1
|
Carrillo-Franco L, González-García M, Morales-Luque C, Dawid-Milner MS, López-González MV. Hypothalamic Regulation of Cardiorespiratory Functions: Insights into the Dorsomedial and Perifornical Pathways. BIOLOGY 2024; 13:933. [PMID: 39596888 PMCID: PMC11592276 DOI: 10.3390/biology13110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The dorsomedial hypothalamus nucleus (DMH) plays a pivotal role in the orchestration of sympathetic nervous system activities. Through its projections to the brainstem and pontomedullary nuclei, it controls heart rate, contractility, blood pressure, and respiratory activity, such as timing and volumes. The DMH integrates inputs from higher brain centers and processes these signals in order to modulate autonomic outflow accordingly. It has been demonstrated to be of particular significance in the context of stress responses, where it orchestrates the physiological adaptations that are necessary for all adaptative responses. The perifornical region (PeF), which is closely associated with the DMH, also makes a contribution to autonomic regulation. The involvement of the PeF region in autonomic control is evidenced by its function in coordinating the autonomic and endocrine responses to stress, frequently in conjunction with the DMH. The DMH and the PeF do not function in an isolated manner; rather, they are components of a comprehensive hypothalamic network that integrates several autonomic responses. This neural network could serve as a target for developing therapeutic strategies in cardiovascular diseases.
Collapse
Affiliation(s)
- Laura Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Malaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Malaga, Spain
| | - Marta González-García
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Malaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Malaga, Spain
| | - Carmen Morales-Luque
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
| | - Marc Stefan Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Malaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Malaga, Spain
| | - Manuel Víctor López-González
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Malaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Malaga, Spain
| |
Collapse
|
2
|
Rocha I, González-García M, Carrillo-Franco L, Dawid-Milner MS, López-González MV. Influence of Brainstem's Area A5 on Sympathetic Outflow and Cardiorespiratory Dynamics. BIOLOGY 2024; 13:161. [PMID: 38534431 DOI: 10.3390/biology13030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Area A5 is a noradrenergic cell group in the brain stem characterised by its important role in triggering sympathetic activity, exerting a profound influence on the sympathetic outflow, which is instrumental in the modulation of cardiovascular functions, stress responses and various other physiological processes that are crucial for adaptation and survival mechanisms. Understanding the role of area A5, therefore, not only provides insights into the basic functioning of the sympathetic nervous system but also sheds light on the neuronal basis of a number of autonomic responses. In this review, we look deeper into the specifics of area A5, exploring its anatomical connections, its neurochemical properties and the mechanisms by which it influences sympathetic nervous system activity and cardiorespiratory regulation and, thus, contributes to the overall dynamics of the autonomic function in regulating body homeostasis.
Collapse
Affiliation(s)
- Isabel Rocha
- Lisbon School of Medicine and CCUL@Rise, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marta González-García
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Laura Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Marc Stefan Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Manuel Victor López-González
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| |
Collapse
|
3
|
González-García M, Carrillo-Franco L, Morales-Luque C, Dawid-Milner MS, López-González MV. Central Autonomic Mechanisms Involved in the Control of Laryngeal Activity and Vocalization. BIOLOGY 2024; 13:118. [PMID: 38392336 PMCID: PMC10886357 DOI: 10.3390/biology13020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
In humans, speech is a complex process that requires the coordinated involvement of various components of the phonatory system, which are monitored by the central nervous system. The larynx in particular plays a crucial role, as it enables the vocal folds to meet and converts the exhaled air from our lungs into audible sounds. Voice production requires precise and sustained exhalation, which generates an air pressure/flow that creates the pressure in the glottis required for voice production. Voluntary vocal production begins in the laryngeal motor cortex (LMC), a structure found in all mammals, although the specific location in the cortex varies in humans. The LMC interfaces with various structures of the central autonomic network associated with cardiorespiratory regulation to allow the perfect coordination between breathing and vocalization. The main subcortical structure involved in this relationship is the mesencephalic periaqueductal grey matter (PAG). The PAG is the perfect link to the autonomic pontomedullary structures such as the parabrachial complex (PBc), the Kölliker-Fuse nucleus (KF), the nucleus tractus solitarius (NTS), and the nucleus retroambiguus (nRA), which modulate cardiovascular autonomic function activity in the vasomotor centers and respiratory activity at the level of the generators of the laryngeal-respiratory motor patterns that are essential for vocalization. These cores of autonomic structures are not only involved in the generation and modulation of cardiorespiratory responses to various stressors but also help to shape the cardiorespiratory motor patterns that are important for vocal production. Clinical studies show increased activity in the central circuits responsible for vocalization in certain speech disorders, such as spasmodic dysphonia because of laryngeal dystonia.
Collapse
Affiliation(s)
- Marta González-García
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Laura Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Carmen Morales-Luque
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Marc Stefan Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Manuel Víctor López-González
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| |
Collapse
|
4
|
Kinkead R, Ambrozio-Marques D, Fournier S, Gagnon M, Guay LM. Estrogens, age, and, neonatal stress: panic disorders and novel views on the contribution of non-medullary structures to respiratory control and CO 2 responses. Front Physiol 2023; 14:1183933. [PMID: 37265841 PMCID: PMC10229816 DOI: 10.3389/fphys.2023.1183933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
CO2 is a fundamental component of living matter. This chemical signal requires close monitoring to ensure proper match between metabolic production and elimination by lung ventilation. Besides ventilatory adjustments, CO2 can also trigger innate behavioral and physiological responses associated with fear and escape but the changes in brain CO2/pH required to induce ventilatory adjustments are generally lower than those evoking fear and escape. However, for patients suffering from panic disorder (PD), the thresholds for CO2-evoked hyperventilation, fear and escape are reduced and the magnitude of those reactions are excessive. To explain these clinical observations, Klein proposed the false suffocation alarm hypothesis which states that many spontaneous panics occur when the brain's suffocation monitor erroneously signals a lack of useful air, thereby maladaptively triggering an evolved suffocation alarm system. After 30 years of basic and clinical research, it is now well established that anomalies in respiratory control (including the CO2 sensing system) are key to PD. Here, we explore how a stress-related affective disorder such as PD can disrupt respiratory control. We discuss rodent models of PD as the concepts emerging from this research has influenced our comprehension of the CO2 chemosensitivity network, especially structure that are not located in the medulla, and how factors such as stress and biological sex modulate its functionality. Thus, elucidating why hormonal fluctuations can lead to excessive responsiveness to CO2 offers a unique opportunity to gain insights into the neuroendocrine mechanisms regulating this key aspect of respiratory control and the pathophysiology of respiratory manifestations of PD.
Collapse
|
5
|
Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021; 11:2097-2134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As our understanding of respiratory control evolves, we appreciate how the basic neurobiological principles of plasticity discovered in other systems shape the development and function of the respiratory control system. While breathing is a robust homeostatic function, there is growing evidence that stress disrupts respiratory control in ways that predispose to disease. Neonatal stress (in the form of maternal separation) affects "classical" respiratory control structures such as the peripheral O2 sensors (carotid bodies) and the medulla (e.g., nucleus of the solitary tract). Furthermore, early life stress disrupts the paraventricular nucleus of the hypothalamus (PVH), a structure that has emerged as a primary determinant of the intensity of the ventilatory response to hypoxia. Although underestimated, the PVH's influence on respiratory function is a logical extension of the hypothalamic control of metabolic demand and supply. In this article, we review the functional and anatomical links between the stress neuroendocrine axis and the medullary network regulating breathing. We then present the persistent and sex-specific effects of neonatal stress on respiratory control in adult rats. The similarities between the respiratory phenotype of stressed rats and clinical manifestations of respiratory control disorders such as sleep-disordered breathing and panic attacks are remarkable. These observations are in line with the scientific consensus that the origins of adult disease are often found among developmental and biological disruptions occurring during early life. These observations bring a different perspective on the structural hierarchy of respiratory homeostasis and point to new directions in our understanding of the etiology of respiratory control disorders. © 2021 American Physiological Society. Compr Physiol 11:1-38, 2021.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
6
|
López-González MV, González-García M, Peinado-Aragonés CA, Barbancho MÁ, Díaz-Casares A, Dawid-Milner MS. Pontine A5 region modulation of the cardiorespiratory response evoked from the midbrain dorsolateral periaqueductal grey. J Physiol Biochem 2020; 76:561-572. [PMID: 32812210 DOI: 10.1007/s13105-020-00761-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/09/2020] [Indexed: 12/19/2022]
Abstract
Connections between the midbrain dorsolateral periaqueductal grey (dlPAG) and the pontine A5 region have been shown. The stimulation of both regions evokes similar cardiovascular responses: tachycardia and hypertension. Accordingly, we have studied the interactions between dlPAG and A5 region in spontaneously breathing anesthetized rats. dlPAG was electrically stimulated (20-30 μA 1-ms pulses were given for 5 s at 100 Hz). Changes in the evoked cardiorespiratoy response were analysed before and after ipsilateral microinjections of muscimol (GABAergic agonist, 50 nl, 0.25 nmol, 5 s) within the A5 region. Electrical stimulation of the dlPAG produces, in the rat, a response characterized by tachypnoea (p < 0.001), hypertension (p < 0.001) and tachycardia (p < 0.001). The increase in respiratory rate was due to a decrease in expiratory time (p < 0.01). Pharmacological inhibition of the A5 region with muscimol produced a marked reduction of the tachycardia (p < 0.001) and the tachypnoea (p < 0.01) evoked from the dlPAG. Finally, to assess functional interactions between A5 and dlPAG, extracellular activity of putative A5 neurones were recorded during dlPAG electrical stimulation. Forty A5 cells were recorded, 16 of which were affected by dlPAG stimulation (40%). 4 cells showed activation, 5 cells excitation and 7 cells decreased spontaneous activity to dlPAG stimulation (p < 0.001). These results confirm a link between the A5 region and dlPAG. The potential role of these connections in the modulation of dlPAG evoked cardiorespiratory responses and their possible clinical implications are discussed.
Collapse
Affiliation(s)
- Manuel Víctor López-González
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain. .,Unidad de Neurofisiología del Sistema Nervioso Autónomo (CIMES), Universidad de Málaga, Málaga, Spain.
| | - Marta González-García
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.,Unidad de Neurofisiología del Sistema Nervioso Autónomo (CIMES), Universidad de Málaga, Málaga, Spain
| | - Carlos Antonio Peinado-Aragonés
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Miguel Ángel Barbancho
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Amelia Díaz-Casares
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.,Unidad de Neurofisiología del Sistema Nervioso Autónomo (CIMES), Universidad de Málaga, Málaga, Spain
| | - Marc Stefan Dawid-Milner
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.,Unidad de Neurofisiología del Sistema Nervioso Autónomo (CIMES), Universidad de Málaga, Málaga, Spain
| |
Collapse
|
7
|
Abstract
There is a growing public awareness that hormones can have a significant impact on most biological systems, including the control of breathing. This review will focus on the actions of two broad classes of hormones on the neuronal control of breathing: sex hormones and stress hormones. The majority of these hormones are steroids; a striking feature is that both groups are derived from cholesterol. Stress hormones also include many peptides which are produced primarily within the paraventricular nucleus of the hypothalamus (PVN) and secreted into the brain or into the circulatory system. In this article we will first review and discuss the role of sex hormones in respiratory control throughout life, emphasizing how natural fluctuations in hormones are reflected in ventilatory metrics and how disruption of their endogenous cycle can predispose to respiratory disease. These effects may be mediated directly by sex hormone receptors or indirectly by neurotransmitter systems. Next, we will discuss the origins of hypothalamic stress hormones and their relationship with the respiratory control system. This relationship is 2-fold: (i) via direct anatomical connections to brainstem respiratory control centers, and (ii) via steroid hormones released from the adrenal gland in response to signals from the pituitary gland. Finally, the impact of stress on the development of neural circuits involved in breathing is evaluated in animal models, and the consequences of early stress on respiratory health and disease is discussed.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
8
|
López-González MV, Díaz-Casares A, Peinado-Aragonés CA, Lara JP, Barbancho MA, Dawid-Milner MS. Neurons of the A5 region are required for the tachycardia evoked by electrical stimulation of the hypothalamic defence area in anaesthetized rats. Exp Physiol 2013; 98:1279-94. [DOI: 10.1113/expphysiol.2013.072538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Díaz-Casares A, López-González MV, Peinado-Aragonés CA, González-Barón S, Dawid-Milner MS. Parabrachial complex glutamate receptors modulate the cardiorespiratory response evoked from hypothalamic defense area. Auton Neurosci 2012; 169:124-34. [PMID: 22748567 DOI: 10.1016/j.autneu.2012.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/14/2012] [Accepted: 06/06/2012] [Indexed: 02/06/2023]
Abstract
To characterize the possible role of glutamate in the interaction between Hypothalamic Defense Area (HDA) and Parabrachial complex (PBc) nuclei, cardiorespiratory changes were analyzed in response to electrical stimulation of the HDA (1 ms pulses, 30-50 μA given at 100 Hz for 5s) before and after the microinjection of the nonspecific glutamate receptor antagonist kynurenic acid (50 nl, 5 nmol), NMDA receptor antagonist MK-801 (50 nl, 50 nmol), non-NMDA receptor antagonist CNQX (50 nl, 50 nmol) or metabotropic glutamate receptor antagonist MCPG (50 nl, 5 nmol) within the PBc. HDA stimulation evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (p<0.001) due to a decrease in expiratory time (p<0.01). The respiratory response was accompanied by a pressor (p<0.001) and a tachycardic response (p<0.001). Kynurenic acid within the lateral parabrachial region (lPB) abolished the tachycardia (p<0.001) and decreased the magnitude of blood pressure response (p<0.001) to HDA stimulation. Similarly, the magnitude of the tachycardia and the pressor response was decreased after the microinjection of MK-801 (p<0.01 and p<0.001, respectively) and CNQX (p<0.05 in both cases) into the lPB. Kynurenic acid microinjection in this region produced an inhibition of the tachypnea (p<0.001) to HDA stimulation but the respiratory response persisted unchanged after MK-801 or CNQX microinjection into the lPB. Kynurenic acid within the medial parabrachial region (mPB) abolished the tachycardia (p<0.01) and decreased the magnitude of the pressor response (p<0.001) to HDA stimulation. MK-801 and CNQX microinjection in this region decreased the magnitude of the tachycardia (p<0.05, in both cases) and pressor response (p<0.05, in both cases). The respiratory response evoked by HDA stimulation was not changed after the microinjection of kynurenic acid, MK-801 or CNQX within the mPB. No changes were observed in the cardiorespiratory response evoked to HDA stimulation after MCPG microinjection within lPB and mPB. These results indicate that glutamate PBc receptors are involved in the cardiorespiratory response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.
Collapse
Affiliation(s)
- A Díaz-Casares
- Departamento de Fisiología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | | | | | | | | |
Collapse
|
10
|
Panguluri S, Saggu S, Lundy R. Comparison of somatostatin and corticotrophin-releasing hormone immunoreactivity in forebrain neurons projecting to taste-responsive and non-responsive regions of the parabrachial nucleus in rat. Brain Res 2009; 1298:57-69. [PMID: 19699720 PMCID: PMC2769563 DOI: 10.1016/j.brainres.2009.08.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 02/06/2023]
Abstract
Several forebrain areas have been shown to project to the parabrachial nucleus (PBN) and exert inhibitory and excitatory influences on taste processing. The neurochemicals by which descending forebrain inputs modulate neural taste-evoked responses remain to be established. This study investigated the existence of somatostatin (SS) and corticotrophin-releasing factor (CRF) in forebrain neurons that project to caudal regions of the PBN responsive to chemical stimulation of the anterior tongue as well as more rostral unresponsive regions. Retrograde tracer was iontophoretically or pressure ejected from glass micropipettes, and 7 days later the animals were euthanized for subsequent immunohistochemical processing for co-localization of tracer with SS and CRF in tissue sections containing the lateral hypothalamus (LH), central nucleus of the amygdala (CeA), bed nucleus of the stria terminalis (BNST), and insular cortex (IC). In each forebrain site, robust labeling of cells with distinguishable nuclei and short processes was observed for SS and CRF. The results indicate that CRF neurons in each forebrain site send projections throughout the rostral caudal extent of the PBN with a greater percentage terminating in regions rostral to the anterior tongue-responsive area. For SS, the percentage of double-labeled neurons was more forebrain site specific in that only BNST and CeA exhibited significant numbers of double-labeled neurons. Few retrogradely labeled cells in LH co-expressed SS, while no double-labeled cells were observed in IC. Again, tracer injections into rostral PBN resulted in a greater percentage of double-labeled neurons in BNST and CeA compared to caudal injections. The present results suggest that some sources of descending forebrain input might utilize somatostatin and/or CRF to exert a broad influence on sensory information processing in the PBN.
Collapse
Affiliation(s)
- Siva Panguluri
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Shalini Saggu
- Department of Pharmaceutical Sciences, Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina 29425
| | - Robert Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
11
|
Poon CS. Optimal interaction of respiratory and thermal regulation at rest and during exercise: role of a serotonin-gated spinoparabrachial thermoafferent pathway. Respir Physiol Neurobiol 2009; 169:234-42. [PMID: 19770073 DOI: 10.1016/j.resp.2009.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 08/24/2009] [Accepted: 09/14/2009] [Indexed: 11/26/2022]
Abstract
Recent evidence indicates that the lateral parabrachial nucleus (LPBN) in dorsolateral pons is pivotal in mediating the feedback control of inspiratory drive by central chemoreceptor input and feedforward control of body temperature by cutaneous thermoreceptor input. The latter is subject to descending serotonergic inhibition which gates the transmission of ascending thermoafferent information from spinal dorsal horn to the LPBN. Here, a model is proposed which suggests that the LPBN may be important in balancing respiratory and thermal homeostasis, two conflicting goals that are heightened by environmental heat/cold stress or exercise where the effects of respiratory thermolysis become prominent. This optimization model of respiratory-thermoregulatory interaction is supported by a host of recent studies which demonstrate that animals with serotonin (5-HT) dysfunction at the spinal dorsal horn--due to 5-HT antagonism, genetic 5-HT defects or spinal cord injury--all display similar respiratory abnormalities that are consistent with hyperactivity of the spinoparabrachial thermoafferent (and pain) pathway.
Collapse
Affiliation(s)
- Chi-Sang Poon
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Bldg E25-250, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|