1
|
Viruses in connectomics: Viral transneuronal tracers and genetically modified recombinants as neuroscience research tools. J Neurosci Methods 2020; 346:108917. [PMID: 32835704 DOI: 10.1016/j.jneumeth.2020.108917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Connectomic studies have become 'viral', as viral pathogens have been turned into irreplaceable neuroscience research tools. Highly sensitive viral transneuronal tracing technologies are available, based on the use of alpha-herpesviruses and a rhabdovirus (rabies virus), which function as self-amplifying markers by replicating in recipient neurons. These viruses highly differ with regard to host range, cellular receptors, peripheral uptake, replication, transport direction and specificity. Their characteristics, that make them useful for different purposes, will be highlighted and contrasted. Only transneuronal tracing with rabies virus is entirely specific. The neuroscientist toolbox currently include wild-type alpha-herpesviruses and rabies virus strains enabling polysynaptic tracing of neuronal networks across multiple synapses, as well as genetically modified viral tracers for dual transneuronal tracing, and complementary viral tools including defective and chimeric recombinants that function as single step or monosynaptically restricted tracers, or serve for monitoring and manipulating neuronal activity and gene expression. Methodological issues that are crucial for appropriate use of these technologies will be summarized. Among wild-type and genetically engineered viral tools, rabies virus and chimeric recombinants based on rabies virus as virus backbone are the most powerful, because of the ability of rabies virus to propagate exclusively among connected neurons unidirectionally (retrogradely), without affecting neuronal function. Understanding in depth viral properties is essential for neuroscientists who intend to exploit alpha-herpesviruses, rhabdoviruses or derived recombinants as research tools. Key knowledge will be summarized regarding their cellular receptors, intracellular trafficking and strategies to contrast host defense that explain their different pathophysiology and properties as research tools.
Collapse
|
2
|
Lindsey BG, Nuding SC, Segers LS, Morris KF. Carotid Bodies and the Integrated Cardiorespiratory Response to Hypoxia. Physiology (Bethesda) 2019; 33:281-297. [PMID: 29897299 DOI: 10.1152/physiol.00014.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in our understanding of brain mechanisms for the hypoxic ventilatory response, coordinated changes in blood pressure, and the long-term consequences of chronic intermittent hypoxia as in sleep apnea, such as hypertension and heart failure, are giving impetus to the search for therapies to "erase" dysfunctional memories distributed in the carotid bodies and central nervous system. We review current network models, open questions, sex differences, and implications for translational research.
Collapse
Affiliation(s)
- Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sarah C Nuding
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
3
|
Ghali MGZ. Phrenic motoneurons: output elements of a highly organized intraspinal network. J Neurophysiol 2018; 119:1057-1070. [DOI: 10.1152/jn.00705.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
pontomedullary respiratory network generates the respiratory pattern and relays it to bulbar and spinal respiratory motor outputs. The phrenic motor system controlling diaphragm contraction receives and processes descending commands to produce orderly, synchronous, and cycle-to-cycle-reproducible spatiotemporal firing. Multiple investigators have studied phrenic motoneurons (PhMNs) in an attempt to shed light on local mechanisms underlying phrenic pattern formation. I and colleagues (Marchenko V, Ghali MG, Rogers RF. Am J Physiol Regul Integr Comp Physiol 308: R916–R926, 2015.) recorded PhMNs in unanesthetized, decerebrate rats and related their activity to simultaneous phrenic nerve (PhN) activity by creating a time-frequency representation of PhMN-PhN power and coherence. On the basis of their temporal firing patterns and relationship to PhN activity, we categorized PhMNs into three classes, each of which emerges as a result of intrinsic biophysical and network properties and organizes the orderly contraction of diaphragm motor fibers. For example, early inspiratory diaphragmatic activation by the early coherent burst generated by high-frequency PhMNs may be necessary to prime it to overcome its initial inertia. We have also demonstrated the existence of a prominent role for local intraspinal inhibitory mechanisms in shaping phrenic pattern formation. The objective of this review is to relate and synthesize recent findings with those of previous studies with the aim of demonstrating that the phrenic nucleus is a region of active local processing, rather than a passive relay of descending inputs.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Sandhu MS, Baekey DM, Maling NG, Sanchez JC, Reier PJ, Fuller DD. Midcervical neuronal discharge patterns during and following hypoxia. J Neurophysiol 2014; 113:2091-101. [PMID: 25552641 DOI: 10.1152/jn.00834.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/30/2014] [Indexed: 11/22/2022] Open
Abstract
Anatomical evidence indicates that midcervical interneurons can be synaptically coupled with phrenic motoneurons. Accordingly, we hypothesized that interneurons in the C3-C4 spinal cord can display discharge patterns temporally linked with inspiratory phrenic motor output. Anesthetized adult rats were studied before, during, and after a 4-min bout of moderate hypoxia. Neuronal discharge in C3-C4 lamina I-IX was monitored using a multielectrode array while phrenic nerve activity was extracellularly recorded. For the majority of cells, spike-triggered averaging (STA) of ipsilateral inspiratory phrenic nerve activity based on neuronal discharge provided no evidence of discharge synchrony. However, a distinct STA phrenic peak with a 6.83 ± 1.1 ms lag was present for 5% of neurons, a result that indicates a monosynaptic connection with phrenic motoneurons. The majority (93%) of neurons changed discharge rate during hypoxia, and the diverse responses included both increased and decreased firing. Hypoxia did not change the incidence of STA peaks in the phrenic nerve signal. Following hypoxia, 40% of neurons continued to discharge at rates above prehypoxia values (i.e., short-term potentiation, STP), and cells with initially low discharge rates were more likely to show STP (P < 0.001). We conclude that a population of nonphrenic C3-C4 neurons in the rat spinal cord is synaptically coupled to the phrenic motoneuron pool, and these cells can modulate inspiratory phrenic output. In addition, the C3-C4 propriospinal network shows a robust and complex pattern of activation both during and following an acute bout of hypoxia.
Collapse
Affiliation(s)
- M S Sandhu
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - D M Baekey
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; and
| | - N G Maling
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - J C Sanchez
- Department of Biomedical Engineering, University of Miami, Miami, Florida
| | - P J Reier
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - D D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida;
| |
Collapse
|
5
|
Balaban CD, Ogburn SW, Warshafsky SG, Ahmed A, Yates BJ. Identification of neural networks that contribute to motion sickness through principal components analysis of fos labeling induced by galvanic vestibular stimulation. PLoS One 2014; 9:e86730. [PMID: 24466215 PMCID: PMC3900607 DOI: 10.1371/journal.pone.0086730] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/15/2013] [Indexed: 02/01/2023] Open
Abstract
Motion sickness is a complex condition that includes both overt signs (e.g., vomiting) and more covert symptoms (e.g., anxiety and foreboding). The neural pathways that mediate these signs and symptoms are yet to identified. This study mapped the distribution of c-fos protein (Fos)-like immunoreactivity elicited during a galvanic vestibular stimulation paradigm that is known to induce motion sickness in felines. A principal components analysis was used to identify networks of neurons activated during this stimulus paradigm from functional correlations between Fos labeling in different nuclei. This analysis identified five principal components (neural networks) that accounted for greater than 95% of the variance in Fos labeling. Two of the components were correlated with the severity of motion sickness symptoms, and likely participated in generating the overt signs of the condition. One of these networks included neurons in locus coeruleus, medial, inferior and lateral vestibular nuclei, lateral nucleus tractus solitarius, medial parabrachial nucleus and periaqueductal gray. The second included neurons in the superior vestibular nucleus, precerebellar nuclei, periaqueductal gray, and parabrachial nuclei, with weaker associations of raphe nuclei. Three additional components (networks) were also identified that were not correlated with the severity of motion sickness symptoms. These networks likely mediated the covert aspects of motion sickness, such as affective components. The identification of five statistically independent component networks associated with the development of motion sickness provides an opportunity to consider, in network activation dimensions, the complex progression of signs and symptoms that are precipitated in provocative environments. Similar methodology can be used to parse the neural networks that mediate other complex responses to environmental stimuli.
Collapse
Affiliation(s)
- Carey D. Balaban
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah W. Ogburn
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Susan G. Warshafsky
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Abdul Ahmed
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bill J. Yates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
6
|
Makino M, Saiki C, Ide R, Matsumoto S. Role of rostral medulla in serotonin-induced changes of respiratory rhythm in newborn rat brainstem–spinal cord preparations. Neurosci Lett 2014; 559:127-31. [DOI: 10.1016/j.neulet.2013.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 12/22/2022]
|
7
|
Iceman KE, Harris MB. A group of non-serotonergic cells is CO2-stimulated in the medullary raphé. Neuroscience 2013; 259:203-13. [PMID: 24333211 DOI: 10.1016/j.neuroscience.2013.11.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/13/2013] [Accepted: 11/30/2013] [Indexed: 01/22/2023]
Abstract
Serotonin/substance P synthesizing cells in the raphé nuclei of the brain are candidates for designation as central chemoreceptors that are stimulated by CO2/pH. We have previously demonstrated that these neurons are CO2-stimulated in situ. Evidence also suggests that CO2-inhibited raphé neurons recorded in vitro and in situ synthesize GABA. Unknown is whether there are other types of chemosensitive cells in the raphé. Here, we showed that a previously unrecognized pool of raphé neurons also exhibit chemosensitivity, and that they are not serotonergic. We used extracellular recording of individual raphé neurons in the unanesthetized juvenile rat in situ perfused decerebrate brainstem preparation to assess chemosensitivity of raphé neurons. Subsequent juxtacellular labeling of individually recorded cells, and immunohistochemistry for the serotonin synthesizing enzyme tryptophan hydroxylase and for neurokinin-1 receptor (NK1R; the receptor for substance P) indicated a group of CO2-stimulated cells that are not serotonergic, but express NK1R and are closely apposed to surrounding serotonergic cells. CO2-stimulated 5-HT and non-5-HT cells constitute distinct groups that have different firing characteristics and hypercapnic sensitivities. Non-5-HT cells fire faster and are more robustly stimulated by CO2 than are 5-HT cells. Thus, we have characterized a previously unrecognized type of CO2-stimulated medullary raphé neuron that is not serotonergic, but may receive input from neighboring serotonin/substance P synthesizing chemosensitive neurons. The potential network properties of the three types of chemosensitive raphé neurons (the present non-5-HT cells, serotonergic cells, and CO2-inhibited cells) remain to be elucidated.
Collapse
Affiliation(s)
- K E Iceman
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA; Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 99775, USA.
| | - M B Harris
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA; Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 99775, USA
| |
Collapse
|
8
|
Phillips RS, Cleary DR, Nalwalk JW, Arttamangkul S, Hough LB, Heinricher MM. Pain-facilitating medullary neurons contribute to opioid-induced respiratory depression. J Neurophysiol 2012; 108:2393-404. [PMID: 22956800 DOI: 10.1152/jn.00563.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Respiratory depression is a therapy-limiting side effect of opioid analgesics, yet our understanding of the brain circuits mediating this potentially lethal outcome remains incomplete. Here we studied the contribution of the rostral ventromedial medulla (RVM), a region long implicated in pain modulation and homeostatic regulation, to opioid-induced respiratory depression. Microinjection of the μ-opioid agonist DAMGO in the RVM of lightly anesthetized rats produced both analgesia and respiratory depression, showing that neurons in this region can modulate breathing. Blocking opioid action in the RVM by microinjecting the opioid antagonist naltrexone reversed the analgesic and respiratory effects of systemically administered morphine, showing that this region plays a role in both the analgesic and respiratory-depressant properties of systemically administered morphine. The distribution of neurons directly inhibited by RVM opioid microinjection was determined with a fluorescent opioid peptide, dermorphin-Alexa 594, and found to be concentrated in and around the RVM. The non-opioid analgesic improgan, like DAMGO, produced antinociception but, unlike DAMGO, stimulated breathing when microinjected into the RVM. Concurrent recording of RVM neurons during improgan microinjection showed that this agent activated RVM ON-cells, OFF-cells, and NEUTRAL-cells. Since opioids are known to activate OFF-cells but suppress ON-cell firing, the differential respiratory response to these two analgesic drugs is best explained by their opposing effects on the activity of RVM ON-cells. These findings show that pain relief can be separated pharmacologically from respiratory depression and identify RVM OFF-cells as important central targets for continued development of potent analgesics with fewer side effects.
Collapse
Affiliation(s)
- Ryan S Phillips
- Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
9
|
Gowen MF, Ogburn SW, Suzuki T, Sugiyama Y, Cotter LA, Yates BJ. Collateralization of projections from the rostral ventrolateral medulla to the rostral and caudal thoracic spinal cord in felines. Exp Brain Res 2012; 220:121-33. [PMID: 22623097 DOI: 10.1007/s00221-012-3122-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/04/2012] [Indexed: 12/14/2022]
Abstract
Stimulation of vestibular receptors elicits distinct changes in blood flow to the forelimb and hindlimb, showing that the nervous system has the capacity to produce changes in sympathetic outflow which are specific for a particular region of the body. However, it is unclear whether the rostral ventrolateral medulla (RVLM), the primary region of the brainstem that regulates sympathetic outflow to vascular smooth muscle, has the appropriate connectivity with sympathetic preganglionic neurons to generate anatomically patterned responses. To make this determination, the retrograde fluorescent tracer Fast Blue was injected into the T(4) spinal cord segment of cats, which regulates upper body blood flow, whereas Fluoro-Ruby was injected into the T(10) segment to label projections to a region of the spinal cord that regulates lower body blood flow. More neurons were single-labeled by a particular tracer (92 %) than were double labeled by both tracers (8 %), supporting the notion that the RVLM can regulate sympathetic outflow from a limited number of spinal cord segments. Since a large fraction of RVLM neurons that control sympathetic outflow in rodents contain epinephrine, we additionally determined whether the tracer-labeled cells were immunopositive for the enzyme tyrosine hydroxylase (TH), which participates in the synthesis of catecholamines. Double labeling by the two tracers injected into the spinal cord was more common for TH-immunopositive neurons than for the general population of RVLM neurons: 19 % of the TH-positive cells contained both Fast Blue and Fluoro-Ruby, 30 % contained one of the tracers, and 51 % were not labeled by either tracer. Furthermore, many spinally projecting neurons in close proximity to the RVLM catecholaminergic neurons (41 % of the population) were not immunopositive for TH, suggesting that feline RVLM is neurochemically heterogeneous.
Collapse
Affiliation(s)
- Michael F Gowen
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Until recently, single-stranded negative sense RNA viruses (ssNSVs) were one of only a few important human viral pathogens, which could not be created from cDNA. The inability to manipulate their genomes hindered their detailed genetic analysis. A key paper from Conzelmann's laboratory in 1994 changed this with the publication of a method to recover rabies virus (RABV) from cDNA. This discovery not only dramatically changed the broader field of ssNSV biology but also opened a whole new avenue for studying RABV pathogenicity, developing novel RABV vaccines as well a new generation of RABV-based vaccine vectors, and creating research tools important in neuroscience such as neuronal tracing.
Collapse
Affiliation(s)
- Emily A Gomme
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
11
|
Menuet C, Borghgraef P, Matarazzo V, Gielis L, Lajard AM, Voituron N, Gestreau C, Dutschmann M, Van Leuven F, Hilaire G. Raphé tauopathy alters serotonin metabolism and breathing activity in terminal Tau.P301L mice: possible implications for tauopathies and Alzheimer's disease. Respir Physiol Neurobiol 2011; 178:290-303. [PMID: 21763469 DOI: 10.1016/j.resp.2011.06.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/14/2011] [Accepted: 06/30/2011] [Indexed: 11/30/2022]
Abstract
Tauopathies, including Alzheimer's disease are the most frequent neurodegenerative disorders in elderly people. Patients develop cognitive and behaviour defects induced by the tauopathy in the forebrain, but most also display early brainstem tauopathy, with oro-pharyngeal and serotoninergic (5-HT) defects. We studied these aspects in Tau.P301L mice, that express human mutant tau protein and develop tauopathy first in hindbrain, with cognitive, motor and upper airway defects from 7 to 8 months onwards, until premature death before age 12 months. Using plethysmography, immunohistochemistry and biochemistry, we examined the respiratory and 5-HT systems of aging Tau.P301L and control mice. At 8 months, Tau.P301L mice developed upper airway dysfunction but retained normal respiratory rhythm and normal respiratory regulations. In the following weeks, Tau.P301L mice entered terminal stages with reduced body weight, progressive limb clasping and lethargy. Compared to age 8 months, terminal Tau.P301L mice showed aggravated upper airway dysfunction, abnormal respiratory rhythm and abnormal respiratory regulations. In addition, they showed severe tauopathy in Kolliker-Fuse, raphé obscurus and raphé magnus nuclei but not in medullary respiratory-related areas. Although the raphé tauopathy concerned mainly non-5-HT neurons, the 5-HT metabolism of terminal Tau.P301L mice was altered. We propose that the progressive raphé tauopathy affects the 5-HT metabolism, which affects the 5-HT modulation of the respiratory network and therefore the breathing pattern. Then, 5-HT deficits contribute to the moribund phenotype of Tau.P301L mice, and possibly in patients suffering from tauopathies, including Alzheimer's disease.
Collapse
Affiliation(s)
- Clément Menuet
- Maturation, Plasticity, Physiology and Pathology of Respiration (MP3-Respiration), Unité Mixte de Recherche 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, Université Paul Cézanne, Faculté Saint Jérôme (Service 362), 13397 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rice CD, Weber SA, Waggoner AL, Jessell ME, Yates BJ. Mapping of neural pathways that influence diaphragm activity and project to the lumbar spinal cord in cats. Exp Brain Res 2010; 203:205-11. [PMID: 20186399 DOI: 10.1007/s00221-010-2197-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 02/10/2010] [Indexed: 11/26/2022]
Abstract
During breathing, the diaphragm and abdominal muscles contract out of phase. However, during other behaviors (including vomiting, postural adjustments, and locomotion) simultaneous contractions are required of the diaphragm and other muscle groups including abdominal muscles. Recent studies in cats using transneuronal tracing techniques showed that in addition to neurons in the respiratory groups, cells in the inferior and lateral vestibular nuclei (VN) and medial pontomedullary reticular formation (MRF) influence diaphragm activity. The goal of the present study was to determine whether neurons in these regions have collateralized projections to both diaphragm motoneurons and the lumbar spinal cord. For this purpose, the transneuronal tracer rabies virus was injected into the diaphragm, and the monosynaptic retrograde tracer Fluoro-Gold (FG) was injected into the Th13-L1 spinal segments. A large fraction of MRF and VN neurons (median of 72 and 91%, respectively) that were infected by rabies virus were dual-labeled by FG. These data show that many MRF and VN neurons that influence diaphragm activity also have a projection to the lumbar spinal cord and thus likely are involved in coordinating behaviors that require synchronized contractions of the diaphragm and other muscle groups.
Collapse
Affiliation(s)
- C D Rice
- Department of Otolaryngology, University of Pittsburgh, Eye and Ear Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
13
|
Badami VM, Rice CD, Lois JH, Madrecha J, Yates BJ. Distribution of hypothalamic neurons with orexin (hypocretin) or melanin concentrating hormone (MCH) immunoreactivity and multisynaptic connections with diaphragm motoneurons. Brain Res 2010; 1323:119-26. [PMID: 20144885 DOI: 10.1016/j.brainres.2010.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 01/30/2010] [Accepted: 02/02/2010] [Indexed: 11/16/2022]
Abstract
Prior work showed that neurons in the lateral, dorsal, and perifornical regions of the tuberal and mammillary levels of the hypothalamus participate in the control of breathing. The same areas also contain large numbers of neurons that produce either orexins (hypocretins) or melanin concentrating hormone (MCH). These peptides have been implicated in regulating energy balance and physiological changes that occur in transitions between sleep and wakefulness, amongst other functions. The goal of this study was to determine if hypothalamic neurons involved in respiratory control, which were identified in cats by the retrograde transneuronal transport of rabies virus from the diaphragm, were immunopositive for either orexin-A or MCH. In animals with limited rabies infection of the hypothalamus (<10 infected cells/section), where the neurons with the most direct influences on diaphragm motoneurons were presumably labeled, a large fraction (28-75%) of the infected hypothalamic neurons contained orexin-A. In the same cases, 6-33% of rabies-infected hypothalamic cells contained MCH. However, in animals with more extensive infection, where rabies had presumably passed transneuronally through more synapses, the fraction of infected cells that contained orexin-A was lower. The findings from these experiments thus support the notion that hypothalamic influences on breathing are substantially mediated through orexins or MCH.
Collapse
Affiliation(s)
- Varun M Badami
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
14
|
Lane MA, Lee KZ, Fuller DD, Reier PJ. Spinal circuitry and respiratory recovery following spinal cord injury. Respir Physiol Neurobiol 2009; 169:123-32. [PMID: 19698805 DOI: 10.1016/j.resp.2009.08.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 08/13/2009] [Accepted: 08/13/2009] [Indexed: 01/02/2023]
Abstract
Numerous studies have demonstrated anatomical and functional neuroplasticity following spinal cord injury. One of the more notable examples is return of ipsilateral phrenic motoneuron and diaphragm activity which can be induced under terminal neurophysiological conditions after high cervical hemisection in the rat. More recently it has been shown that a protracted, spontaneous recovery also occurs in this model. While a candidate neural substrate has been identified for the former, the neuroanatomical basis underlying spontaneous recovery has not been explored. Demonstrations of spinal respiratory interneurons in other species suggest such cells may play a role; however, the presence of interneurons in the adult rat phrenic circuit - the primary animal model of respiratory plasticity - has not been extensively investigated. Emerging neuroanatomical and electrophysiological results raise the possibility of a more complex neural network underlying spontaneous recovery of phrenic function and compensatory respiratory neuroplasticity after C2 hemisection than has been previously considered.
Collapse
Affiliation(s)
- Michael A Lane
- Department of Neuroscience, College of Medicine, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States
| | | | | | | |
Collapse
|