1
|
Lou Y, Lv Y, Li Z, Kang Y, Hou M, Fu Z, Lu L, Liu L, Cai Z, Qi Z, Jian H, Shen W, Li X, Zhou H, Feng S. Identification of Differentially Expressed Proteins in Rats with Early Subacute Spinal Cord Injury using an iTRAQ-based Quantitative Analysis. Comb Chem High Throughput Screen 2023; 26:1960-1973. [PMID: 36642874 DOI: 10.2174/1386207326666230113152622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/02/2022] [Accepted: 11/17/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Injuries to the central nervous system (CNS), such as spinal cord injury (SCI), may devastate families and society. Subacute SCI may majorly impact secondary damage during the transitional period between the acute and subacute phases. A range of CNS illnesses has been linked to changes in the level of protein expression. However, the importance of proteins during the early subacute stage of SCI remains unknown. The role of proteins in the early subacute phase of SCI has not been established yet. METHODS SCI-induced damage in rats was studied using isobaric tagging for relative and absolute protein quantification (iTRAQ) to identify proteins that differed in expression 3 days after the injury, as well as proteins that did not alter in expression. Differentially expressed proteins (DEPs) were analyzed employing Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to discover the biological processes, cell components, and molecular functions of the proteins. We also performed Gene Set Enrichment Analysis (GSEA) software BP pathway and KEGG analysis on all proteins to further identify their functions. In addition, the first 15 key nodes of a protein-protein interaction (PPI) system were found. RESULTS During the early subacute stage of SCI, we identified 176 DEPs in total between the control and damage groups, with 114 (64.77%) being up-regulated and 62 (35.23%) being downregulated. As a result of this study, we discovered the most important cellular components and molecular activities, as well as biological processes and pathways, in the early subacute phase of SCI. The top 15 high-degree core nodes were Alb, Plg, F2, Serpina1, Fgg, Apoa1, Vim, Hpx, Apoe, Agt, Ambp, Pcna, Gc, F12, and Gfap. CONCLUSION Our study could provide new views on regulating the pathogenesis of proteins in the early subacute phase after SCI, which provides a theoretical basis for exploring more effective therapeutic targets for SCI in the future.
Collapse
Affiliation(s)
- Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengfan Hou
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zheng Fu
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lu Liu
- Department of Traumatic Orthopedics, Honghui Hospital, Xi'an Jiaotong University, 555 West Youyi Road, Xi'an, 710061, Shaanxi, China
| | - Zhiwei Cai
- Department of Burn and Plastic Surgery, Burns Institute, Burn & Plastic Hospital of PLA General Hospital, Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Zhangyang Qi
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenyuan Shen
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xueying Li
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
2
|
Liu S, Kang Y, Zhang C, Lou Y, Li X, Lu L, Qi Z, Jian H, Zhou H. Isobaric Tagging for Relative and Absolute Protein Quantification (iTRAQ)-Based Quantitative Proteomics Analysis of Differentially Expressed Proteins 1 Week After Spinal Cord Injury in a Rat Model. Med Sci Monit 2020; 26:e924266. [PMID: 33144554 PMCID: PMC7650090 DOI: 10.12659/msm.924266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Spinal cord injury (SCI) is a devastating trauma of the central nervous system (CNS), with high levels of morbidity, disability, and mortality. One week after SCI may be a critical time for treatment. Changes in protein expression have crucial functions in nervous system diseases, although the effects of changes occurring 1 week after SCI on patient outcomes are unclear. Material/Methods Protein expression was examined in a rat contusive SCI model 1 week after SCI. Differentially expressed proteins (DEPs) were identified by isobaric tagging for relative and absolute protein quantification (iTRAQ)-coupled liquid chromatography tandem-mass spectrometry (LC-MS/MS) proteomics analysis. Gene Ontology (GO) analysis was performed to identify the biological processes, molecular functions, and cellular component terms of the identified DEPs, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to identify key enriched pathways. Protein–protein interaction (PPI) networks were analyzed to identify the top 10 high-degree core proteins. Results Of the 295 DEPs identified, 204 (69.15%) were upregulated and 91 (30.85%) were downregulated 1 week after injury. The main cellular components, molecular functions, biological processes, and pathways identified may be crucial mechanisms involved in SCI. The top 10 high-degree core proteins were complement component C3 (C3), alpha-2-HS-glycoprotein (Ahsg), T-kininogen 1 (Kng1), Serpinc1 protein (Serpinc1), apolipoprotein A-I (Apoa1), serum albumin (Alb), disulfide-isomerase protein (P4hb), transport protein Sec61 subunit alpha isoform 1 (Sec61a1), serotransferrin (Tf), and 60S ribosomal protein L15 (Rpl15). Conclusions The proteins identified in this study may provide potential targets for diagnosis and treatment 1 week after SCI.
Collapse
Affiliation(s)
- Shen Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Chi Zhang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, China (mainland)
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Zhangyang Qi
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China (mainland)
| |
Collapse
|
3
|
Identification of differentially expressed proteins in rats with spinal cord injury during the transitional phase using an iTRAQ-based quantitative analysis. Gene 2018; 677:66-76. [PMID: 30036659 DOI: 10.1016/j.gene.2018.07.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a disease associated with high disability and mortality rates. The transitional phase from subacute phase to intermediate phase may play a major role in the process of secondary injury. Changes in protein expression levels have been shown to play key roles in many central nervous system (CNS) diseases. Nevertheless, the roles of proteins in the transitional phase of SCI are not clear. METHODS We examined protein expression in a rat model 2 weeks after SCI and identified differentially expressed proteins (DEPs) using isobaric tagging for relative and absolute protein quantification (iTRAQ). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEPs were performed. Furthermore, we constructed a protein-protein interaction (PPI) network, and the top 10 high-degree core nodes were identified. Meanwhile, we validated protein level changes of five high-degree core regulated proteins using Western blots. RESULTS A total of 162 DEPs were identified between the injury group and the control, of which 101 (62.35%) were up-regulated and 61 (37.65%) were down-regulated in the transitional phase of SCI. Key molecular function, cellular components, biological process terms and pathways were identified and may be important mechanisms in the transitional phase of SCI. Alb, Calm1, Vim, Apoe, Syp, P4hb, Cd68, Eef1a2, Rab3a and Lgals3 were the top 10 high-degree core nodes. Western blot analysis performed on five of these proteins showed the same trend as iTRAQ results. CONCLUSION The current study may provide novel insights into how proteins regulate the pathogenesis of the transitional phase after SCI.
Collapse
|
4
|
Shi Z, Ning G, Zhang B, Yuan S, Zhou H, Pan B, Li J, Wei Z, Cao F, Kong X, Feng S. Signatures of altered long noncoding RNAs and messenger RNAs expression in the early acute phase of spinal cord injury. J Cell Physiol 2018; 234:8918-8927. [PMID: 30341912 DOI: 10.1002/jcp.27560] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/14/2018] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) is a highly severe disease and it can lead to the destruction of the motor and sensory function resulting in temporary or permanent disability. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nt that play a critical role in central nervous system (CNS) injury. However, the exact roles of lncRNAs and messenger RNAs (mRNAs) in the early acute phase of SCI remain to be elucidated. We examined the expression of mRNAs and lncRNAs in a rat model at 2 days after SCI and identified the differentially expressed lncRNAs (DE lncRNAs) and differentially expressed mRNAs (DE mRNAs) using microarray analysis. Subsequently, a comprehensive bioinformatics analysis was also performed to clarify the interaction between DE mRNAs. A total of 3,193 DE lncRNAs and 4,308 DE mRNAs were identified between the injured group and control group. Classification, length distribution, and chromosomal distribution of the dysregulated lncRNAs were also performed. The gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed to identify the critical biological processes and pathways. A protein-protein interaction (PPI) network indicated that IL6, TOP2A, CDK1, POLE, CCNB1, TNF, CCNA2, CDC20, ITGAM, and MYC were the top 10 core genes. The subnetworks from the PPI network were identified to further elucidate the most significant functional modules of the DE mRNAs. These data may provide novel insights into the molecular mechanism of the early acute phase of SCI. The identification of lncRNAs and mRNAs may offer potential diagnostic and therapeutic targets for SCI.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Harvard Medical School, Boston, Massachusetts
| | - Guangzhi Ning
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiyang Yuan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Pan
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiahe Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhijian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fujiang Cao
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Fan B, Wei Z, Yao X, Shi G, Cheng X, Zhou X, Zhou H, Ning G, Kong X, Feng S. Microenvironment Imbalance of Spinal Cord Injury. Cell Transplant 2018; 27:853-866. [PMID: 29871522 PMCID: PMC6050904 DOI: 10.1177/0963689718755778] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI), for which there currently is no cure, is a heavy burden on
patient physiology and psychology. The microenvironment of the injured spinal cord is
complicated. According to our previous work and the advancements in SCI research,
‘microenvironment imbalance’ is the main cause of the poor regeneration and recovery of
SCI. Microenvironment imbalance is defined as an increase in inhibitory factors and
decrease in promoting factors for tissues, cells and molecules at different times and
spaces. There are imbalance of hemorrhage and ischemia, glial scar formation,
demyelination and re-myelination at the tissue’s level. The cellular level imbalance
involves an imbalance in the differentiation of endogenous stem cells and the
transformation phenotypes of microglia and macrophages. The molecular level includes an
imbalance of neurotrophic factors and their pro-peptides, cytokines, and chemokines. The
imbalanced microenvironment of the spinal cord impairs regeneration and functional
recovery. This review will aid in the understanding of the pathological processes involved
in and the development of comprehensive treatments for SCI.
Collapse
Affiliation(s)
- Baoyou Fan
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhijian Wei
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Yao
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guidong Shi
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Cheng
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianhu Zhou
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hengxing Zhou
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangzhi Ning
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Kong
- 2 Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, China
| | - Shiqing Feng
- 1 National Spinal Cord Injury International Cooperation Base, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
Zhou H, Shi Z, Kang Y, Wang Y, Lu L, Pan B, Liu J, Li X, Liu L, Wei Z, Kong X, Feng S. Investigation of candidate long noncoding RNAs and messenger RNAs in the immediate phase of spinal cord injury based on gene expression profiles. Gene 2018; 661:119-125. [PMID: 29580899 DOI: 10.1016/j.gene.2018.03.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Spinal cord injury (SCI) is a serious devastating condition and it has a high mortality rate and morbidity rate. The early pathological changes in the immediate phase of SCI may play a major part in the development of secondary injury. Alterations in the expression of many long noncoding RNAs (lncRNAs) have been shown to play fundamental roles in the diseases of the central nervous system. However, the roles of lncRNAs and messenger RNAs (mRNAs) in the immediate phase of SCI are not clear. We examined the expression of mRNAs and lncRNAs in a rat model at 2 h after SCI and identified the differentially expressed lncRNAs (DE lncRNAs) and differentially expressed mRNAs (DE mRNAs) using microarray analysis. 772 DE lncRNAs and 992 DE mRNAs were identified in spinal cord samples in the immediate phase following SCI compared with control samples. Moreover, Gene Ontology (GO) term annotation results showed that CXCR chemokine receptor binding, neutrophil apoptotic process, neutrophil migration, neutrophil extravasation, macrophage differentiation, monocyte chemotaxis and cellular response to interleukin-1 (IL-1) were the main significantly enriched GO terms. The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were enriched in toll-like receptor signaling pathway, p53 signaling pathway, MAPK signaling pathway and Jak-STAT signaling pathway. IL6, MBOAT4, FOS, TNF, JUN, STAT3, CSF2, MYC, CCL2 and FGF2 were the top 10 high-degree hub nodes and may be important targets in the immediate phase of SCI. The current study on provides novel insights into how lncRNAs and mRNAs regulate the pathogenesis of the immediate phase after SCI.
Collapse
Affiliation(s)
- Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yao Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Bin Pan
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Jun Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, PR China
| | - Lu Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhijian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xiaohong Kong
- 221 Laboratory, School of Medicine, Nankai University, Tianjin, PR China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
7
|
Liu Y, Li Q, Zhang B, Ban DX, Feng SQ. Multifunctional biomimetic spinal cord: New approach to repair spinal cord injuries. World J Exp Med 2017; 7:78-83. [PMID: 28890869 PMCID: PMC5571451 DOI: 10.5493/wjem.v7.i3.78] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/17/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
The incidence of spinal cord injury (SCI) has been gradually increasing, and the treatment has troubled the medical field all the time. Primary and secondary injuries ultimately lead to nerve impulse conduction block. Microglia and astrocytes excessively accumulate and proliferate to form the glial scar. At present, to reduce the effect of glial scar on nerve regeneration is a hot spot in the research on the treatment of SCI. According to the preliminary experiments, we would like to provide a new bionic spinal cord to reduce the negative effect of glial scar on nerve regeneration. In this hypothesis we designed a new scaffold that combine the common advantage of acellular scaffold of spinal cord and thermosensitive gel, which could continue to release exogenous basic fibroblast growth factor (BFGF) in the spinal lesion area on the basis of BFGF modified thermosensitive gel. Meanwhile, the porosity, pore size and material of the gray matter and white matter regions were distinguished by an isolation layer, so as to induce the directed differentiation of cells into the defect site and promote regeneration of spinal cord tissue.
Collapse
|
8
|
Milbreta U, Nguyen LH, Diao H, Lin J, Wu W, Sun CY, Wang J, Chew SY. Three-Dimensional Nanofiber Hybrid Scaffold Directs and Enhances Axonal Regeneration after Spinal Cord Injury. ACS Biomater Sci Eng 2016; 2:1319-1329. [DOI: 10.1021/acsbiomaterials.6b00248] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ulla Milbreta
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Lan Huong Nguyen
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Huajia Diao
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Junquan Lin
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Wutian Wu
- Department
of Anatomy, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong SAR, China
- Research
Center of Reproduction, Development and Growth, Li Ka Shing Faculty
of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State
Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty
of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Guangdong-Hongkong-Macau
Institute of CNS Regeneration, Jinan University, Guangzhou 510632, P. R. China
| | - Chun-Yang Sun
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, P. R. China
| | - Jun Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, P. R. China
| | - Sing Yian Chew
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
- Lee
Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| |
Collapse
|
9
|
Zhang J, Chen H, Duan Z, Chen K, Liu Z, Zhang L, Yao D, Li B. The Effects of Co-transplantation of Olfactory Ensheathing Cells and Schwann Cells on Local Inflammation Environment in the Contused Spinal Cord of Rats. Mol Neurobiol 2016; 54:943-953. [PMID: 26790672 DOI: 10.1007/s12035-016-9709-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/07/2016] [Indexed: 11/27/2022]
Abstract
Inflammatory response following spinal cord injury (SCI) is important in regulation of the repair process. Olfactory ensheathing cells (OECs) and Schwann cells (SCs) are important donor cells for repairing SCI in different animal models. However, synergistic or complementary effects of co-transplantation of both cells for this purpose have not been extensively investigated. In the present study, we investigated the effects of co-transplantation of OECs and SCs on expression of pro- or anti-inflammatory factor and polarization of macrophages in the injured spinal cord of rats. Mixed cell suspensions containing OECs and SCs were transplanted into the injured site at 7 days after contusion at the vertebral T10 level. Compared with the DMEM, SC, or OEC group, the co-transplantation group had a more extensive distribution of the grafted cells and significantly reduced number of astrocytes, microglia/macrophage infiltration, and expression of chemokines (CCL2 and CCL3) at the injured site. The co-transplantation group also significantly increased arginase+/CD206+ macrophages (IL-4) and decreased iNOS+/CD16/32+ macrophages (IFN-γ), which was followed by higher IL-10 and IL-13 and lower IL-6 and TNF-α in their expression levels, a smaller cystic cavity area, and improved motor functions. These results indicate that OEC and SC co-transplantation could promote the shift of the macrophage phenotype from M(IFN-γ) to M(IL-4), reduce inflammatory cell infiltration in the injured site, and regulate inflammatory factors and chemokine expression, which provide a better immune environment for SCI repair.
Collapse
Affiliation(s)
- Jieyuan Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Huijun Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Zhaoxia Duan
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Kuijun Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Zeng Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Lu Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Dongdong Yao
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Bingcang Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China.
| |
Collapse
|
10
|
Zhang SQ, Wu MF, Liu JB, Li Y, Zhu QS, Gu R. Transplantation of human telomerase reverse transcriptase gene-transfected Schwann cells for repairing spinal cord injury. Neural Regen Res 2015; 10:2040-7. [PMID: 26889196 PMCID: PMC4730832 DOI: 10.4103/1673-5374.172324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 12/24/2022] Open
Abstract
Transfection of the human telomerase reverse transcriptase (hTERT) gene has been shown to increase cell proliferation and enhance tissue repair. In the present study, hTERT was transfected into rat Schwann cells. A rat model of acute spinal cord injury was established by the modified free-falling method. Retrovirus PLXSN was injected at the site of spinal cord injury as a vector to mediate hTERT gene-transfected Schwann cells (1 × 10(10)/L; 10 μL) or Schwann cells (1 × 10(10)/L; 10 μL) without hTERT gene transfection. Between 1 and 4 weeks after model establishment, motor function of the lower limb improved in the hTERT-transfected group compared with the group with non-transfected Schwann cells. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and reverse transcription-polymerase chain reaction results revealed that the number of apoptotic cells, and gene expression of aquaporin 4/9 and matrix metalloproteinase 9/2 decreased at the site of injury in both groups; however, the effect improved in the hTERT-transfected group compared with the Schwann cells without hTERT transfection group. Hematoxylin and eosin staining, PKH26 fluorescent labeling, and electrophysiological testing demonstrated that compared with the non-transfected group, spinal cord cavity and motor and sensory evoked potential latencies were reduced, while the number of PKH26-positive cells and the motor and sensory evoked potential amplitude increased at the site of injury in the hTERT-transfected group. These findings suggest that transplantation of hTERT gene-transfected Schwann cells repairs the structure and function of the injured spinal cord.
Collapse
Affiliation(s)
- Shu-quan Zhang
- Department of Orthopedics, Tianjin Nankai Hospital, Tianjin, China
| | - Min-fei Wu
- Department of Spine Surgery, Orthopedic Hospital, Second Hospital, Clinical Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jia-bei Liu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Ye Li
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Qing-san Zhu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Rui Gu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
11
|
Peng CG, Zhang SQ, Wu MF, Lv Y, Wu DK, Yang Q, Gu R. Hyperbaric oxygen therapy combined with Schwann cell transplantation promotes spinal cord injury recovery. Neural Regen Res 2015; 10:1477-82. [PMID: 26604910 PMCID: PMC4625515 DOI: 10.4103/1673-5374.165520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 11/09/2022] Open
Abstract
Schwann cell transplantation and hyperbaric oxygen therapy each promote recovery from spinal cord injury, but it remains unclear whether their combination improves therapeutic results more than monotherapy. To investigate this, we used Schwann cell transplantation via the tail vein, hyperbaric oxygen therapy, or their combination, in rat models of spinal cord contusion injury. The combined treatment was more effective in improving hindlimb motor function than either treatment alone; injured spinal tissue showed a greater number of neurite-like structures in the injured spinal tissue, somatosensory and motor evoked potential latencies were notably shorter, and their amplitudes greater, after combination therapy than after monotherapy. These findings indicate that Schwann cell transplantation combined with hyperbaric oxygen therapy is more effective than either treatment alone in promoting the recovery of spinal cord in rats after injury.
Collapse
Affiliation(s)
- Chuan-gang Peng
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Shu-quan Zhang
- Department of Orthopedics, Tianjin Nankai Hospital, Tianjin, China
| | - Min-fei Wu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Lv
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Dan-kai Wu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qi Yang
- Department of Dynaecology and Obstetrics, China-Japan Union Hosptial of Jilin University, Changchun, Jilin Province, China
| | - Rui Gu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
12
|
Wang T, Liu Y, Yuan W, Zhang L, Zhang Y, Wang Z, Zhou X, Zhou H, Chu T, Hao Y, Liu B, Zhao X, Lu L, Feng S, Kong X. Identification of microRNAome in rat bladder reveals miR-1949 as a potential inducer of bladder cancer following spinal cord injury. Mol Med Rep 2015; 12:2849-57. [PMID: 25962430 DOI: 10.3892/mmr.2015.3769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/20/2015] [Indexed: 11/05/2022] Open
Abstract
The costs of spinal cord injury and its complications are high in personal, social and financial terms. Complications include bladder cancer, for which the risk is 16-28 times higher than that of the general population, There is currently little consensus regarding the cause of this discrepancy. As microRNAs are stable biomarkers and potential therapeutic targets of cancer, the present study aimed to explore the underlying mechanisms of this phenomenon by examining changes in the microRNAome. Rats were used to produce models of spinal cord injury. Microarrays and bioinformatics were used to investigate the cancer-associated microRNAs that are upregulated in rat bladders following spinal cord injury. In order to validate the results, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting and immunohistochemistry were performed. The expression of miR-1949 was found to be deregulated and abundant in the rat bladder following spinal cord injury. Bioinformatics demonstrated that retinoblastoma 1, which is involved in tumorigenesis, is a target gene of miR-1949. qRT-PCR, western blotting and immunohistochemistry confirmed the results of the microarray analysis. In addition, it was shown that miR-1949 expression was not influenced by aging. Furthermore, the expression of miR-1949 was stable until the third month following spinal cord injury, after which it significantly increased. If this increase was prolonged, the expression of retinoblastoma 1 may decline to a carcinogenic level. The present study suggests a role for miR-1949 in the translational regulation of retinoblastoma 1 and in subsequent bladder tumorigenesis following spinal cord injury.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yong Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wenqi Yuan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yanjun Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhijie Wang
- Department of Paediatric Internal Medicine, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Xianhu Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hengxing Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tianci Chu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yan Hao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bin Liu
- 221 Laboratory, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Xuechao Zhao
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Lu Lu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiaohong Kong
- 221 Laboratory, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
13
|
Marcol W, Ślusarczyk W, Larysz-Brysz M, Francuz T, Jędrzejowska-Szypułka H, Łabuzek K, Lewin-Kowalik J. Grafted Activated Schwann Cells Support Survival of Injured Rat Spinal Cord White Matter. World Neurosurg 2015; 84:511-9. [PMID: 25910924 DOI: 10.1016/j.wneu.2015.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVE The influence of cultured Schwann cells on injured spinal cord in rats is examined. METHODS Focal injury of spinal cord white matter at the T10 level was produced using our original non-laminectomy method with a high-pressure air stream. Schwann cells from 7-day predegenerated rat sciatic nerves were cultured, transducted with green fluorescent protein and injected into the cisterna magna (experimental group) 3 times: immediately after spinal cord injury and 3 and 7 days later. Neurons in the brainstem and motor cortex were labeled with FluoroGold (FG) delivered caudally from the injury site a week before the end of the experiment. The functional outcome and morphologic features of neuronal survival were analyzed during a 12-week follow-up. The lesions were visualized and analyzed using magnetic resonance imaging. The maximal distance of expansion of implanted cells in the spinal cord was measured and the number of FG-positive neurons in the brain was counted. RESULTS Rats treated with Schwann cells presented significant improvement of locomotor performance and spinal cord morphology compared with the control group. The distance covered by Schwann cells was 7 mm from the epicenter of the injury. The number of brainstem and motor cortex FG-positive neurons in the experimental group was significantly higher than in the control group. CONCLUSIONS The data show that activated Schwann cells are able to induce the repair of injured spinal cord white matter. The route of application of cells via the cisterna magna seemed to be useful for their delivery in spinal cord injury therapy.
Collapse
Affiliation(s)
- Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Wojciech Ślusarczyk
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Larysz-Brysz
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz Francuz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Krzysztof Łabuzek
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
14
|
Wang D, Liang J, Zhang J, Liu S, Sun W. Mild hypothermia combined with a scaffold of NgR-silenced neural stem cells/Schwann cells to treat spinal cord injury. Neural Regen Res 2015; 9:2189-96. [PMID: 25657741 PMCID: PMC4316453 DOI: 10.4103/1673-5374.147952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2014] [Indexed: 11/24/2022] Open
Abstract
Because the inhibition of Nogo proteins can promote neurite growth and nerve cell differentiation, a cell-scaffold complex seeded with Nogo receptor (NgR)-silenced neural stem cells and Schwann cells may be able to improve the microenvironment for spinal cord injury repair. Previous studies have found that mild hypothermia helps to attenuate secondary damage in the spinal cord and exerts a neuroprotective effect. Here, we constructed a cell-scaffold complex consisting of a poly(D,L-lactide-co-glycolic acid) (PLGA) scaffold seeded with NgR-silenced neural stem cells and Schwann cells, and determined the effects of mild hypothermia combined with the cell-scaffold complexes on the spinal cord hemi-transection injury in the T9 segment in rats. Compared with the PLGA group and the NgR-silencing cells + PLGA group, hindlimb motor function and nerve electrophysiological function were clearly improved, pathological changes in the injured spinal cord were attenuated, and the number of surviving cells and nerve fibers were increased in the group treated with the NgR-silenced cell scaffold + mild hypothermia at 34°C for 6 hours. Furthermore, fewer pathological changes to the injured spinal cord and more surviving cells and nerve fibers were found after mild hypothermia therapy than in injuries not treated with mild hypothermia. These experimental results indicate that mild hypothermia combined with NgR gene-silenced cells in a PLGA scaffold may be an effective therapy for treating spinal cord injury.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, the Fourth Center Clinical College of Tianjin Medical University, Tianjin Fourth Central Hospital, Tianjin, China
| | - Jinhua Liang
- Department of Clinical Detection, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, Heilongjiang Province, China
| | - Jianjun Zhang
- Department of Neurosurgery, the Fourth Center Clinical College of Tianjin Medical University, Tianjin Fourth Central Hospital, Tianjin, China
| | - Shuhong Liu
- Department of Epidemiology, Logistics University of People's Armed Police Force, Tianjin, China
| | - Wenwen Sun
- Department of Neurosurgery, the Fourth Center Clinical College of Tianjin Medical University, Tianjin Fourth Central Hospital, Tianjin, China
| |
Collapse
|
15
|
Deng LX, Walker C, Xu XM. Schwann cell transplantation and descending propriospinal regeneration after spinal cord injury. Brain Res 2014; 1619:104-14. [PMID: 25257034 DOI: 10.1016/j.brainres.2014.09.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/08/2014] [Accepted: 09/15/2014] [Indexed: 01/15/2023]
Abstract
After spinal cord injury (SCI), poor ability of damaged axons of the central nervous system (CNS) to regenerate causes very limited functional recovery. Schwann cells (SCs) have been widely explored as promising donors for transplantation to promote axonal regeneration in the CNS including the spinal cord. Compared with other CNS axonal pathways, injured propriospinal tracts display the strongest regenerative response to SC transplantation. Even without providing additional neurotrophic factors, propriospinal axons can grow into the SC environment which is rarely seen in supraspinal tracts. Propriospinal tract has been found to respond to several important neurotrophic factors secreted by SCs. Therefore, the SC is considered to be one of the most promising candidates for cell-based therapies for SCI. Since many reviews have already appeared on topics of SC transplantation in SCI repair, this review will focus particularly on the rationale of SC transplantation in mediating descending propriospinal axonal regeneration as well as optimizing such regeneration by using different combinatorial strategies. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Ling-Xiao Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Chandler Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Wang D, Fan Y, Zhang J. Transplantation of Nogo-66 receptor gene-silenced cells in a poly(D,L-lactic-co-glycolic acid) scaffold for the treatment of spinal cord injury. Neural Regen Res 2014; 8:677-85. [PMID: 25206713 PMCID: PMC4146076 DOI: 10.3969/j.issn.1673-5374.2013.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 01/07/2013] [Indexed: 01/22/2023] Open
Abstract
Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L-lactide-co-glycolic acid) has good histocompatibility and can promote the growth of regenerating nerve fibers. The present study used small interfering RNA to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells and Schwann cells, which were subsequently transplanted with poly(D,L-lactide-co-glycolic acid) into the spinal cord lesion regions in rats. Simultaneously, rats treated with scaffold only were taken as the control group. Hematoxylin-eosin staining and immunohistochemistry revealed that at 4 weeks after transplantation, rats had good motor function of the hind limb after treatment with Nogo-66 receptor gene-silenced cells plus the poly(D,L-lactide-co-glycolic acid) scaffold compared with rats treated with scaffold only, and the number of bone marrow mesenchymal stem cells and neuron-like cells was also increased. At 8 weeks after transplantation, horseradish peroxidase tracing and transmission electron microscopy showed a large number of unmyelinated and myelinated nerve fibers, as well as intact regenerating axonal myelin sheath following spinal cord hemisection injury. These experimental findings indicate that transplantation of Nogo-66 receptor gene-silenced bone marrow mesenchymal stem cells and Schwann cells plus a poly(D,L-lactide-co-glycolic acid) scaffold can significantly enhance axonal regeneration of spinal cord neurons and improve motor function of the extremities in rats following spinal cord injury.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, Tianjin Fourth Central Hospital, Tianjin 300140, China
| | - Yuhong Fan
- Department of Stomatology, First Clinical College, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Jianjun Zhang
- Department of Neurosurgery, Tianjin Fourth Central Hospital, Tianjin 300140, China
| |
Collapse
|
17
|
Liu SJ, Zheng SS, Dan QQ, Liu J, Wang TH. Effects of Governor Vessel electroacupuncture on the systematic expressions of NTFs in spinal cord transected rats. Neuropeptides 2014; 48:239-47. [PMID: 24836602 DOI: 10.1016/j.npep.2014.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/02/2014] [Accepted: 04/14/2014] [Indexed: 02/01/2023]
Abstract
This study evaluated the effects Governor Vessel electroacupuncture (GVEA) on the systematic regulation of neurotrophic factors (NTFs) in the spinal segments caudal (CSS) to the site of transection in rats subjected to spinal cord transection (SCT). Using RT-PCR, we amazingly found the gene expressions of NGF, IGF-1, FGF-2, CNTF, PDGF, TGF-β1, TrkA, TrkB and TrkC were downregulated following GVEA treatment. However, the number of GAP-43 and Synaptophysin profiles in the CSS in the GVEA rats showed a significant increase, compared with non-EA animals, although both the 5-HT and corticospinal fibers have no statistical differences in the CSS. Simultaneously, there was significant recovery in hindlimb locomotor and sensory functions after GVEA treatment. Therefore, these findings challenge the past view that GVEA promotes functional restoration, which is linking to the up-regulation of NTFs in rats subjected to SCT. The present findings may give some novel indication on the mechanism of acupuncture for the treatment of SCI.
Collapse
Affiliation(s)
- Su-Juan Liu
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Su-Su Zheng
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi-Qin Dan
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia Liu
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting-Hua Wang
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China; Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
18
|
Hang TC, Tedford NC, Reddy RJ, Rimchala T, Wells A, White FM, Kamm RD, Lauffenburger DA. Vascular endothelial growth factor (VEGF) and platelet (PF-4) factor 4 inputs modulate human microvascular endothelial signaling in a three-dimensional matrix migration context. Mol Cell Proteomics 2013; 12:3704-18. [PMID: 24023389 PMCID: PMC3861718 DOI: 10.1074/mcp.m113.030528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment.
Collapse
Affiliation(s)
- Ta-Chun Hang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hejčl A, Růžička J, Kapcalová M, Turnovcová K, Krumbholcová E, Přádný M, Michálek J, Cihlář J, Jendelová P, Syková E. Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: a comparative study of four methacrylate hydrogels. Stem Cells Dev 2013; 22:2794-805. [PMID: 23750454 DOI: 10.1089/scd.2012.0616] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Currently, there is no effective strategy for the treatment of spinal cord injury (SCI). A suitable combination of modern hydrogel materials, modified to effectively bridge the lesion cavity, combined with appropriate stem cell therapy seems to be a promising approach to repair spinal cord damage. We demonstrate the synergic effect of porosity and surface modification of hydrogels on mesenchymal stem cell (MSC) adhesiveness in vitro and their in vivo survival in an experimental model of SCI. MSCs were seeded on four different hydrogels: hydroxypropylmethacrylate-RGD prepared by heterophase separation (HPMA-HS-RGD) and three other hydrogels polymerized in the presence of a solid porogen: HPMA-SP, HPMA-SP-RGD, and hydroxy ethyl methacrylate [2-(methacryloyloxy)ethyl] trimethylammonium chloride (HEMA-MOETACl). Their adhesion capability and cell survival were evaluated at 1, 7, and 14 days after the seeding of MSCs on the hydrogel scaffolds. The cell-polymer scaffolds were then implanted into hemisected rat spinal cord, and MSC survival in vivo and the ingrowth of endogenous tissue elements were evaluated 1 month after implantation. In vitro data demonstrated that HEMA-MOETACl and HPMA-SP-RGD hydrogels were superior in the number of cells attached. In vivo, the highest cell survival was found in the HEMA-MOETACl hydrogels; however, only a small ingrowth of blood vessels and axons was observed. Both HPMA-SP and HPMA-SP-RGD hydrogels showed better survival of MSCs compared with the HPMA-HS-RGD hydrogel. The RGD sequence attached to both types of HPMA hydrogels significantly influenced the number of blood vessels inside the implanted hydrogels. Further, the porous structure of HPMA-SP hydrogels promoted a statistically significant greater ingrowth of axons and less connective tissue elements into the implant. Our results demonstrate that the physical and chemical properties of the HPMA-SP-RGD hydrogel show the best combination for bridging a spinal cord lesion, while the HEMA-MOETACl hydrogel serves as the best carrier of MSCs.
Collapse
Affiliation(s)
- Aleš Hejčl
- 1 Department of Neuroscience, Institute of Experimental Medicine , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pesirikan N, Chang W, Zhang X, Xu J, Yu X. Characterization of schwann cells in self-assembled sheets from thermoresponsive substrates. Tissue Eng Part A 2013; 19:1601-9. [PMID: 23477904 DOI: 10.1089/ten.tea.2012.0516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Schwann cells are the vital glial cells in the development and regeneration of the peripheral nervous system (PNS). Recently, Schwann cell transplantation has emerged as one of the attractive candidates in treating demyelinating diseases resulting from the PNS and central nervous system injuries. Schwann cells are usually injected as cell suspensions or transplanted after being seeded on extracellular matrix proteins or biodegradable polymeric scaffolds. In these approaches, the adherens junctions between Schwann cells present in vivo are not readily replicated as Schwann cells dispersed as individual cells. Here we describe a procedure to grow a large amount of Schwann cells in a sheet architecture that can be either transplanted or injected and provide some insights into the influence of a sheet-like cell organization on the function of Schwann cells, including their viability, proliferation, alignment, and migration. The Schwann cell sheet was successfully generated through coating the culture plate surfaces by layer-by-layer self-assembly of the thermoresponsive polymer poly-(N-isopropylacrylamide) (PNIPAAM). Further characterization of the Schwann cell sheet showed that Schwann cells in sheet were highly viable, but maintained a lower proliferation rate than individual Schwann cells. The levels of nerve growth factor and glial cell-derived neurotrophic factor were also maintained in Schwann cell sheets. The protein level of a cyclin-dependent kinase inhibitor, p27, was upregulated in the Schwann cell sheet. Both alignment with axon-like nanofibers and migration of Schwann cells are not significantly different between Schwann cells in a sheet-like organization and as individual cells. We conclude that Schwann cell sheet engineering presents a promising method for cell-based nerve injury therapy, as well as a model to study the control of Schwann cell proliferation in response to intercellular organization.
Collapse
Affiliation(s)
- Norapath Pesirikan
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | | | | | | | | |
Collapse
|
21
|
Rangasamy SB. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview. Synapse 2013; 67:427-53. [PMID: 23401170 DOI: 10.1002/syn.21645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/01/2013] [Indexed: 12/12/2022]
Abstract
Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed in partially lesioned cord of monkeys.
Collapse
Affiliation(s)
- Suresh Babu Rangasamy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, 60612, USA.
| |
Collapse
|
22
|
Liu J, Chen J, Liu B, Yang C, Xie D, Zheng X, Xu S, Chen T, Wang L, Zhang Z, Bai X, Jin D. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. J Neurol Sci 2013; 325:127-36. [PMID: 23317924 DOI: 10.1016/j.jns.2012.11.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 10/23/2012] [Accepted: 11/27/2012] [Indexed: 02/07/2023]
Abstract
The stem cell-based experimental therapies are partially successful for the recovery of spinal cord injury (SCI). Recently, acellular spinal cord (ASC) scaffolds which mimic native extracellular matrix (ECM) have been successfully prepared. This study aimed at investigating whether the spinal cord lesion gap could be bridged by implantation of bionic-designed ASC scaffold alone and seeded with human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) respectively, and their effects on functional improvement. A laterally hemisected SCI lesion was performed in adult Sprague-Dawley (SD) rats (n=36) and ASC scaffolds seeded with or without hUCB-MSCs were implanted into the lesion immediately. All rats were behaviorally tested using the Basso-Beattie-Bresnahan (BBB) test once a week for 8weeks. Behavioral analysis showed that there was significant locomotor recovery improvement in combined treatment group (ASC scaffold and ASC scaffold+hUCB-MSCs) as compared with the SCI only group (p<0.01). 5-Bromodeoxyuridine (Brdu)-labeled hUCB-MSCs could also be observed in the implanted ACS scaffold two weeks after implantation. Moreover, host neural cells (mainly oligodendrocytes) were able to migrate into the graft. Biotin-dextran-amine (BDA) tracing test demonstrated that myelinated axons successfully grew into the graft and subsequently promoted axonal regeneration at lesion sites. This study provides evidence for the first time that ASC scaffold seeded with hUCB-MSCs is able to bridge a spinal cord cavity and promote long-distance axon regeneration and functional recovery in SCI rats.
Collapse
Affiliation(s)
- Jia Liu
- Department of Orthopedics, the Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hill CE, Brodak DM, Bartlett Bunge M. Dissociated predegenerated peripheral nerve transplants for spinal cord injury repair: a comprehensive assessment of their effects on regeneration and functional recovery compared to Schwann cell transplants. J Neurotrauma 2012; 29:2226-43. [PMID: 22655857 DOI: 10.1089/neu.2012.2377] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Several recent studies suggest that predegenerated nerves (PDNs) or dissociated PDNs (dPDNs) can improve behavioral and histological outcomes following transplantation into the injured rat spinal cord. In the current study we tested the efficacy of dPDN transplantation by grafting cells isolated from the sciatic nerve 7 days after crush. We did not replicate one study, but rather assessed what appeared, based on five published reports, to be a reported robust effect of dPDN grafts on corticospinal tract (CST) regeneration and locomotor recovery. Using a standardized rodent spinal cord injury model (200 kD IH contusion) and transplantation procedure (injection of GFP⁺ cells 7 days post-SCI), we demonstrate that dPDN grafts survive within the injured spinal cord and promote the ingrowth of axons to a similar extent as purified Schwann cell (SC) grafts. We also demonstrate for the first time that while both dPDN and SC grafts promote the ingrowth of CGRP axons, neither graft results in mechanical or thermal hyperalgesia. Unlike previous studies, dPDN grafts did not promote long-distance axonal growth of CST axons, brainstem spinal axons, or ascending dorsal column sensory axons. Moreover, using a battery of locomotor tests (Basso Beattie Bresnahan [BBB] score, BBB subscore, inked footprint, Catwalk, and ladderwalk), we failed to detect any beneficial effects of dPDN transplantation on the recovery of locomotor function after SCI. We conclude that dPDN transplants are not sufficient to promote CST regeneration or locomotor recovery after SCI.
Collapse
Affiliation(s)
- Caitlin E Hill
- The Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| | | | | |
Collapse
|
24
|
Wang Y, Teng HL, Huang ZH. Intrinsic migratory properties of cultured Schwann cells based on single-cell migration assay. PLoS One 2012; 7:e51824. [PMID: 23251634 PMCID: PMC3522601 DOI: 10.1371/journal.pone.0051824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/06/2012] [Indexed: 11/18/2022] Open
Abstract
The migration of Schwann cells is critical for development of peripheral nervous system and is essential for regeneration and remyelination after nerve injury. Although several factors have been identified to regulate Schwann cell migration, intrinsic migratory properties of Schwann cells remain elusive. In this study, based on time-lapse imaging of single isolated Schwann cells, we examined the intrinsic migratory properties of Schwann cells and the molecular cytoskeletal machinery of soma translocation during migration. We found that cultured Schwann cells displayed three motile phenotypes, which could transform into each other spontaneously during their migration. Local disruption of F-actin polymerization at leading front by a Cytochalasin D or Latrunculin A gradient induced collapse of leading front, and then inhibited soma translocation. Moreover, in migrating Schwann cells, myosin II activity displayed a polarized distribution, with the leading process exhibiting higher expression than the soma and trailing process. Decreasing this front-to-rear difference of myosin II activity by frontal application of a ML-7 or BDM (myosin II inhibitors) gradient induced the collapse of leading front and reversed soma translocation, whereas, increasing this front-to-rear difference of myosin II activity by rear application of a ML-7 or BDM gradient or frontal application of a Caly (myosin II activator) gradient accelerated soma translocation. Taken together, these results suggest that during migration, Schwann cells display malleable motile phenotypes and the extension of leading front dependent on F-actin polymerization pulls soma forward translocation mediated by myosin II activity.
Collapse
Affiliation(s)
- Ying Wang
- School of Laboratory Medicine and Life Science, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Institute of Hypoxia Medicine and Institute of Neuroscience, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Hong-Lin Teng
- Department of Spine Surgery, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Zhi-hui Huang
- Institute of Hypoxia Medicine and Institute of Neuroscience, Wenzhou Medical College, Wenzhou, Zhejiang, China
| |
Collapse
|
25
|
Zhou XH, Ning GZ, Feng SQ, Kong XH, Chen JT, Zheng YF, Ban DX, Liu T, Li H, Wang P. Transplantation of autologous activated Schwann cells in the treatment of spinal cord injury: six cases, more than five years of follow-up. Cell Transplant 2012; 21 Suppl 1:S39-47. [PMID: 22507679 DOI: 10.3727/096368912x633752] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Schwann cells (SCs) are the main glial cells of the peripheral nervous system, which can promote neural regeneration. Grafting of autologous SCs is one of the well-established and commonly performed procedures for peripheral nerve repair. With the aim to improve the clinical condition of patients with spinal cord injury (SCI), a program of grafting autologous activated Schwann cells (AASCs), as well as a series of appropriate neurorehabilitation programs, was employed to achieve the best therapeutic effects. We selected six patients who had a history of SCI before transplantation. At first, AASCs were obtained by prior ligation of sural nerve and subsequently isolated, cultured, and purified in vitro. Then the patients accepted an operation of laminectomy and cell transplantation, and no severe adverse event was observed in any of these patients. Motor and sensitive improvements were evaluated by means of American Spinal Injury Association (ASIA) grading and Functional Independence Measure (FIM); bladder and urethral function were determined by clinical and urodynamic examination; somatosensory evoked potentials (SSEPs) and motor evoked potentials (MEPs) were used to further confirm the functional recovery following transplantation. The patients were followed up for more than 5 years. All of the patients showed some signs of improvement in autonomic, motor, and sensory function. So we concluded that AASC transplantation might be feasible, safe, and effective to promote neurorestoration of SCI patients.
Collapse
Affiliation(s)
- Xian-Hu Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ban DX, Ning GZ, Feng SQ, Wang Y, Zhou XH, Liu Y, Chen JT. Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats. Regen Med 2012; 6:707-20. [PMID: 22050523 DOI: 10.2217/rme.11.32] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM We aim to explore the repair effect of combined cell therapy using activated Schwann cells (ASCs) and bone mesenchymal stem cells (BMSCs) in traumatic spinal cord injury (SCI) in rats. MATERIALS & METHODS ASCs and BMSCs were used for combined transplantation to treat acute SCI in rats, both of which can be obtained from SCI patients. ASCs were obtained by prior ligation of saphenous nerve and BMSCs by flush of the marrow cavity with Dulbecco's modified Eagle's medium solution. Our experiment in vitro confirmed that ASCs promoted BMSCs to differentiate into mature neural cells. It also indicates that BMSCs hold the potential to repair CNS injury. ASCs and BMSCs were co-transplanted into the injured epicenter of spinal cord made by the New York University (NYU) impactor machine using a 10 g × 50 mm drop weight. Complete ASCs, BMSCs and Dulbecco's modified Eagle's medium were also transplanted in rats with SCI as a control. Recovery of rat's hindlimb function was serially evaluated by Basso, Beattie, Bresnahan locomotor rating scale and footprint analysis. Changes of neurological potential were recorded by nerve electrophysiologic test. Improvement in the microenvironment of the injured spinal cord was evaluated by hematoxylin and eosin staining, glial fibrillary acidic protein staining, biotinylated dextran amine anterograde tracing and electron microscopy. RESULTS Using biotinylated dextran amine anterograde tracing, we demonstrated that there were more regenerative axons of corticospinal tract surrounding and passing through the injured cavity to the caudal cord in the ASC-BMSC co-graft group than those in the other three groups, and we also confirmed this further by quantitative analysis. Immunostaining for glial fibrillary acidic protein showed the smallest population of astrocytes in the injury epicenter in the ASC-BMSC group compared with the other three groups. Relatively complete myelin sheaths and organelles were found in the ASC-BMSC group compared with the other three groups under electron microscopy. CONCLUSION Effective co-transplantation of ASCs and BMSCs promotes functional recovery in rats' hindlimbs and reduces the formation of glial scar, and remyelinates the injured axons as compared with the other three groups. This conclusion was also supported by the observation of immunohistochemistry staining and electron microscopy, suggesting the possible clinical application for the treatment of spinal injury.
Collapse
Affiliation(s)
- De-Xiang Ban
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin Heping District Anshan Road 154, Tianjin 300052, PR China
| | | | | | | | | | | | | |
Collapse
|
27
|
Saberi H, Firouzi M, Habibi Z, Moshayedi P, Aghayan HR, Arjmand B, Hosseini K, Razavi HE, Yekaninejad MS. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine 2011; 15:515-25. [PMID: 21800956 DOI: 10.3171/2011.6.spine10917] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Many experimental studies on spinal cord injuries (SCIs) support behavioral improvement after Schwann cell treatment. This study was conducted to evaluate safety issues 2 years after intramedullary Schwann cell transplantation in 33 consecutively selected patients with SCI. METHODS Of 356 patients with SCIs who had completed at least 6 months of a conventional rehabilitation program and who were screened for the study criteria, 33 were enrolled. After giving their informed consent, they volunteered for participation. They underwent sural nerve harvesting and intramedullary injection of a processed Schwann cell solution. Outcome assessments included a general health questionnaire, neurological examination, and functional recordings in terms of American Spinal Injury Association (ASIA) and Functional Independence Measure scoring, which were documented by independent observers. There were 24 patients with thoracic and 9 with cervical injuries. Sixteen patients were categorized in ASIA Grade A, and the 17 remaining participants had ASIA Grade B. RESULTS There were no cases of deep infection, and the follow-up MR imaging studies obtained at 2 years did not reveal any deformity related to the procedure. There was no case of permanent neurological worsening or any infectious or viral complications. No new increment in syrinx size or abnormal tissue and/or tumor formation were observed on contrast-enhanced MR imaging studies performed 2 years after the treatment. CONCLUSIONS Preliminary results, especially in terms of safety, seem to be promising, paving the way for future cell therapy trials.
Collapse
Affiliation(s)
- Hooshang Saberi
- Department of Neurosurgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Siriphorn A, Chompoopong S, Floyd CL. 17β-estradiol protects Schwann cells against H2O2-induced cytotoxicity and increases transplanted Schwann cell survival in a cervical hemicontusion spinal cord injury model. J Neurochem 2010; 115:864-72. [PMID: 20456002 DOI: 10.1111/j.1471-4159.2010.06770.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Schwann cell (SC) transplantation is a promising repair strategy after spinal cord injury (SCI); however, a large number of SCs do not survive following transplantation. Previous studies have shown that 17β-estradiol (E2) protects several cell types against cytotoxicity. Thus, this study evaluated the protective potential of E2 on SCs in vitro and investigated the effect of E2 on transplanted SC survival in a rat model of SCI. Primary SC cultures were found to robustly express estrogen receptors (ER) and incubation with E2 protected SCs against hydrogen peroxide-induced cell death. This protection was not inhibited by the ER antagonist ICI 182,780, suggesting that genomic signaling is not necessary for protection. In a subsequent experiment, cervical hemicontusion SCI was induced in male rats followed by sustained administration of E2 or placebo. Eight days after SCI, SCs were transplanted into the injury epicenter. E2 treatment significantly increased the number of surviving labeled transplanted SCs evaluated 7 days after transplantation. These data demonstrate that E2 protects SCs against oxidative stress and improves transplanted SC survival, which suggests that E2 administration may be an intervention of choice for enhancing survival of transplanted SCs after SCI.
Collapse
Affiliation(s)
- Akkradate Siriphorn
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
29
|
Takahashi Y, Tsuji O, Kumagai G, Hara CM, Okano HJ, Miyawaki A, Toyama Y, Okano H, Nakamura M. Comparative study of methods for administering neural stem/progenitor cells to treat spinal cord injury in mice. Cell Transplant 2010; 20:727-39. [PMID: 21054930 DOI: 10.3727/096368910x536554] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To investigate potential cures for spinal cord injury (SCI), several researchers have transplanted neural stem/progenitor cells (NS/PCs) into the injured spinal cord by different procedures, including intralesional (IL), intrathecal (IT), and intravenous (IV) injection. However, there are no reports quantifying or comparing the number of cells successfully transplanted to the lesion site by each procedure in vivo. The purpose of the present study was to determine the optimal method of cell transplantation to the SCI site in terms of grafted cell survival and safety. For this purpose, we developed mouse NS/PCs that expressed a novel Venus-luciferase fusion protein that enabled us to detect a minimum of 1,000 grafted cells in vivo by bioluminescence imaging (BLI). After inducing contusive SCI at the T10 level in mice, NS/PCs were transplanted into the injured animals three different ways: by IL, IT, or IV injection. Six weeks after the transplantation, BLI analysis showed that in the IL group, the luminescence intensity of the grafted cells had decreased to about 10% of its initial level, and appeared at the site of injury. In the IT group, the luminescence of the grafted cells, which was distributed throughout the entire subarachnoid space immediately after transplantation, was detected at the injured site 1 week later, and by 6 weeks had gradually decreased to about 0.3% of its initial level. In the IV group, no grafted cells were detected at the site of injury, but all of these mice showed luminescence in the bilateral chest, suggesting pulmonary embolism. In addition, one third of these mice died immediately after the IV injection. In terms of grafted cell survival and safety, we conclude that the IL application of NS/PCs is the most effective and feasible method for transplanting NS/PCs into the SCI site.
Collapse
Affiliation(s)
- Yuichiro Takahashi
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Krych AJ, Rooney GE, Chen B, Schermerhorn TC, Ameenuddin S, Gross L, Moore MJ, Currier BL, Spinner RJ, Friedman JA, Yaszemski MJ, Windebank AJ. Relationship between scaffold channel diameter and number of regenerating axons in the transected rat spinal cord. Acta Biomater 2009; 5:2551-9. [PMID: 19409869 PMCID: PMC2731813 DOI: 10.1016/j.actbio.2009.03.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/20/2009] [Accepted: 03/20/2009] [Indexed: 12/17/2022]
Abstract
Regeneration of endogenous axons through a Schwann cell (SC)-seeded scaffold implant has been demonstrated in the transected rat spinal cord. The formation of a cellular lining in the scaffold channel may limit the degree of axonal regeneration. Spinal cords of adult rats were transected and implanted with the SC-loaded polylactic co-glycollic acid (PLGA) scaffold implants containing seven parallel-aligned channels, either 450mum (n=19) or 660microm in diameter (n=14). Animals were sacrificed after 1, 2 and 3months. Immunohistochemistry for neurofilament expression was performed. The cross-sectional area of fibrous tissue and regenerative core was calculated. We found that the 450microm scaffolds had significantly greater axon fibers per channel at the 1month (186+/-37) and 3month (78+/-11) endpoints than the 660microm scaffolds (90+/-19 and 40+/-6, respectively) (p=0.0164 and 0.0149, respectively). The difference in the area of fibrous rim between the 450 and 660microm channels was most pronounced at the 1month endpoint, at 28,046+/-6551 and 58,633+/-7063microm(2), respectively (p=0.0105). Our study suggests that fabricating scaffolds with smaller diameter channels promotes greater regeneration over larger diameter channels. Axonal regeneration was reduced in the larger channels due to the generation of a large fibrous rim. Optimization of this scaffold environment establishes a platform for future studies of the effects of cell types, trophic factors or pharmacological agents on the regenerative capacity of the injured spinal cord.
Collapse
Affiliation(s)
- Aaron J Krych
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|