypothesis was tested in urethane-anesthetized, artificially ventilated male 14-week-old spontaneously hypertensive rats (SHR). Age-matched male Wistar-Kyoto rats (WKY) and Wistar rats were used as controls. PD123319 (AT2R antagonist) was microinjected into the RVLM and mean arterial pressure (MAP), heart rate (HR) and greater splanchnic nerve activity (GSNA) were recorded. Increases in MAP, HR and GSNA elicited by unilateral microinjections of PD123319 into the RVLM were significantly smaller in SHR when compared with those in WKY and Wistar rats. Unilateral microinjections of l-glutamate (l-Glu) into the RVLM elicited greater increases in MAP and GSNA in SHR compared to those in WKY. AT2R immunoreactivity was demonstrated in the RVLM neurons which were retrogradely labeled from the intermediolateral cell column (IML) of the spinal cord. These results indicate that AT2Rs are present on the RVLM neurons projecting to the IML and their blockade results in sympathoexcitatory responses. Activation of AT2Rs has an inhibitory influence in the RVLM and these receptors are tonically active. Attenuation of the function of AT2Rs in the RVLM may play a role in genesis and/or maintenance of hypertension in SHR.
Collapse
Affiliation(s)
- Tetsuya Kawabe
- a Department of Neurological Surgery , Rutgers New Jersey Medical School , Newark , NJ , USA
| | - Masamitsu Iwasa
- a Department of Neurological Surgery , Rutgers New Jersey Medical School , Newark , NJ , USA
| | - Kazumi Kawabe
- a Department of Neurological Surgery , Rutgers New Jersey Medical School , Newark , NJ , USA
| | - Hreday N Sapru
- a Department of Neurological Surgery , Rutgers New Jersey Medical School , Newark , NJ , USA
| |
Collapse
|
8
|
Chitravanshi VC, Kawabe K, Sapru HN. GABA and glycine receptors in the nucleus ambiguus mediate tachycardia elicited by chemical stimulation of the hypothalamic arcuate nucleus. Am J Physiol Heart Circ Physiol 2015; 309:H174-84. [PMID: 25957221 DOI: 10.1152/ajpheart.00801.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/01/2015] [Indexed: 02/07/2023]
Abstract
We have previously reported that stimulation of the hypothalamic arcuate nucleus (ARCN) by microinjections of N-methyl-d-aspartic acid (NMDA) elicits tachycardia, which is partially mediated via inhibition of vagal inputs to the heart. The neuronal pools and neurotransmitters in them mediating tachycardia elicited from the ARCN have not been identified. We tested the hypothesis that the tachycardia elicited from the ARCN may be mediated by inhibitory neurotransmitters in the nucleus ambiguus (nAmb). Experiments were done in urethane-anesthetized, artificially ventilated, male Wistar rats. In separate groups of rats, unilateral and bilateral microinjections of muscimol (1 mM), gabazine (0.01 mM), and strychnine (0.5 mM) into the nAmb significantly attenuated tachycardia elicited by unilateral microinjections of NMDA (10 mM) into the ARCN. Histological examination of the brains showed that the microinjections sites were within the targeted nuclei. Retrograde anatomic tracing from the nAmb revealed direct bilateral projections from the ARCN and hypothalamic paraventricular nucleus to the nAmb. The results of the present study suggest that tachycardia elicited by stimulation of the ARCN by microinjections of NMDA is mediated via GABAA and glycine receptors located in the nAmb.
Collapse
Affiliation(s)
- Vineet C Chitravanshi
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Kazumi Kawabe
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Hreday N Sapru
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
9
|
Stocker SD, Gordon KW. Glutamate receptors in the hypothalamic paraventricular nucleus contribute to insulin-induced sympathoexcitation. J Neurophysiol 2014; 113:1302-9. [PMID: 25475355 DOI: 10.1152/jn.00764.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The sympathoexcitatory response to insulin is mediated by neurons in the arcuate nucleus (ARC) and hypothalamic paraventricular nucleus (PVH). Previous studies have reported that stimulation of ARC neurons increases sympathetic nerve activity (SNA) and arterial blood pressure (ABP) through glutamate receptor activation in the PVH. Therefore, the purpose of the present study was to determine whether glutamatergic neurotransmission in the PVH contributes to insulin-induced sympathoexcitation. Male Sprague-Dawley rats (275-400 g) were infused with isotonic saline or insulin (3.75 mU · kg(-1) · min(-1)) plus 50% dextrose to maintain euglycemia. Intravenous infusion of insulin significantly increased lumbar SNA without a significant change in mean ABP, renal SNA, heart rate, or blood glucose. Bilateral PVH injection of the excitatory amino acid antagonist kynurenic acid (KYN) lowered lumbar SNA and ABP of animals infused with insulin. Similarly, a cocktail of the NMDA antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) and non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) reduced lumbar SNA and mean ABP during infusion of insulin. In a final experiment, bilateral PVH injection of AP5 only, but not CNQX, lowered lumbar SNA and mean ABP of animals infused with insulin. The peak changes in lumbar SNA and mean ABP of insulin-treated animals were not different between KYN, AP5 plus CNQX, or AP5 alone. These drug treatments did not alter any variable in animals infused with saline. Altogether, these findings suggest that glutamatergic NMDA neurotransmission in the PVH contributes to insulin-induced sympathoexcitation.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania; and Department of Neural and Behavioral Neuroscience, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Kathryn W Gordon
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania; and
| |
Collapse
|
10
|
Olshansky B, Sullivan RM. Inappropriate Sinus Tachycardia. J Am Coll Cardiol 2013; 61:793-801. [DOI: 10.1016/j.jacc.2012.07.074] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/19/2012] [Accepted: 07/31/2012] [Indexed: 01/01/2023]
|
11
|
Kawabe T, Kawabe K, Sapru HN. Effect of barodenervation on cardiovascular responses elicited from the hypothalamic arcuate nucleus of the rat. PLoS One 2012; 7:e53111. [PMID: 23300873 PMCID: PMC3531379 DOI: 10.1371/journal.pone.0053111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/23/2012] [Indexed: 02/07/2023] Open
Abstract
We have previously reported that chemical stimulation of the hypothalamic arcuate nucleus (ARCN) in the rat elicited increases as well as decreases in blood pressure (BP) and sympathetic nerve activity (SNA). The type of response elicited from the ARCN (i.e., increase or decrease in BP and SNA) depended on the level of baroreceptor activity which, in turn, was determined by baseline BP in rats with intact baroreceptors. Based on this information, it was hypothesized that baroreceptor unloading may play a role in the type of response elicited from the ARCN. Therefore, the effect of barodenervation on the ARCN-induced cardiovascular and sympathetic responses and the neurotransmitters in the hypothalamic paraventricular nucleus (PVN) mediating the excitatory responses elicited from the ARCN were investigated in urethane-anesthetized adult male Wistar rats. Bilateral barodenervation converted decreases in mean arterial pressure (MAP) and greater splanchnic nerve activity (GSNA) elicited by chemical stimulation of the ARCN with microinjections of N-methyl-D-aspartic acid to increases in MAP and GSNA and exaggerated the increases in heart rate (HR). Combined microinjections of NBQX and D-AP7 (ionotropic glutamate receptor antagonists) into the PVN in barodenervated rats converted increases in MAP and GSNA elicited by the ARCN stimulation to decreases in MAP and GSNA and attenuated increases in HR. Microinjections of SHU9119 (a melanocortin 3/4 receptor antagonist) into the PVN in barodenervated rats attenuated increases in MAP, GSNA and HR elicited by the ARCN stimulation. ARCN neurons projecting to the PVN were immunoreactive for proopiomelanocortin, alpha-melanocyte stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH). It was concluded that increases in MAP and GSNA and exaggeration of tachycardia elicited by the ARCN stimulation in barodenervated rats may be mediated via release of alpha-MSH and/or ACTH and glutamate from the ARCN neurons projecting to the PVN.
Collapse
Affiliation(s)
- Tetsuya Kawabe
- Department of Neurological Surgery, University of Medicine and Dentistry of New Jersey- New Jersey Medical School, Newark, New Jersey, United States of America
| | - Kazumi Kawabe
- Department of Neurological Surgery, University of Medicine and Dentistry of New Jersey- New Jersey Medical School, Newark, New Jersey, United States of America
| | - Hreday N. Sapru
- Department of Neurological Surgery, University of Medicine and Dentistry of New Jersey- New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
12
|
Sapru HN. Role of the hypothalamic arcuate nucleus in cardiovascular regulation. Auton Neurosci 2012; 175:38-50. [PMID: 23260431 DOI: 10.1016/j.autneu.2012.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 02/07/2023]
Abstract
Recently the hypothalamic arcuate nucleus (Arc) has been implicated in cardiovascular regulation. Both pressor and depressor responses can be elicited by the chemical stimulation of the Arc. The direction of cardiovascular responses (increase or decrease) elicited from the Arc depends on the baseline blood pressure. The pressor responses are mediated via increase in sympathetic nerve activity and involve activation of the spinal ionotropic glutamate receptors. Arc-stimulation elicits tachycardic responses which are mediated via inhibition of vagal input and excitation of sympathetic input to the heart. The pathways within the brain mediating the pressor and tachycardic responses elicited from the Arc have not been delineated. The depressor responses to the Arc-stimulation are mediated via the hypothalamic paraventricular nucleus (PVN). Gamma aminobutyric acid type A receptors, neuropeptide Y1 receptors, and opiate receptors in the PVN mediate the depressor responses elicited from the Arc. Some circulating hormones (e.g., leptin and insulin) may reach the Arc via the leaky blood-brain barrier and elicit their cardiovascular effects. Although the Arc is involved in mediating the cardiovascular responses to intravenously injected angiotensin II and angiotensin-(1-12), these effects may not be due to leakage of these peptides across the blood-brain barrier in the Arc; instead, circulating angiotensins may act on neurons in the SFO and mediate cardiovascular actions via the projections of SFO neurons to the Arc. Cardiovascular responses elicited by acupuncture have been reported to be mediated by direct and indirect projections of the Arc to the RVLM.
Collapse
Affiliation(s)
- Hreday N Sapru
- Department of Neurological Surgery, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| |
Collapse
|
13
|
Veitenheimer B, Osborn JW. Effects of intrathecal kynurenate on arterial pressure during chronic osmotic stress in conscious rats. Am J Physiol Heart Circ Physiol 2012; 304:H303-10. [PMID: 23161878 DOI: 10.1152/ajpheart.00629.2012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased plasma osmolality elevates mean arterial pressure (MAP) through activation of the sympathetic nervous system, but the neurotransmitters released in the spinal cord to regulate MAP during osmotic stress remain unresolved. Glutamatergic neurons of the rostral ventrolateral medulla project to sympathetic preganglionic neurons in the spinal cord and are likely activated during conditions of osmotic stress; however, this has not been examined in conscious rats. This study investigated whether increased MAP during chronic osmotic stress depends on activation of spinal glutamate receptors. Rats were chronically instrumented with an indwelling intrathecal (i.t.) catheter for antagonist delivery to the spinal cord and a radiotelemetry transmitter for continuous monitoring of MAP and heart rate. Osmotic stress induced by 48 h of water deprivation (WD) increased MAP by ~15 mmHg. Intrathecal kynurenic acid, a nonspecific antagonist of ionotropic glutamate receptors, decreased MAP significantly more after 48 h of WD compared with the water-replete state. Water-deprived rats also showed a greater fall in MAP in response to i.t. 2-amino-5-phosphonovalerate. Finally, i.t. kynurenic acid also decreased MAP more in an osmotically driven model of neurogenic hypertension, the DOCA-salt rat, compared with normotensive controls. Our results suggest that spinally released glutamate mediates increased MAP during 48-h WD and DOCA-salt hypertension.
Collapse
Affiliation(s)
- Britta Veitenheimer
- The Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
14
|
Different role of oxidative stress in paraventricular nucleus and rostral ventrolateral medulla in cardiovascular regulation in awake spontaneously hypertensive rats. J Hypertens 2012; 30:1758-65. [DOI: 10.1097/hjh.0b013e32835613d7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Mastelari RB, de Abreu SB, de Aguiar Corrêa FM, de Souza HCD, Martins-Pinge MC. Glutamatergic neurotransmission in the hypothalamus PVN on heart rate variability in exercise trained rats. Auton Neurosci 2012; 170:42-7. [DOI: 10.1016/j.autneu.2012.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/20/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
|
16
|
Chitravanshi VC, Proddutur A, Sapru HN. Cardiovascular actions of angiotensin-(1-12) in the hypothalamic paraventricular nucleus of the rat are mediated via angiotensin II. Exp Physiol 2011; 97:1001-17. [PMID: 22125313 DOI: 10.1113/expphysiol.2011.062471] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The role of the hypothalamic paraventricular nucleus (PVN) in cardiovascular regulation is well established. In this study, it was hypothesized that the PVN may be one of the sites of cardiovascular actions of a newly discovered angiotensin, angiotensin-(1-12). Experiments were carried out in urethane-anaesthetized, artificially ventilated, adult male Wistar rats. The PVN was identified by microinjections of NMDA (10 mm). Microinjections (50 nl) of angiotensin-(1-12) (1 mm) into the PVN elicited increases in mean arterial pressure, heart rate and renal sympathetic nerve activity. The tachycardic responses to angiotensin-(1-12) were attenuated by bilateral vagotomy. The cardiovascular responses elicited by angiotensin-(1-12) were attenuated by microinjections of an angiotensin II type 1 receptor (AT(1)R) antagonist (losartan), but not an angiotensin II type 1 receptor (AT(2)R) antagonist (PD123319), into the PVN. Combined inhibition of angiotensin-converting enzyme and chymase in the PVN abolished angiotensin-(1-12)-induced responses. Angiotensin-(1-12)-immunoreactive cells and fibres were more numerous in the middle and caudal regions of the PVN. Angiotensin-(1-12) was present in many, but not all, vasopressinergic PVN cells. This peptide was also present in some non-vasopressinergic PVN cells, but not in oxytocin-containing PVN cells. These results can be summarized as follows: (1) microinjections of angiotensin-(1-12) into the PVN elicited increases in mean arterial pressure, heart rate and renal sympathetic nerve activity; (2) heart rate responses were mediated via both sympathetic and vagus nerves; (3) both angiotensin-converting enzyme and chymase were needed to convert angiotensin-(1-12) to angiotensin II in the PVN; and (4) AT(1)Rs, but not AT(2)Rs, in the PVN mediated angiotensin-(1-12)-induced responses. It was concluded that the cardiovascular actions of angiotensin-(1-12) in the PVN are mediated via its conversion to angiotensin II.
Collapse
Affiliation(s)
- Vineet C Chitravanshi
- Department of Neurological Surgery, MSB H-586, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | |
Collapse
|
17
|
Nakamura T, Bhatt S, Sapru HN. Cardiovascular responses to hypothalamic arcuate nucleus stimulation in the rat: role of sympathetic and vagal efferents. Hypertension 2009; 54:1369-75. [PMID: 19884562 DOI: 10.1161/hypertensionaha.109.140715] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Experiments were carried out in urethane-anesthetized, artificially ventilated, adult male Wistar rats. Microinjections (50 nL) of N-methyl-d-aspartic acid (1, 5, and 10 mmol/L), but not artificial cerebrospinal fluid, into the hypothalamic arcuate nucleus (ARCN) elicited increases in mean arterial pressure (5.7+/-0.5, 13.2+/-1.4, and 17.3+/-1.1 mm Hg, respectively) and heart rate (24.3+/-4.3, 49.3+/-5.2, and 75.2+/-8.0 bpm, respectively). ARCN stimulation was accomplished by microinjections of a maximally effective concentration of N-methyl-d-aspartic acid (10 mmol/L). The tachycardic responses to the ARCN stimulation were significantly attenuated after bilateral vagotomy. Intrathecal injections of ionotropic glutamate receptor (iGLUR) antagonists completely blocked pressor responses to the ARCN stimulation, whereas the tachycardic responses were significantly attenuated but not abolished. Intrathecal injections of iGLUR antagonists at T9 to T10, combined with bilateral vagotomy, completely blocked the tachycardic responses to ARCN stimulation. ARCN stimulation with N-methyl-d-aspartic acid elicited increased activities of the greater splanchnic nerve (91.7+/-14.8%) and the renal nerve (109.3+/-13%). Intrathecal injections of iGLURs at T9 to T10 blocked the increase in the greater splanchnic nerve activity in response to ARCN stimulation. These results indicate the following: (1) the chemical stimulation of the ARCN elicits increases in mean arterial pressure, greater splanchnic nerve and renal nerve activity, and heart rate; (2) the increases in mean arterial pressure and sympathetic nerve activity are mediated via the activation of spinal cord iGLURs; and (3) the increases in heart rate are mediated via the activation of spinal cord iGLURs and decreases in vagal input to the heart.
Collapse
Affiliation(s)
- Takeshi Nakamura
- Department of Neurological Surgery, MSB H-586, UMDNJ-New Jersey Medical School, 185 South Orange Ave, Newark, NJ 07103, USA
| | | | | |
Collapse
|