1
|
Kumar M, Sharma T, Patel K, Chinnapparaj S, Dixit R, Gendle C, Aggarwal A, Takkar A, Gupta T, Singla N, Pal A, Salunke P, Dhandapani S, Chabra R, Chatterjee A, Gowda H, Bhagat H. Molecular Basis of Cerebral Vasospasm: What Can We Learn from Transcriptome and Temporal Gene Expression Profiling in Intracranial Aneurysm? OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:234-245. [PMID: 38717843 DOI: 10.1089/omi.2024.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Cerebral vasospasm (CV) is a significant complication following aneurysmal subarachnoid hemorrhage (aSAH), and lacks a comprehensive molecular understanding. Given the temporal trajectory of intracranial aneurysm (IA) formation, its rupture, and development of CV, altered gene expression might be a molecular substrate that runs through these clinical events, influencing both disease inception and progression. Utilizing RNA-Seq, we analyzed tissue samples from ruptured IAs with and without vasospasm to identify the dysregulated genes. In addition, temporal gene expression analysis was conducted. We identified seven dysregulated genes in patients with ruptured IA with vasospasm when compared with those without vasospasm. We found 192 common genes when the samples of each clinical subset of patients with IA, that is, unruptured aneurysm, ruptured aneurysm without vasospasm, and ruptured aneurysm with vasospasm, were compared with control samples. Among these common genes, TNFSF13B, PLAUR, OSM, and LAMB3 displayed temporal expression (progressive increase) with the pathological progression of disease that is formation of aneurysm, its rupture, and consequently the development of vasospasm. We validated the temporal gene expression pattern of OSM at both the transcript and protein levels and OSM emerges as a crucial gene implicated in the pathological progression of disease. In addition, RSAD2 and ATP1A2 appear to be pivotal genes for CV development. To the best of our knowledge, this is the first study to compare the transcriptome of aneurysmal tissue samples of aSAH patients with and without CV. The findings collectively provide new insights on the molecular basis of IA and CV and new leads for translational research.
Collapse
Affiliation(s)
- Munish Kumar
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tanavi Sharma
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Shobia Chinnapparaj
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravi Dixit
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chandrashekhar Gendle
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Aggarwal
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aastha Takkar
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tulika Gupta
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Singla
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pravin Salunke
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sivashanmugam Dhandapani
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajesh Chabra
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Hemant Bhagat
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Henrich L, Kiessling I, Steimer M, Frase S, Kaiser S, Schallner N. Circadian dependency of microglial heme oxygenase-1 expression and inflammation determine neuronal injury in hemorrhagic stroke. J Inflamm (Lond) 2023; 20:43. [PMID: 38104143 PMCID: PMC10725034 DOI: 10.1186/s12950-023-00371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND The heme oxygenase-1 (HO-1) enzyme pathway is of crucial importance in the removal of toxic blood components and regulation of neuroinflammation following hemorrhagic stroke. Although a circadian pattern dependency in the incidence and severity of hemorrhagic stroke exists, it is unknown whether the activity of the HO-1 system in the context of hemorrhagic injury also exhibits circadian dependency. We hypothesized that the circadian regulation of microglial HO-1 would determine the extent of neuroinflammation and neuronal injury in a murine model of subarachnoid hemorrhage (SAH). METHODS In vitro expression patterns of HO-1 and circadian rhythm genes were analyzed in the microglial BV-2 cell line and primary microglia (PMG) using Western blot and qPCR. PMG isolated from Hmox1fl/fl and LyzM-Cre-Hmox1fl/fl mice were used to evaluate the role of microglial HO-1. We further investigated the in vivo relevance in a murine subarachnoid hemorrhage (SAH) model using Hmox1fl/fl and LyzM-Cre-Hmox1fl/fl mice with myeloid cell HO-1 deficiency, inducing SAH at different zeitgeber (ZT) times and analyzing the expression of HO-1 and the circadian control gene Period-2 (Per-2), respectively. Furthermore, we measured the inflammatory cytokine Monocyte Chemoattractant Protein-1 (MCP-1) in the cerebrospinal fluid of SAH patients in correlation with clinical outcome. RESULTS HO-1 baseline expression and response to CO with blood exposure depended on ZT. In vitro expression of circadian control genes was de-synchronized in LyzM-Cre-Hmox1fl/fl PMG and did not respond to exogenous CO exposure. We found that circadian rhythm plays a crucial role in brain damage after SAH. At ZT2, we observed less phagocytic function, more vasospasm and increased microglial activation. CO reduced mortality at ZT12 in HO-1 deficient mice and reduced the difference between ZT2 and ZT12 in the inflammatory response. Induction of MCP-1 in the CSF from SAH patients was time-dependent and correlated with the expression of circadian control genes, SAH severity, functional impairment and delirium. CONCLUSIONS Our data point towards a crucial role for the HO-1 enzyme system and circadian control in neuronal injury after a hemorrhagic stroke.
Collapse
Affiliation(s)
- Luise Henrich
- Department of Anesthesiology & Critical Care, Medical Center, University of Freiburg, Hugstetter Str. 55, Freiburg, 79106, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Iva Kiessling
- Department of Anesthesiology & Critical Care, Medical Center, University of Freiburg, Hugstetter Str. 55, Freiburg, 79106, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matti Steimer
- Department of Anesthesiology & Critical Care, Medical Center, University of Freiburg, Hugstetter Str. 55, Freiburg, 79106, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sibylle Frase
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Neurology and Neuroscience, Medical Center, University of Freiburg, Freiburg, Germany
| | - Sandra Kaiser
- Department of Anesthesiology & Critical Care, Medical Center, University of Freiburg, Hugstetter Str. 55, Freiburg, 79106, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schallner
- Department of Anesthesiology & Critical Care, Medical Center, University of Freiburg, Hugstetter Str. 55, Freiburg, 79106, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Zhang A, Liu Y, Wang X, Xu H, Fang C, Yuan L, Wang K, Zheng J, Qi Y, Chen S, Zhang J, Shao A. Clinical Potential of Immunotherapies in Subarachnoid Hemorrhage Treatment: Mechanistic Dissection of Innate and Adaptive Immune Responses. Aging Dis 2023; 14:1533-1554. [PMID: 37196120 PMCID: PMC10529760 DOI: 10.14336/ad.2023.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 05/19/2023] Open
Abstract
Subarachnoid hemorrhage (SAH), classified as a medical emergency, is a devastating and severe subtype of stroke. SAH induces an immune response, which further triggers brain injury; however, the underlying mechanisms need to be further elucidated. The current research is predominantly focused on the production of specific subtypes of immune cells, especially innate immune cells, post-SAH onset. Increasing evidence suggests the critical role of immune responses in SAH pathophysiology; however, studies on the role and clinical significance of adaptive immunity post-SAH are limited. In this present study, we briefly review the mechanistic dissection of innate and adaptive immune responses post-SAH. Additionally, we summarized the experimental studies and clinical trials of immunotherapies for SAH treatment, which may form the basis for the development of improved therapeutic approaches for the clinical management of SAH in the future.
Collapse
Affiliation(s)
- Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - KaiKai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yangjian Qi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
4
|
Tartara F, Montalbetti A, Crobeddu E, Armocida D, Tavazzi E, Cardia A, Cenzato M, Boeris D, Garbossa D, Cofano F. Compartmental Cerebrospinal Fluid Events Occurring after Subarachnoid Hemorrhage: An "Heparin Oriented" Systematic Review. Int J Mol Sci 2023; 24:7832. [PMID: 37175544 PMCID: PMC10178276 DOI: 10.3390/ijms24097832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a severe acute event with high morbidity and mortality due to the development of early brain injury (EBI), secondary delayed cerebral ischemia (DCI), and shunt-related hydrocephalus. Secondary events (SSE) such as neuroinflammation, vasospasm, excitotoxicity, blood-brain barrier disruption, oxidative cascade, and neuronal apoptosis are related to DCI. Despite improvement in management strategies and therapeutic protocols, surviving patients frequently present neurological deficits with neurocognitive impairment. The aim of this paper is to offer to clinicians a practical review of the actually documented pathophysiological events following subarachnoid hemorrhage. To reach our goal we performed a literature review analyzing reported studies regarding the mediators involved in the pathophysiological events following SAH occurring in the cerebrospinal fluid (CSF) (hemoglobin degradation products, platelets, complement, cytokines, chemokines, leucocytes, endothelin-1, NO-synthase, osteopontin, matricellular proteins, blood-brain barrier disruption, microglia polarization). The cascade of pathophysiological events secondary to SAH is very complex and involves several interconnected, but also distinct pathways. The identification of single therapeutical targets or specific pharmacological agents may be a limited strategy able to block only selective pathophysiological paths, but not the global evolution of SAH-related events. We report furthermore on the role of heparin in SAH management and discuss the rationale for use of intrathecal heparin as a pleiotropic therapeutical agent. The combination of the anticoagulant effect and the ability to interfere with SSE theoretically make heparin a very interesting molecule for SAH management.
Collapse
Affiliation(s)
- Fulvio Tartara
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Montalbetti
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Emanuela Crobeddu
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Daniele Armocida
- A.U.O. Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Eleonora Tavazzi
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Cardia
- Department of Neurosurgery, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Marco Cenzato
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Davide Boeris
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| |
Collapse
|
5
|
Munakata M, Kanazawa H, Kimura K, Arai T, Sukegawa H, Fukuda K. Assessment of cardiac function in rat endovascular perforation model of subarachnoid hemorrhage; A model of subarachnoid hemorrhage-induced cardiac dysfunction. Front Synaptic Neurosci 2022; 14:919998. [PMID: 36017128 PMCID: PMC9396209 DOI: 10.3389/fnsyn.2022.919998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
Although the association between cardiac dysfunction and subarachnoid hemorrhage (SAH) has been recognized, its precise underlying mechanism remains unknown. Furthermore, no suitable animal models are available to study this association. Here, we established an appropriate animal model of SAH-induced cardiac dysfunction and elucidated its mechanism. In this rat model, contrast-enhanced computed tomography of the brain confirmed successful induction of SAH. Electrocardiography detected abnormalities in 55% of the experimental animals, while echocardiography indicated cardiac dysfunction in 30% of them. Further evaluation of left ventriculography confirmed cardiac dysfunction, which was transient and recovered over time. Additionally, in this SAH model, the expression of the acute phase reaction protein, proto-oncogene c-Fos increased in the paraventricular hypothalamic nucleus (PVN), the sympathetic nerve center of the brain. Polymerase chain reaction analysis revealed that the SAH model with cardiac dysfunction had higher levels of the macrophage-associated chemokine (C-X-C motif) ligand 1 (CXCL-1) and chemokine (C-C motif) ligand 2 (CCL-2) than the SAH model without cardiac dysfunction. Our results suggested that SAH caused inflammation and macrophage activation in the PVN, leading to sympathetic hyperexcitability that might cause cardiac dysfunction directly and indirectly. This animal model may represent a powerful tool to investigate the mechanisms of the brain-heart pathway.
Collapse
Affiliation(s)
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Hideaki Kanazawa,
| | | | - Takahide Arai
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroaki Sukegawa
- Division of Cardiology, Tokyo Dental College Ichikawa General Hospital, Chiba, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Keiichi Fukuda,
| |
Collapse
|
6
|
Biomarker Associations in Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2022; 23:ijms23158789. [PMID: 35955921 PMCID: PMC9369444 DOI: 10.3390/ijms23158789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
The prognosis for patients with aneurysmal subarachnoid hemorrhage (aSAH) is heavily influenced by the development of delayed cerebral ischemia (DCI), but the adequate and effective therapy of DCI to this day has not been resolved. Multiplex serum biomarker studies may help to understand the pathophysiological processes underlying DCI. Samples were collected from patients with aSAH at two time points: (1) 24 h (Day 1) and (2) 5−7 days after ictus. Serum concentrations of eotaxin, FGF-2, FLT-3L, CX3CL1, Il-1b, IL-4, IP-10, MCP3, and MIP-1b were determined using a customized MILLIPLEX Human Cytokine/Chemokine/Growth Factor Panel A multiplex assay. The functional outcome was defined by the modified Rankin scale (favorable: 0−2, unfavorable: 3−6) measured on the 30th day after aSAH. One-hundred and twelve patients with aSAH were included in this study. The median level of CX3CL1 and MCP-3 measured on Days 5−7 were significantly higher in patients with DCI compared with those without DCI (CX3CL1: with DCI: 110.5 pg/mL, IQR: 82−201 vs. without DCI: 82.6, 58−119, p = 0.036; and MCP-3: with DCI: 22 pg/mL (0−32) vs. without DCI: 0 (0−11), p < 0.001). IP-10, MCP-3, and MIP-1b also showed significant associations with the functional outcome after aSAH. MCP-3 and CX3CL1 may play a role in the pathophysiology of DCI.
Collapse
|
7
|
Wu F, Liu Z, Li G, Zhou L, Huang K, Wu Z, Zhan R, Shen J. Inflammation and Oxidative Stress: Potential Targets for Improving Prognosis After Subarachnoid Hemorrhage. Front Cell Neurosci 2021; 15:739506. [PMID: 34630043 PMCID: PMC8497759 DOI: 10.3389/fncel.2021.739506] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) has a high mortality rate and causes long-term disability in many patients, often associated with cognitive impairment. However, the pathogenesis of delayed brain dysfunction after SAH is not fully understood. A growing body of evidence suggests that neuroinflammation and oxidative stress play a negative role in neurofunctional deficits. Red blood cells and hemoglobin, immune cells, proinflammatory cytokines, and peroxidases are directly or indirectly involved in the regulation of neuroinflammation and oxidative stress in the central nervous system after SAH. This review explores the role of various cellular and acellular components in secondary inflammation and oxidative stress after SAH, and aims to provide new ideas for clinical treatment to improve the prognosis of SAH.
Collapse
Affiliation(s)
- Fan Wu
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongchi Liu
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ganglei Li
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lihui Zhou
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhanxiong Wu
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
| | - Renya Zhan
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Shen
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Immune Characterization in Aneurysmal Subarachnoid Hemorrhage Reveals Distinct Monocytic Activation and Chemokine Patterns. Transl Stroke Res 2019; 11:1348-1361. [PMID: 31858408 DOI: 10.1007/s12975-019-00764-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/08/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
The pathophysiology of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH) is incompletely understood. Intrathecal activation of inflammatory immune cells is suspected to play a major role for the induction of DCI. The aim of this study is to identify immune cell subsets and mediators involved in the pathogenesis of DCI. We prospectively collected blood and CSF from 25 patients with aSAH at early and late time points. We performed multicolor flow cytometry of peripheral blood and CSF, analyzing immune cell activation and pro-inflammatory cyto- and chemokines. In addition to the primary immune analysis, we retrospectively analyzed immune cell dynamics in the CSF of all our SAH patients. Our results show an increased monocyte infiltration secondary to aneurysm rupture in patients with DCI. Infiltrating monocytes are defined by a non-classical (CD14dim CD16+) phenotype at early stages. The infiltration is most likely triggered by the intrathecal immune activation. Here, high levels of pro-inflammatory chemokines, such as CXCL1, CXCL9, CXCL10, and CXCL11, are detected. The intrathecal cellular activation profile of monocytes was defined by upregulation of CD163 and CD86 on monocytes and a presumable later differentiation into antigen-presenting plasmacytoid dendritic cells (pDCs) and hemosiderophages. Peripheral immune activation was reflected by CD69 upregulation on T cells. Analysis of DCI prevalence, Hunt and Hess grade, and clinical outcome correlated with the degree of immune activation. We demonstrate that monocytes and T cells are activated intrathecally after aSAH and mediate a local inflammatory response which is presumably driven by chemokines. Our data shows that the distinct pattern of immune activation correlates with the prevalence of DCI, indicating a pathophysiological connection to the incidence of vasospasm.
Collapse
|
9
|
Ahn SH, Savarraj JPJ, Parsha K, Hergenroeder GW, Chang TR, Kim DH, Kitagawa RS, Blackburn SL, Choi HA. Inflammation in delayed ischemia and functional outcomes after subarachnoid hemorrhage. J Neuroinflammation 2019; 16:213. [PMID: 31711504 PMCID: PMC6849179 DOI: 10.1186/s12974-019-1578-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Inflammatory mechanism has been implicated in delayed cerebral ischemia (DCI) and poor functional outcomes after subarachnoid hemorrhage (SAH). Identification of cytokine patterns associated with inflammation in acute SAH will provide insights into underlying biological processes of DCI and poor outcomes that may be amenable to interventions. METHODS Serum samples were collected from a prospective cohort of 60 patients with acute non-traumatic SAH at four time periods (< 24 h, 24-48 h, 3-5 days, and 6-8 days after SAH) and concentration levels of 41 cytokines were measured by multiplex immunoassay. Logistic regression analysis was used to identify cytokines associated with DCI and poor functional outcomes. Correlation networks were constructed to identify cytokine clusters. RESULTS Of the 60 patients enrolled in the study, 14 (23.3%) developed DCI and 16 (26.7%) had poor functional outcomes at 3 months. DCI was associated with increased levels of PDGF-ABBB and CCL5 and decreased levels of IP-10 and MIP-1α. Poor functional outcome was associated with increased levels of IL-6 and MCP-1α. Network analysis identified distinct cytokine clusters associated with DCI and functional outcomes. CONCLUSIONS Serum cytokine patterns in early SAH are associated with poor functional outcomes and DCI. The significant cytokines primarily modulate the inflammatory response. This supports earlier SAH studies linking inflammation and poor outcomes. In particular, this study identifies novel cytokine patterns over time that may indicate impending DCI.
Collapse
Affiliation(s)
- Sung-Ho Ahn
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Busan, South Korea
| | - Jude P J Savarraj
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, USA
| | - Kaushik Parsha
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Georgene W Hergenroeder
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, USA
| | - Tiffany R Chang
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, USA
| | - Dong H Kim
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, USA
| | - Ryan S Kitagawa
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, USA
| | - Spiros L Blackburn
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, USA
| | - H Alex Choi
- Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, USA.
| |
Collapse
|
10
|
Fan Y, Yan G, Liu F, Rong J, Ma W, Yang D, Yu Y. Potential role of poly (ADP-ribose) polymerase in delayed cerebral vasospasm following subarachnoid hemorrhage in rats. Exp Ther Med 2019; 17:1290-1299. [PMID: 30680005 PMCID: PMC6327579 DOI: 10.3892/etm.2018.7073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/14/2018] [Indexed: 01/13/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) serves a key role in several neurological disorders, however, the specific role of PARP in delayed cerebral vasospasm (DCVS) following subarachnoid hemorrhage (SAH) remains unclear. The present study was conducted to clarify the possible mechanism of PARP in DCVS with the treatment of 3-aminobenzamide (3-AB), a PARP inhibitor. In the preliminary experiment, an internal carotid artery puncture SAH model, a cisterna magna double injection SAH model and prechiasmatic cistern single injection SAH model were compared with respect to mortality and neurobehavioral test results. The prechiasmatic cistern single injection SAH model was chosen to induce DCVS in the formal experiment. In the formal experiment, a total of 96 Sprague Dawley rats were randomly allocated into the sham group, the SAH group and the SAH+3-AB group and then each group was further subdivided into days 3, 5, 7 and 14 post-SAH subgroups (n=8 for each subgroup). The prechiasmatic cistern single injection SAH model was established to induce DCVS. Neurobehavioral testing and HE staining were conducted to evaluate the degree of cerebral vasospasm. PARP activity was assessed by ELISA and immunohistochemistry. An electrophoretic mobility shift assay was used to detect nuclear factor (NF)-κB DNA-binding activity. The expression of monocyte chemotactic protein 1 (MCP-1) and C-reactive protein (CRP) were measured by western blotting. Cerebral vasospasm occurred following SAH and became most severe on around day 7 post-SAH. NF-κB activity, PARP activity, the expression of MCP-1 and CRP exhibited a similar time course to cerebral vasospasm. Treatment with 3-AB alleviated the degree of cerebral vasospasm. NF-κB activity, PARP activity and the expression of MCP-1 and CRP were also suppressed by 3-AB treatment. In conclusion, PARP may serve an important role in regulating the inflammatory response and ultimately contribute to DCVS. Therefore 3-AB may be a potential therapeutic agent for DCVS.
Collapse
Affiliation(s)
- Yameng Fan
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ge Yan
- Department of Medical Image, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Furong Liu
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jie Rong
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenxia Ma
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Danrong Yang
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Yu
- Department of Public Health, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
11
|
Barrow JW, Turan N, Wangmo P, Roy AK, Pradilla G. The role of inflammation and potential use of sex steroids in intracranial aneurysms and subarachnoid hemorrhage. Surg Neurol Int 2018; 9:150. [PMID: 30105144 PMCID: PMC6080146 DOI: 10.4103/sni.sni_88_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Background Aneurysmal subarachnoid hemorrhage (aSAH) continues to be a devastating neurological condition with a high risk of associated morbidity and mortality. Inflammation has been shown to increase the risk of complications associated with aSAH such as vasospasm and brain injury in animal models and humans. The goal of this review is to discuss the inflammatory mechanisms of aneurysm formation, rupture and vasospasm and explore the role of sex hormones in the inflammatory response to aSAH. Methods A literature review was performed using PubMed using the following search terms: "intracranial aneurysm," "cerebral aneurysm," "dihydroepiandrosterone sulfate" "estrogen," "hormone replacement therapy," "inflammation," "oral contraceptive," "progesterone," "sex steroids," "sex hormones" "subarachnoid hemorrhage," "testosterone." Only studies published in English language were included in the review. Results Studies have shown that administration of sex hormones such as progesterone and estrogen at early stages in the inflammatory cascade can lower the risk and magnitude of subsequent complications. The exact mechanism by which these hormones act on the brain, as well as their role in the inflammatory cascade is not fully understood. Moreover, conflicting results have been published on the effect of hormone replacement therapy in humans. This review will scrutinize the variations in these studies to provide a more detailed understanding of sex hormones as potential therapeutic agents for intracranial aneurysms and aSAH. Conclusion Inflammation may play a role in the pathogenesis of intracranial aneurysm formation and subarachnoid hemorrhage, and administration of sex hormones as anti-inflammatory agents has been associated with improved functional outcome in experimental models. Further studies are needed to determine the therapeutic role of these hormones in the intracranial aneurysms and aSAH.
Collapse
Affiliation(s)
- Jack W Barrow
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA.,Mercer University School of Medicine, Savannah, Georgia, USA
| | - Nefize Turan
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Pasang Wangmo
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anil K Roy
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gustavo Pradilla
- Cerebrovascular Research Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
12
|
He X, Sun J, Huang X. Expression of caspase-3, Bax and Bcl-2 in hippocampus of rats with diabetes and subarachnoid hemorrhage. Exp Ther Med 2018; 15:873-877. [PMID: 29399092 PMCID: PMC5772899 DOI: 10.3892/etm.2017.5438] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022] Open
Abstract
The expression of caspase-3, Bax and Bcl-2 in hippocampus of rats with diabetes and subarachnoid hemorrhage (SAH) were investigated. Diabetes mellitus model was established by intraperitoneal injection of STZ. On the basis of diabetes mellitus model, SAH animal model was established by injecting fresh autologous femoral artery blood into cerebellomedullary cisten. Rats were divided into blank control group, diabetes control group and diabetes + SAH group. TUNEL method was used to detect cell apoptosis of hippocampus. Expression levels of caspase-3, Bax and Bcl-2 were detected by real-time quantitative reverse transcription PCR and western blot analysis at mRNA and protein levels, respectively. Apoptotic cells were not detected in blank control group and diabetes group, and number of apoptotic cells was the highest in the diabetic SAH group. Expression levels of caspase-3, Bax and Bcl-2 mRNA and protein were significantly higher in diabetes + SAH group than in blank control group and diabetes group. In conclusion, Hippocampal neuron apoptosis was induced by diabetes + SAH and expression levels of caspase-3, Bax and Bcl-2 were also increased. Our study provided experimental basis for further studies of the relationship between SAH and cell apoptosis.
Collapse
Affiliation(s)
- Xin He
- Department of Neurology, Anyang District Hospital, Anyang, Henan 455000, P.R. China
| | - Jiankui Sun
- Department of Neurology, Anyang District Hospital, Anyang, Henan 455000, P.R. China
| | - Xiaoyu Huang
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, Henan 455000, P.R. China
| |
Collapse
|
13
|
Niwa A, Osuka K, Nakura T, Matsuo N, Watabe T, Takayasu M. Interleukin-6, MCP-1, IP-10, and MIG are sequentially expressed in cerebrospinal fluid after subarachnoid hemorrhage. J Neuroinflammation 2016; 13:217. [PMID: 27576738 PMCID: PMC5006407 DOI: 10.1186/s12974-016-0675-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/17/2016] [Indexed: 11/29/2022] Open
Abstract
Background Interleukin-6 (IL-6), an inflammatory cytokine, plays important roles in cerebrospinal fluid (CSF) after subarachnoid hemorrhage (SAH). Chemokines are chemoattractant cytokines that regulate trafficking of monocytes/macrophages and lymphocytes to sites of inflammation. However, no studies have been reported regarding the temporal expression of these cytokines in CSF after SAH. Findings The concentrations of IL-6, monocyte chemoattractant protein-1 (MCP-1), interferon-γ-inducible protein-10 (IP-10), and monokine induced by interferon-γ (MIG) in the CSF of ten patients with SAH were measured using ELISA kits over a period of 14 days. All aneurysms were located in the anterior circulation. CSF samples from patients with unruptured aneurysms were used as controls. The concentration of IL-6 significantly increased during the acute stage of the disease. The concentration of MCP-1 increased from days 1 to 5, peaking on day 3, and decreased thereafter. The concentrations of IP-10 and MIG progressively increased, peaked on day 5, and then gradually decreased. There were strong correlations between the maximum levels of IL-6 and MCP-1 and IP-10 and MIG on day 5. The maximum level of IL-6 was much higher in poor outcome patients than in good outcome patients. Conclusions The present investigation demonstrated that increases in IL-6 levels may induce the expression of MCP-1 in CSF after SAH, followed by increases in the expression of IP-10 and MIG. Dynamic changes in the levels of these cytokines may induce inflammation and may be closely associated with the development of delayed ischemic neurological deficits after SAH. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0675-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aichi Niwa
- Department of Neurological Surgery, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Koji Osuka
- Department of Neurological Surgery, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Takahiro Nakura
- Department of Neurological Surgery, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Naoki Matsuo
- Department of Neurological Surgery, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Takeya Watabe
- Department of Neurological Surgery, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Masakazu Takayasu
- Department of Neurological Surgery, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
14
|
Zhao XD, Mao HY, Lv J, Lu XJ. Expression of high-mobility group box-1 (HMGB1) in the basilar artery after experimental subarachnoid hemorrhage. J Clin Neurosci 2016; 27:161-5. [DOI: 10.1016/j.jocn.2015.06.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 01/24/2023]
|
15
|
Chang CZ, Wu SC, Kwan AL, Lin CL. Rhinacanthin-C, A Fat-Soluble Extract from Rhinacanthus nasutus, Modulates High-Mobility Group Box 1-Related Neuro-Inflammation and Subarachnoid Hemorrhage-Induced Brain Apoptosis in a Rat Model. World Neurosurg 2016; 86:349-60. [DOI: 10.1016/j.wneu.2015.08.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
16
|
Enhanced Therapeutic Potential of Nano-Curcumin Against Subarachnoid Hemorrhage-Induced Blood–Brain Barrier Disruption Through Inhibition of Inflammatory Response and Oxidative Stress. Mol Neurobiol 2015; 54:1-14. [DOI: 10.1007/s12035-015-9635-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
|
17
|
Chang CZ, Wu SC, Kwan AL, Lin CL. 4'-O-β-D-glucosyl-5-O-methylvisamminol, an active ingredient of Saposhnikovia divaricata, attenuates high-mobility group box 1 and subarachnoid hemorrhage-induced vasospasm in a rat model. Behav Brain Funct 2015; 11:28. [PMID: 26395442 PMCID: PMC4578329 DOI: 10.1186/s12993-015-0074-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/11/2015] [Indexed: 12/16/2022] Open
Abstract
Background High-mobility group box 1 (HMGB1) was observed to be an important extracellular mediator involved in vascular inflammation associated with subarachnoid hemorrhage (SAH). This study is of interest to examine the efficacy of 4′-O-β-d-glucosyl-5-O-methylvisamminol (4OGOMV), C22H28O10, on the alternation of cytokines and HMGB1 in an animal model. Methods A rodent double hemorrhage SAH model was employed. Administration with 4OGOMV was initiated 1 h after animals were subjected to SAH. Basilar arteries (BAs) were harvested and cortexes examined for HMGB1 mRNA, protein expression (Western blot) and monocyte chemoattractant protein-1 (MCP-1) immunostaining. Cerebrospinal fluid samples were collected to examine IL-1β, IL-6, IL-8 and MCP-1 (rt-PCR). Results Morphological findings revealed endothelial cell deformity, intravascular elastic lamina torture, and smooth muscle necrosis in the vessels of SAH groups. Correspondently, IL-1β, IL-6 and MCP-1 in the SAH-only and SAH-plus vehicle groups was also elevated. 4OGOMV dose-dependently reduced HMGB1 protein expression when compared with the SAH groups.(p < 0.01) Likewise, 400 μg/kg 4OGOMV reduced IL-1β, MCP-1 and HMGB1 mRNA levels as well as MCP-1(+) monocytes when compared with the SAH groups.. Conclusion 4OGOMV exerts its neuro-protective effect partly through the dual effect of inhibiting IL-6 and MCP-1 activation and also reduced HMGB1 protein, mRNA and MCP-1(+) leukocytes translocation. This study lends credence to validating 4OGOMV as able to attenuate pro-inflammatory cytokine mRNA, late-onset inflammasome, and cellular basis in SAH-induced vasospasm.
Collapse
Affiliation(s)
- Chih-Zen Chang
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan, ROC. .,Department of Surgery, Kaohsiung Municipal Ta Tung Hospital, Kaohsiung, Taiwan.
| | - Shu-Chuan Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan, ROC.
| | - Aij-Lie Kwan
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan, ROC.
| | - Chih-Lung Lin
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
18
|
Xie GB, Wang CX, Zhou CH, Li H, Zhang XS, Zhou XM, Zhang L, Hang CH, Zhou ML, Shi JX. Expression of Cytoplasmic Gelsolin in Rat Brain After Experimental Subarachnoid Hemorrhage. Cell Mol Neurobiol 2015; 35:723-31. [PMID: 25744577 DOI: 10.1007/s10571-015-0168-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
Convincing evidence indicates that apoptosis contributes to the unfavorable prognosis of subarachnoid hemorrhage (SAH), a significant cause of morbidity and case fatality throughout the world. Gelsolin (GSN) is a Ca(2+)-dependent actin filament severing, capping, and nucleating protein, as well as multifunctional regulator of cell structure and metabolism, including apoptosis. In the present study, we intended to investigate the expression pattern and cell distribution of GSN in rat brain after experimental SAH. GSN expression was examined in sham group and at 3, 6, 12 h, day 1 (1 day), 2, 3, 5, and 7 days after SAH by Western blot analysis as well as real-time polymerase chain reaction. Immunohistochemistry and immunofluorescence were performed to detect the localization of GSN. The level of GSN protein expression was significantly decreased in SAH group and reached a bottoming point on 1 day after SAH. GSN mRNA level was significantly decreased in SAH groups in comparison with the sham group, and reached a minimum value at 12 h after SAH. Immunohistochemistry showed that GSN was constitutively and obviously expressed in the cortex of the normal rat brain and significantly decreased in the rat cortex after SAH. In addition, immunofluorescence results revealed that GSN expression could be found in both neurons and microglias, as well as in glialfibrillary acidic protein-positive astrocytes. The decreased expression of GSN could mainly be found in neurons and astrocytes as well, and GSN-positive microglias showed different cell morphological characteristics. Interestingly, the protein and gene levels of GSN seemed to be constant in the rat hippocampus of sham and SAH groups. These findings suggested a potential role of GSN in the pathophysiology of the brain at the early stage of SAH.
Collapse
Affiliation(s)
- Guang-Bin Xie
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
ERV enhances spatial learning and prevents the development of infarcts, accompanied by upregulated BDNF in the cortex. Brain Res 2015; 1610:110-23. [PMID: 25842373 DOI: 10.1016/j.brainres.2015.03.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 01/18/2023]
Abstract
PURPOSES An anti-allergic and analgesic drug, "an extract derived from the inflamed cutaneous tissue of rabbits inoculated with vaccinia virus (ERV)", has been used in medical practice in Japan and some other countries. We examined the effect of ERV, prior to induction of ischemia, on the development of cerebral infarction, on learning and memory, or on brain-derived neurotrophic factor (BDNF) levels in C57BL/6J mice. METHODS Following oral administration of ERV (the same in humans: ×1) or vehicle, daily for three consecutive weeks, temporary focal ischemia was induced by the three vessel occlusion technique. In the other group of animals, after daily ERV (Low: ×1; Med: ×3, or High dose: ×9) or vehicle administration for three weeks, we performed a quantitative assessment of spatial learning or intracerebral BDNF levels. RESULTS The volumes of infarcted lesions, brain edema and the extent of the neurological deficits were significantly reduced in the ERV-treated group. ERV treatment also enhanced spatial learning, accompanied by upregulated BDNF in the cortex. CONCLUSIONS Daily oral intake of ERV, at a clinically relevant dose, protects the brain from ischemic stroke, and also enhances the learning function in normal mice. As millions of people are currently taking the drug safely, and have been for many years in some cases, there is a need to test the inhibitory actions of the drug on progressive dementia encountered in humans with recurrent ischemic attacks or Alzheimer's disease.
Collapse
|
20
|
Experimental Subarachnoid Hemorrhage: Double Cisterna Magna Injection Rat Model—Assessment of Delayed Pathological Effects of Cerebral Vasospasm. Transl Stroke Res 2015; 6:242-51. [DOI: 10.1007/s12975-015-0392-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 01/25/2015] [Accepted: 02/06/2015] [Indexed: 01/02/2023]
|
21
|
Clinical observation of the time course of raised intracranial pressure after subarachnoid hemorrhage. Neurol Sci 2015; 36:1203-10. [PMID: 25604576 DOI: 10.1007/s10072-015-2073-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/09/2015] [Indexed: 10/24/2022]
Abstract
The time course of intracranial pressure (ICP) after subarachnoid hemorrhage (SAH) is not well known. This retrospective study was conducted to investigate the occurrence and the dynamic variation of raised ICP post-SAH. ICP was prospectively studied in 120 patients with SAH who were admitted to neurocritical care within 24 h of hemorrhage. Patients underwent continuous ICP monitoring for at least 7 days, unless they died. Clinical status on admission, radiographic tests, treatment details and neurological outcome on discharge were analyzed in relation to ICP. The highest daily mean ICP and the day when ICP reduced to normal levels were assessed. Of the 120 patients studied, 112 (93.3 %) encountered ICP elevation whilst in hospital. The daily mean ICP was higher in Hunt and Hess grades IV-V patients than grades I-III patients (P = 0.01). The elevated ICP remained at a higher level for the initial 3 days (grades I-III patients) or 4 days (grades IV-V patients), after which the pressure decreased towards normal levels. The in-patient mortality was significantly increased in the high ICP variability group (P = 0.001), which was divided by the cutoff point using receiver operating characteristic curve analysis. Raised ICP mainly occurs within 8 days post-SAH, especially the initial 3-4 days. Those highlight the need for earlier management of ICP after SAH.
Collapse
|
22
|
Purpurogallin, a natural phenol, attenuates high-mobility group box 1 in subarachnoid hemorrhage induced vasospasm in a rat model. Int J Vasc Med 2014; 2014:254270. [PMID: 25485154 PMCID: PMC4251792 DOI: 10.1155/2014/254270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 01/17/2023] Open
Abstract
High-mobility group box 1 (HMGB1) was shown to be an important extracellular mediator involved in vascular inflammation of animals following subarachnoid hemorrhage (SAH). This study is of interest to examine the efficacy of purpurogallin, a natural phenol, on the alternation of cytokines and HMGB1 in a SAH model. A rodent double hemorrhage SAH model was employed. Basilar arteries (BAs) were harvested to examine HMGB1 mRNA and protein expression (Western blot). CSF samples were to examine IL-1β, IL-6, IL-8, and TNF-α (rt-PCR). Deformed endothelial wall, tortuous elastic lamina, and necrotic smooth muscle were observed in the vessels of SAH groups but were absent in the purpurogallin group. IL-1β, IL-6, and TNF-α in the SAH only and SAH plus vehicle groups were significantly elevated (P < 0.01). Purpurgallin dose-dependently reduced HMGB1 protein expression. Likewise, high dose purpurogallin reduced TNF-α and HMGB1 mRNA levels. In conclusion, purpurogallin exerts its neuroinflammation effect through the dual effect of inhibiting IL-6 and TNF-α mRNA expression and reducing HMGB1 protein and mRNA expression. This study supports purpurogallin could attenuate both proinflammatory cytokines and late-onset inflammasome in SAH induced vasospasm.
Collapse
|
23
|
Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:384342. [PMID: 25105123 PMCID: PMC4106062 DOI: 10.1155/2014/384342] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/14/2014] [Accepted: 05/26/2014] [Indexed: 12/15/2022]
Abstract
Subarachnoid hemorrhage (SAH) can lead to devastating neurological outcomes, and there are few pharmacologic treatments available for treating this condition. Both animal and human studies provide evidence of inflammation being a driving force behind the pathology of SAH, leading to both direct brain injury and vasospasm, which in turn leads to ischemic brain injury. Several inflammatory mediators that are elevated after SAH have been studied in detail. While there is promising data indicating that blocking these factors might benefit patients after SAH, there has been little success in clinical trials. One of the key factors that complicates clinical trials of SAH is the variability of the initial injury and subsequent inflammatory response. It is likely that both genetic and environmental factors contribute to the variability of patients' post-SAH inflammatory response and that this confounds trials of anti-inflammatory therapies. Additionally, systemic inflammation from other conditions that affect patients with SAH could contribute to brain injury and vasospasm after SAH. Continuing work on biomarkers of inflammation after SAH may lead to development of patient-specific anti-inflammatory therapies to improve outcome after SAH.
Collapse
|
24
|
Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, Zhang J, Tang J, Zhang JH. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 2014; 115:64-91. [PMID: 24076160 PMCID: PMC3961493 DOI: 10.1016/j.pneurobio.2013.09.002] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 12/13/2022]
Abstract
Despite decades of study, subarachnoid hemorrhage (SAH) continues to be a serious and significant health problem in the United States and worldwide. The mechanisms contributing to brain injury after SAH remain unclear. Traditionally, most in vivo research has heavily emphasized the basic mechanisms of SAH over the pathophysiological or morphological changes of delayed cerebral vasospasm after SAH. Unfortunately, the results of clinical trials based on this premise have mostly been disappointing, implicating some other pathophysiological factors, independent of vasospasm, as contributors to poor clinical outcomes. Delayed cerebral vasospasm is no longer the only culprit. In this review, we summarize recent data from both experimental and clinical studies of SAH and discuss the vast array of physiological dysfunctions following SAH that ultimately lead to cell death. Based on the progress in neurobiological understanding of SAH, the terms "early brain injury" and "delayed brain injury" are used according to the temporal progression of SAH-induced brain injury. Additionally, a new concept of the vasculo-neuronal-glia triad model for SAH study is highlighted and presents the challenges and opportunities of this model for future SAH applications.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Damon Klebe
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Xiaochuan Sun
- Department of Neurosurgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
25
|
Long-term functional consequences and ongoing cerebral inflammation after subarachnoid hemorrhage in the rat. PLoS One 2014; 9:e90584. [PMID: 24603553 PMCID: PMC3946189 DOI: 10.1371/journal.pone.0090584] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/04/2014] [Indexed: 01/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a considerable health problem with an incidence of 6–7 per 100.000 individuals per year in Western society. We investigated the long-term consequences of SAH on behavior, neuroinflammation and gray- and white-matter damage using an endovascular puncture model in Wistar rats. Rats were divided into a mild or severe SAH group based on their acute neurological score at 24 h post-SAH. The degree of hemorrhage determined in post-mortem brains at 48 h strongly correlated with the acute neurological score. Severe SAH induced increased TNF-α, IL-1β, IL-10, MCP-1, MIP2, CINC-1 mRNA expression and cortical neutrophil influx at 48 h post-insult. Neuroinflammation after SAH was very long-lasting and still present at day 21 as determined by Iba-1 staining (microglia/macrophages) and GFAP (astrocytes). Long-term neuroinflammation was strongly associated with the degree of severity of SAH. Cerebral damage to gray- and white-matter was visualized by immunohistochemistry for MAP2 and MBP at 21 days after SAH. Severe SAH induced significant gray- and white-matter damage. MAP2 loss at day 21 correlated significantly with the acute neurological score determined at 24 h post-SAH. Sensorimotor behavior, determined by the adhesive removal task and von Frey test, was affected after severe SAH at day 21. In conclusion, we are the first to show that SAH induces ongoing cortical inflammation. Moreover, SAH induces mainly cortical long-term brain damage, which is associated with long-term sensorimotor damage.
Collapse
|
26
|
Zhao XD, Zhou YT, Lu XJ. Sulforaphane enhances the activity of the Nrf2-ARE pathway and attenuates inflammation in OxyHb-induced rat vascular smooth muscle cells. Inflamm Res 2013; 62:857-63. [PMID: 23756573 DOI: 10.1007/s00011-013-0641-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 02/19/2013] [Accepted: 05/24/2013] [Indexed: 01/13/2023] Open
Abstract
AIM A growing body of evidence indicates that the nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway plays a protective role in many physiological stress processes such as inflammatory damage, oxidative stress, and the accumulation of toxic metabolites, which are all involved in the cerebral vasospasm following subarachnoid hemorrhage (SAH). We hypothesized that the Nrf2-ARE pathway might have a protective role in cerebral vasospasm following SAH. MATERIALS AND METHODS In our study, we investigate whether the oxyhemoglobin (OxyHb) can induce the activation of the Nrf2-ARE pathway in vascular smooth muscle cells (VSMCs), and evaluate the modulatory effects of sulforaphane (SUL) on OxyHb-induced inflammation in VSMCs. RESULTS As a result, both the protein level and the mRNA level of the nuclear Nrf2 were significantly increased, while the mRNA levels of two Nrf2-regulated gene products, both heme oxygenase-1 and NAD(P)H: quinone oxidoreductase-1, were also up-regulated in VSMCs induced with OxyHb. A marked increase of inflammatory cytokines such as IL-1β, IL-6 and TNF-α release was observed at 48 h after cells were treated with OxyHb. SUL enhanced the activity of the Nrf2-ARE pathway and suppressed cytokine release. CONCLUSIONS Our results indicate that the Nrf2-ARE pathway was activated in OxyHb-induced VSMCs. SUL suppressed cytokine release via the activation of the Nrf2-ARE pathway in OxyHb-induced VSMCs.
Collapse
Affiliation(s)
- X-D Zhao
- Department of Neurosurgery, Wuxi Second Hospital Affiliated Nanjing Medical University, 68 Zhong Shan Road, Wuxi 214002, Jiangsu Province, People's Republic of China
| | | | | |
Collapse
|
27
|
The Postoperative C-reactive Protein Level can be a Useful Prognostic Factor for Poor Outcome and Symptomatic Vasospasm in Patients With Aneurysmal Subarachnoid Hemorrhage. J Neurosurg Anesthesiol 2012; 24:317-24. [DOI: 10.1097/ana.0b013e31826047a2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
How Large Is the Typical Subarachnoid Hemorrhage? A Review of Current Neurosurgical Knowledge. World Neurosurg 2012; 77:686-97. [DOI: 10.1016/j.wneu.2011.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/07/2011] [Accepted: 02/12/2011] [Indexed: 11/22/2022]
|
29
|
Wu Y, Tang K, Huang RQ, Zhuang Z, Cheng HL, Yin HX, Shi JX. Therapeutic potential of peroxisome proliferator-activated receptor gamma agonist rosiglitazone in cerebral vasospasm after a rat experimental subarachnoid hemorrhage model. J Neurol Sci 2011; 305:85-91. [DOI: 10.1016/j.jns.2011.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 02/18/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
|
30
|
Wirrig C, Hunter I, Mathieson FA, Nixon GF. Sphingosylphosphorylcholine is a proinflammatory mediator in cerebral arteries. J Cereb Blood Flow Metab 2011; 31:212-21. [PMID: 20551970 PMCID: PMC3049485 DOI: 10.1038/jcbfm.2010.79] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inflammation has an important function in the development of cerebral vasospasm after subarachnoid hemorrhage (SAH); however, the mediators of this inflammatory response have not been clearly identified. In this study, we have investigated the potential function of two sphingolipids, which occur naturally in plasma and serum, sphingosylphosphorylcholine (SPC) and sphingosine 1-phosphate (S1P), to act as proinflammatory mediators in cerebral artery vascular smooth muscle (VSM) cells. In rat cerebral arteries, SPC but not S1P activated p38 mitogen-activated protein kinase (MAPK). Using transcription factor arrays, two proinflammatory transcription factors activated by SPC in cerebral arteries were identified--nuclear factor-κB and CCAAT-enhancer-binding protein. Both these transcription factors were activated by SPC in a p38MAPK-dependent manner. To determine whether this contributed to vascular inflammation, an inflammatory protein array was performed, which showed that SPC increased release of the chemokine monocyte chemoattractant protein-1 (MCP-1) in cultured rat VSM cells. This increase in MCP-1 expression was confirmed in cerebral arteries. The S1P did not increase MCP-1 release. Taken together, our results suggest that SPC, but not S1P, can act as a proinflammatory mediator in cerebral arteries. This may contribute to inflammation observed after SAH and may be part of the initiating event in vasospasm.
Collapse
Affiliation(s)
- Christiane Wirrig
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | | | | | |
Collapse
|
31
|
Zhou Y, Martin RD, Zhang JH. Advances in experimental subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 110:15-21. [PMID: 21116908 DOI: 10.1007/978-3-7091-0353-1_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) remains to be a devastating disease with high mortality and morbidity. Two major areas are becoming the focus of the research interest of SAH: these are cerebral vasospasm (CVS) and early brain injury (EBI). This mini review will provide a broad summary of the major advances in experimental SAH during the last 3 years. Treatments interfering with nitric oxide (NO)- or endothelin-pathways continue to show antispasmotic effects in experimental SAH. HIF 1 may play both a detrimental and beneficial role in the setting of SAH, depending on its activation stage. Inflammation and oxidative stress contribute to the pathophysiology of both CVS and EBI. Apoptosis, a major component of EBI after SAH, also underlie the etiology of CVS. Since we recognize now that CVS and EBI are the two major contributors to the significant mortality and morbidity associated with SAH, ongoing research will continue to elucidate the underlying pathophysiological pathways and treatment strategies targeting both CVS and EBI may be more successful and improve outcome of patients with SAH.
Collapse
Affiliation(s)
- Yilin Zhou
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | |
Collapse
|
32
|
Zhou HJ, Zhang HN, Tang T, Zhong JH, Qi Y, Luo JK, Lin Y, Yang QD, Li XQ. Alteration of thrombospondin-1 and -2 in rat brains following experimental intracerebral hemorrhage. Laboratory investigation. J Neurosurg 2010; 113:820-5. [PMID: 20136391 DOI: 10.3171/2010.1.jns09637] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECT Spontaneous intracerebral hemorrhage (ICH) is among the most intractable forms of stroke. Angiogenesis, an orchestrated balance between proangiogenic and antiangiogenic factors, is a fundamental process to brain development and repair by new blood vessel formation from preexisting ones and can be induced by ICH. Thrombospondin (TSP)–1 and TSP-2 are naturally occurring antiangiogenic factors. The aim of this study was to observe their expression in rat brains with ICH. METHODS Intracerebral hemorrhage was induced in adult male Sprague-Dawley rats by stereotactic injection of collagenase VII or autologous blood into the right globus pallidus. The expression of TSP-1 and -2 was evaluated by immunohistochemistry and quantitative real-time reverse transcription–polymerase chain reaction analysis. RESULTS After the induction of ICH, some TSP1- or TSP2-immunoreactive microvessels resided around the hematoma for ~ 7 days and extended into a clot thereafter. Cerebral endothelial cells expressed the TSPs. The expression of TSP-1 and TSP-2 mRNA peaked at 4 and 14 days after collagenase-induced ICH, respectively. CONCLUSIONS Findings in this study suggest that ICH can alter the expression of TSP-1 and TSP-2, which may be involved in modulating angiogenesis in brains following ICH.
Collapse
Affiliation(s)
- Hua-Jun Zhou
- Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang Z, Wang KY, Wu Y, Zhou P, Sun XO, Chen G. Potential role of CD34 in cerebral vasospasm after experimental subarachnoid hemorrhage in rats. Cytokine 2010; 52:245-51. [PMID: 20829062 DOI: 10.1016/j.cyto.2010.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/15/2010] [Accepted: 08/16/2010] [Indexed: 11/30/2022]
Abstract
Inflammatory responses have been implicated in the elaboration of several forms of central nervous system injury, including cerebral vasospasm after subarachnoid hemorrhage (SAH). A critical event participating in such responses is the recruitment of circulating leukocytes into the inflammatory site. CD34 is a key adhesion molecule responsible for recruitment of monocytes/macrophages and the attachment of leukocytes to endothelial cells. However, it has not been investigated whether, and to what degree, CD34 is induced by SAH and also the role of CD34 in the pathogenesis of cerebral vasospasm following SAH remains unknown. Experiment 1 aimed to investigate the timecourse of the CD34 expression in the basilar artery after SAH. In experiment 2, we chose the maximum time point of vasospasm (day 3) and assessed the effect of monoclonal antibody against CD34 on regulation of cerebral vasospasm. As a result, the elevated expression of CD34 was detected in the basilar artery after SAH and peaked on day 3. After intracisternal administration of CD34 monoclonal antibody, the vasospasm was markedly attenuated after blood injection on day 3. Our results suggest that CD34 is increasingly expressed in a parallel time course to the development of cerebral vasospasm in a rat experimental model of SAH and administration of the specific CD34 antibody could prevent or reduce cerebral vasospasm caused by SAH.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
34
|
Wu Y, Zhao XD, Zhuang Z, Xue YJ, Cheng HL, Yin HX, Shi JX. Peroxisome proliferator-activated receptor gamma agonist rosiglitazone attenuates oxyhemoglobin-induced Toll-like receptor 4 expression in vascular smooth muscle cells. Brain Res 2010; 1322:102-8. [DOI: 10.1016/j.brainres.2010.01.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 12/24/2022]
|