1
|
Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q, Kuca K. Age-associated changes in innate and adaptive immunity: role of the gut microbiota. Front Immunol 2024; 15:1421062. [PMID: 39351234 PMCID: PMC11439693 DOI: 10.3389/fimmu.2024.1421062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
2
|
Zia A, Pourbagher-Shahri AM, Farkhondeh T, Samarghandian S. Molecular and cellular pathways contributing to brain aging. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2021; 17:6. [PMID: 34118939 PMCID: PMC8199306 DOI: 10.1186/s12993-021-00179-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Aging is the leading risk factor for several age-associated diseases such as neurodegenerative diseases. Understanding the biology of aging mechanisms is essential to the pursuit of brain health. In this regard, brain aging is defined by a gradual decrease in neurophysiological functions, impaired adaptive neuroplasticity, dysregulation of neuronal Ca2+ homeostasis, neuroinflammation, and oxidatively modified molecules and organelles. Numerous pathways lead to brain aging, including increased oxidative stress, inflammation, disturbances in energy metabolism such as deregulated autophagy, mitochondrial dysfunction, and IGF-1, mTOR, ROS, AMPK, SIRTs, and p53 as central modulators of the metabolic control, connecting aging to the pathways, which lead to neurodegenerative disorders. Also, calorie restriction (CR), physical exercise, and mental activities can extend lifespan and increase nervous system resistance to age-associated neurodegenerative diseases. The neuroprotective effect of CR involves increased protection against ROS generation, maintenance of cellular Ca2+ homeostasis, and inhibition of apoptosis. The recent evidence about the modem molecular and cellular methods in neurobiology to brain aging is exhibiting a significant potential in brain cells for adaptation to aging and resistance to neurodegenerative disorders.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), 9717853577 Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
3
|
Gupte R, Christian S, Keselman P, Habiger J, Brooks WM, Harris JL. Evaluation of taurine neuroprotection in aged rats with traumatic brain injury. Brain Imaging Behav 2019; 13:461-471. [PMID: 29656312 PMCID: PMC6186512 DOI: 10.1007/s11682-018-9865-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Despite higher rates of hospitalization and mortality following traumatic brain injury (TBI) in patients over 65 years old, older patients remain underrepresented in drug development studies. Worse outcomes in older individuals compared to younger adults could be attributed to exacerbated injury mechanisms including oxidative stress, inflammation, blood-brain barrier disruption, and bioenergetic dysfunction. Accordingly, pleiotropic treatments are attractive candidates for neuroprotection. Taurine, an endogenous amino acid with antioxidant, anti-inflammatory, anti-apoptotic, osmolytic, and neuromodulator effects, is neuroprotective in adult rats with TBI. However, its effects in the aged brain have not been evaluated. We subjected aged male rats to a unilateral controlled cortical impact injury to the sensorimotor cortex, and randomized them into four treatment groups: saline or 25 mg/kg, 50 mg/kg, or 200 mg/kg i.p. taurine. Treatments were administered 20 min post-injury and daily for 7 days. We assessed sensorimotor function on post-TBI days 1-14 and tissue loss on day 14 using T2-weighted magnetic resonance imaging. Experimenters were blinded to the treatment group for the duration of the study. We did not observe neuroprotective effects of taurine on functional impairment or tissue loss in aged rats after TBI. These findings in aged rats are in contrast to previous reports of taurine neuroprotection in younger animals. Advanced age is an important variable for drug development studies in TBI, and further research is required to better understand how aging may influence mechanisms of taurine neuroprotection.
Collapse
Affiliation(s)
- Raeesa Gupte
- Hoglund Brain Imaging Center, University of Kansas Medical Center, KS 66160, USA, 913-588-3519,
| | - Sarah Christian
- Hoglund Brain Imaging Center, University of Kansas Medical Center, KS 66160, USA, 913-588-9070,
| | - Paul Keselman
- Hoglund Brain Imaging Center, University of Kansas Medical Center, KS 66160, USA, 913-588-9079,
| | - Joshua Habiger
- Department of Biostatistics, University of Kansas Medical Center, KS 66160, USA, 405-744-9657,
| | - William M. Brooks
- Department of Neurology, Director, Hoglund Brain Imaging Center, Director, University of Kansas Alzheimer’s Disease Center Neuroimaging Core, University of Kansas Medical Center, KS 66160, USA, 913-588-9075,
| | - Janna L. Harris
- Department of Anatomy & Cell Biology, Director, Animal Magnetic Resonance Imaging Core, Hoglund Brain Imaging Center, University of Kansas Medical Center, KS 66160, USA, 913-588-9076,
| |
Collapse
|
4
|
Akhoundzadeh K, Vakili A, Sameni HR. Bone Marrow Stromal Cells With Exercise and Thyroid Hormone Effect on Post-Stroke Injuries in Middle-aged Mice. Basic Clin Neurosci 2019; 10:73-84. [PMID: 31031895 PMCID: PMC6484183 DOI: 10.32598/bcn.9.10.355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/25/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
Introduction: Based on our previous findings, the treatment of stem cells alone or in combination with thyroid hormone (T3) and mild exercise could effectively reduce the risk of stroke damage in young mice. However, it is unclear whether this treatment is effective in aged or middle-aged mice. Therefore, this study designed to assess whether combination of Bone Marrow Stromal Cells (BMSCs) with T3 and mild treadmill exercise can decrease stroke complications in middle-aged mice. Methods: Under laser Doppler flowmetry monitoring, transient focal cerebral ischemia was produced by right Middle Cerebral Artery Occlusion (MCAO) for 45 min followed by 7 days of reperfusion in middle-aged mice. BMSCs (1×105) were injected into the right cerebral ventricle 24 h after MCAO, followed by daily injection of triiodothyronine (T3) (20 μg/100 g/d SC) and 6 days of running on a treadmill. Infarct size, neurological function, apoptotic cells and expression levels of Glial Fibrillary Acidic Protein (GFAP) were evaluated 1 week after stroke. Results: Post-ischemic treatment with BMSCs or with T3 and or mild treadmill exercise alone or in combination did not significantly change neurological function, infarct size, and apoptotic cells 7 days after ischemia in middle-aged mice (P>0.05). However, the expression of GFAP significantly reduced after treatment with BMSCs and or T3 (P<0.01). Conclusion: Our findings indicate that post-stroke treatment BMSCs with exercise and thyroid hormone cannot reverse neuronal damage 7 days after ischemia in middle-aged mice. These findings further support that age is an important variable in stroke treatment
Collapse
Affiliation(s)
- Kobra Akhoundzadeh
- Physiology Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Nursing, School of Nursing & Midwifery, Qom University of Medical Sciences, Qom, Iran
| | - Abedin Vakili
- Physiology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Reza Sameni
- Nervous System Stems Cells Research Center, Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
5
|
Florova G, Azghani AO, Karandashova S, Schaefer C, Yarovoi SV, Declerck PJ, Cines DB, Idell S, Komissarov AA. Targeting plasminogen activator inhibitor-1 in tetracycline-induced pleural injury in rabbits. Am J Physiol Lung Cell Mol Physiol 2017; 314:L54-L68. [PMID: 28860148 DOI: 10.1152/ajplung.00579.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Elevated active plasminogen activator inhibitor-1 (PAI-1) has an adverse effect on the outcomes of intrapleural fibrinolytic therapy (IPFT) in tetracycline-induced pleural injury in rabbits. To enhance IPFT with prourokinase (scuPA), two mechanistically distinct approaches to targeting PAI-1 were tested: slowing its reaction with urokinase (uPA) and monoclonal antibody (mAb)-mediated PAI-1 inactivation. Removing positively charged residues at the "PAI-1 docking site" (179RHRGGS184→179AAAAAA184) of uPA results in a 60-fold decrease in the rate of inhibition by PAI-1. Mutant prourokinase (0.0625-0.5 mg/kg; n = 12) showed efficacy comparable to wild-type scuPA and did not change IPFT outcomes ( P > 0.05). Notably, the rate of PAI-1-independent intrapleural inactivation of mutant uPA was 2 times higher ( P < 0.05) than that of the wild-type enzyme. Trapping PAI-1 in a "molecular sandwich"-type complex with catalytically inactive two-chain urokinase with Ser195Ala substitution (S195A-tcuPA; 0.1 and 0.5 mg/kg) did not improve the efficacy of IPFT with scuPA (0.0625-0.5 mg/kg; n = 11). IPFT failed in the presence of MA-56A7C10 (0.5 mg/kg; n = 2), which forms a stable intrapleural molecular sandwich complex, allowing active PAI-1 to accumulate by blocking its transition to a latent form. In contrast, inactivation of PAI-1 by accelerating the active-to-latent transition mediated by mAb MA-33B8 (0.5 mg/kg; n = 2) improved the efficacy of IPFT with scuPA (0.25 mg/kg). Thus, under conditions of slow (4-8 h) fibrinolysis in tetracycline-induced pleural injury in rabbits, only the inactivation of PAI-1, but not a decrease in the rate of its reaction with uPA, enhances IPFT. Therefore the rate of fibrinolysis, which varies in different pathologic states, could affect the selection of PAI-1 inhibitors to enhance fibrinolytic therapy.
Collapse
Affiliation(s)
- Galina Florova
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Ali O Azghani
- Department of Biology, The University of Texas at Tyler, Tyler, Texas
| | - Sophia Karandashova
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Chris Schaefer
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Serge V Yarovoi
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine , Philadelphia, Pennsylvania
| | - Paul J Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven , Belgium
| | - Douglas B Cines
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine , Philadelphia, Pennsylvania
| | - Steven Idell
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Andrey A Komissarov
- Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler , Tyler, Texas
| |
Collapse
|
6
|
Kawai T, Okochi Y, Ozaki T, Imura Y, Koizumi S, Yamazaki M, Abe M, Sakimura K, Yamashita T, Okamura Y. Unconventional role of voltage‐gated proton channels (
VSOP
/Hv1) in regulation of microglial
ROS
production. J Neurochem 2017. [DOI: 10.1111/jnc.14106] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Takafumi Kawai
- Integrative Physiology Department of Physiology Graduate School of Medicine & Frontier Biosciences Osaka University Suita Osaka Japan
| | - Yoshifumi Okochi
- Integrative Physiology Department of Physiology Graduate School of Medicine & Frontier Biosciences Osaka University Suita Osaka Japan
| | - Tomohiko Ozaki
- Department of Molecular Neuroscience Graduate School of Medicine Osaka University Suita Osaka Japan
| | - Yoshio Imura
- Department of Neuropharmacology Interdisciplinary Graduate School of Medicine University of Yamanashi Chuo Yamanashi Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology Interdisciplinary Graduate School of Medicine University of Yamanashi Chuo Yamanashi Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology Brain Research Institute Niigata University Niigata Japan
| | - Manabu Abe
- Department of Cellular Neurobiology Brain Research Institute Niigata University Niigata Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology Brain Research Institute Niigata University Niigata Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience Graduate School of Medicine Osaka University Suita Osaka Japan
| | - Yasushi Okamura
- Integrative Physiology Department of Physiology Graduate School of Medicine & Frontier Biosciences Osaka University Suita Osaka Japan
| |
Collapse
|
7
|
Chisholm NC, Sohrabji F. Astrocytic response to cerebral ischemia is influenced by sex differences and impaired by aging. Neurobiol Dis 2016; 85:245-253. [PMID: 25843666 PMCID: PMC5636213 DOI: 10.1016/j.nbd.2015.03.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/16/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke occurs more often among the elderly, and within this demographic, women are at an increased risk for stroke and have poorer functional recovery than men. This is also well replicated in animal studies where aging females are shown to have more extensive brain tissue loss as compared to adult females. Astrocytes provide nutrients for neurons, regulate glutamate levels, and release neurotrophins and thus play a key role in the events that occur following ischemia. In addition, astrocytes express receptors for gonadal hormones and synthesize several neurosteroids suggesting that the sex differences in stroke outcome may be mediated through astrocytes. This review discusses key astrocytic responses to ischemia including, reactive gliosis, excitotoxicity, and neuroinflammation. In light of the age and sex differences in stroke outcomes, this review highlights how aging and gonadal hormones influence these responses. Lastly, astrocyte specific changes in gene expression and epigenetic modifications during aging and following ischemia are discussed as possible molecular mechanisms for impaired astrocytic functioning.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
8
|
Tan Z, Lucke-Wold BP, Logsdon AF, Turner RC, Tan C, Li X, Hongpaison J, Alkon DL, Simpkins JW, Rosen CL, Huber JD. Bryostatin extends tPA time window to 6 h following middle cerebral artery occlusion in aged female rats. Eur J Pharmacol 2015; 764:404-412. [PMID: 26189021 PMCID: PMC4698807 DOI: 10.1016/j.ejphar.2015.07.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 02/08/2023]
Abstract
Blood-brain barrier (BBB) disruption and hemorrhagic transformation (HT) following ischemic/reperfusion injury contributes to post-stroke morbidity and mortality. Bryostatin, a potent protein kinase C (PKC) modulator, has shown promise in treating neurological injury. In the present study, we tested the hypothesis that administration of bryostatin would reduce BBB disruption and HT following acute ischemic stroke; thus, prolonging the time window for administering recombinant tissue plasminogen activator (r-tPA). Acute cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery (MCAO) in 18-20-month-old female rats using an autologous blood clot with delayed r-tPA reperfusion. Bryostatin (or vehicle) was administered at 2 h post-MCAO and r-tPA was administered at 6 h post-MCAO. Functional assessment, lesion volume, and hemispheric swelling measurements were performed at 24 h post-MCAO. Assessment of BBB permeability, measurement of hemoglobin, assessment of matrix metalloproteinase (MMP) levels by gel zymography, and measurement of PKCε, PKCα, PKCδ expression by western blot were conducted at 24 h post-MCAO. Rats treated with bryostatin prior to r-tPA administration had decreased mortality and hemispheric swelling when compared with rats treated with r-tPA alone. Administration of bryostatin also limited BBB disruption and HT and down-regulated MMP-9 expression while up-regulating PKCε expression at 24 h post-MCAO. Bryostatin administration ameliorates BBB disruption and reduces the risk of HT by down-regulating MMP-9 activation and up-regulating PKCε. In this proof-of-concept study, bryostatin treatment lengthened the time-to-treatment window and enhanced the efficacy and safety of thrombolytic therapy.
Collapse
Affiliation(s)
- Zhenjun Tan
- Department of Neurosurgery, School of Medicine, United States
| | | | - Aric F Logsdon
- Department of Basic Pharmaceutical Science, School of Pharmacy, United States
| | - Ryan C Turner
- Department of Neurosurgery, School of Medicine, United States
| | - Cong Tan
- Department of Physiology and Pharmacology, School of Medicine, United States
| | - Xinlan Li
- Department of Neurosurgery, School of Medicine, United States
| | - Jarin Hongpaison
- Blanchette Rockfeller Neuroscience Institute, West Virginia University, United States
| | - Daniel L Alkon
- Blanchette Rockfeller Neuroscience Institute, West Virginia University, United States
| | - James W Simpkins
- Department of Physiology and Pharmacology, School of Medicine, United States
| | - Charles L Rosen
- Department of Neurosurgery, School of Medicine, United States
| | - Jason D Huber
- Department of Basic Pharmaceutical Science, School of Pharmacy, United States.
| |
Collapse
|
9
|
Kim TH, Vemuganti R. Effect of sex and age interactions on functional outcome after stroke. CNS Neurosci Ther 2015; 21:327-36. [PMID: 25404174 PMCID: PMC6495347 DOI: 10.1111/cns.12346] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 01/18/2023] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Experimental and clinical studies showed that sex and age play an important role in deciding the outcome after stroke. At younger ages, males were shown to have a higher risk for stroke than females. However, this trend reverses in older ages particularly when females reach menopause. Many preclinical studies indicate that steroid hormones modulate the age-dependent differential stroke outcome. In addition, patterns of cell death pathways activated following cerebral ischemia are distinct between males and females, but independent of steroid hormones. Recent studies also indicate that microRNAs play important roles in mediating sex-specific stroke outcome by regulating stroke-related genes. This review discusses the contribution of sex and age to outcome after stroke with particular emphasis on the experimental studies that examined the effects of steroid hormones, differential cell death pathways, and involvement of sex-specific microRNAs following cerebral ischemia. Current understanding of the role of thrombolytic agents in stroke therapy is also discussed.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
10
|
White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Exp Neurol 2015; 272:109-19. [PMID: 25836044 DOI: 10.1016/j.expneurol.2015.03.021] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 01/04/2023]
Abstract
Most of the successes in experimental models of stroke have not translated well to the clinic. One potential reason for this failure is that stroke mainly afflicts the elderly and the majority of experimental stroke studies rely on data gathered from young adult animals. Therefore, in the present study we established a reliable, reproducible model of stroke with low mortality in aged (18month) male mice and contrasted their pathophysiological changes with those in young (2month) animals. To this end, mice were subjected to permanent tandem occlusion of the left distal middle cerebral artery (dMCAO) with ipsilateral common carotid artery occlusion (CCAO). Cerebral blood flow (CBF) was evaluated repeatedly during and after stroke. Reduction of CBF was more dramatic and sustained in aged mice. Aged mice exhibited more severe long-term sensorimotor deficits, as manifested by deterioration of performance in the Rotarod and hanging wire tests up to 35d after stroke. Aged mice also exhibited significantly worse long-term cognitive deficits after stroke, as measured by the Morris water maze test. Consistent with these behavioral observations, brain infarct size and neuronal tissue loss after dMCAO were significantly larger in aged mice at 2d and 14d, respectively. The young versus aged difference in neuronal tissue loss, however, did not persist until 35d after dMCAO. In contrast to the transient difference in neuronal tissue loss, we found significant and long lasting deterioration of white matter in aged animals, as revealed by the loss of myelin basic protein (MBP) staining in the striatum at 35d after dMCAO. We further examined the expression of M1 (CD16/CD32) and M2 (CD206) markers in Iba-1(+) microglia by double immunofluorescent staining. In both young and aged mice, the expression of M2 markers peaked around 7d after stroke whereas the expression of M1 markers peaked around 14d after stroke, suggesting a progressive M2-to-M1 phenotype shift in both groups. However, aged mice exhibited significantly reduced M2 polarization compared to young adults. Remarkably, we discovered a strong positive correlation between favorable neurological outcomes after dMCAO and MBP levels or the number of M2 microglia/macrophages. In conclusion, our studies suggest that the distal MCAO stroke model consistently results in ischemic brain injury with long-term behavioral deficits, and is therefore suitable for the evaluation of long-term stroke outcomes. Furthermore, aged mice exhibit deterioration of functional outcomes after stroke and this deterioration is linked to white matter damage and reductions in M2 microglia/macrophage polarization.
Collapse
|
11
|
Ungvari Z, Sonntag WE. Brain and Cerebrovascular Aging - New Mechanisms and Insights. J Gerontol A Biol Sci Med Sci 2014; 69:1307-10. [DOI: 10.1093/gerona/glu187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Tan Z, Li X, Turner RC, Logsdon AF, Lucke-Wold B, DiPasquale K, Jeong SS, Chen R, Huber JD, Rosen CL. Combination treatment of r-tPA and an optimized human apyrase reduces mortality rate and hemorrhagic transformation 6h after ischemic stroke in aged female rats. Eur J Pharmacol 2014; 738:368-73. [PMID: 24933645 PMCID: PMC4126582 DOI: 10.1016/j.ejphar.2014.05.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 02/05/2023]
Abstract
Recombinant tissue plasminogen activator (r-tPA) is the only FDA-approved drug treatment for ischemic stroke and must be used within 4.5h. Thrombolytic treatment with r-tPA has deleterious effects on the neurovascular unit that substantially increases the risk of intracerebral hemorrhage if administered too late. These therapeutic shortcomings necessitate additional investigation into agents that can extend the therapeutic window for safe use of thrombolytics. In this study, combination of r-tPA and APT102, a novel form of human apyrase/ADPase, was investigated in a clinically-relevant aged-female rat embolic ischemic stroke model. We propose that successfully extending the therapeutic window of r-tPA administration would represent a significant advance in the treatment of ischemic stroke due to a significant increase in the number of patients eligible for treatment. Results of our study showed significantly reduced mortality from 47% with r-tPA alone to 16% with co-administration of APT102 and r-tPA. Co-administration decreased cortical (47 ± 5% vs. 29 ± 5%), striatal (50 ± 2%, vs. 40 ± 3%) and total (48 ± 3%vs. 33 ± 4%) hemispheric infarct volume compared to r-tPA alone. APT102 improved neurological outcome (8.9±0.6, vs. 6.8 ± 0.8) and decreased hemoglobin extravasation in cortical tissue (1.9 ± 0.1mg/dl vs. 1.4 ± 0.1mg/dl) striatal tissue (2.1 ± 0.3mg/dl vs. 1.4 ± 0.1mg/dl) and whole brain tissue (2.0 ± 0.2mg/dl vs. 1.4 ± 0.1mg/dl). These data suggest that APT102 can safely extend the therapeutic window for r-tPA mediated reperfusion to 6h following experimental stroke without increased hemorrhagic transformation. APT102 offers to be a viable adjunct therapeutic option to increase the number of clinical patients eligible for thrombolytic treatment after ischemic stroke.
Collapse
Affiliation(s)
- Zhenjun Tan
- Department of Neurosurgery, West Virginia University School of Medicine, Health Sciences Center, One Medical Center Drive, Suite 4300, PO Box 9183, Morgantown, WV 26506-9183, USA
| | - Xinlan Li
- Department of Neurosurgery, West Virginia University School of Medicine, Health Sciences Center, One Medical Center Drive, Suite 4300, PO Box 9183, Morgantown, WV 26506-9183, USA
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Health Sciences Center, One Medical Center Drive, Suite 4300, PO Box 9183, Morgantown, WV 26506-9183, USA
| | - Aric F Logsdon
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26505, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Health Sciences Center, One Medical Center Drive, Suite 4300, PO Box 9183, Morgantown, WV 26506-9183, USA
| | - Kenneth DiPasquale
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26505, USA
| | | | - Ridong Chen
- APT Therapeutics Inc, St. Louis, MO 63108, USA
| | - Jason D Huber
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26505, USA
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Health Sciences Center, One Medical Center Drive, Suite 4300, PO Box 9183, Morgantown, WV 26506-9183, USA.
| |
Collapse
|
13
|
Yan H, Mitschelen M, Toth P, Ashpole NM, Farley JA, Hodges EL, Warrington JP, Han S, Fung KM, Csiszar A, Ungvari Z, Sonntag WE. Endothelin-1-induced focal cerebral ischemia in the growth hormone/IGF-1 deficient Lewis Dwarf rat. J Gerontol A Biol Sci Med Sci 2014; 69:1353-62. [PMID: 25098324 DOI: 10.1093/gerona/glu118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aging is a major risk factor for cerebrovascular disease. Growth hormone (GH) and its anabolic mediator, insulin-like growth factor (IGF)-1, decrease with advancing age and this decline has been shown to promote vascular dysfunction. In addition, lower GH/IGF-1 levels are associated with higher stroke mortality in humans. These results suggest that decreased GH/IGF-1 level is an important factor in increased risk of cerebrovascular diseases. This study was designed to assess whether GH/IGF-1-deficiency influences the outcome of cerebral ischemia. We found that endothelin-1-induced middle cerebral artery occlusion resulted in a modest but nonsignificant decrease in cerebral infarct size in GH/IGF-1 deficient dw/dw rats compared with control heterozygous littermates and dw/dw rats with early-life GH treatment. Expression of endothelin receptors and endothelin-1-induced constriction of the middle cerebral arteries were similar in the three experimental groups. Interestingly, dw/dw rats exhibited reduced brain edema and less astrocytic infiltration compared with their heterozygous littermates and this effect was reversed by GH-treatment. Because reactive astrocytes are critical for the regulation of poststroke inflammatory processes, maintenance of the blood-brain barrier and neural repair, further studies are warranted to determine the long-term functional consequences of decreased astrocytic activation in GH/IGF-1 deficient animals after cerebral ischemia.
Collapse
Affiliation(s)
- Han Yan
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Matthew Mitschelen
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Nicole M Ashpole
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Julie A Farley
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Erik L Hodges
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Junie P Warrington
- Present address: Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Song Han
- Present address: Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.
| |
Collapse
|
14
|
Dong P, Zhao J, Zhang Y, Dong J, Zhang L, Li D, Li L, Zhang X, Yang B, Lei W. Aging causes exacerbated ischemic brain injury and failure of sevoflurane post-conditioning: role of B-cell lymphoma-2. Neuroscience 2014; 275:2-11. [PMID: 24929064 DOI: 10.1016/j.neuroscience.2014.05.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/15/2014] [Accepted: 05/29/2014] [Indexed: 11/26/2022]
Abstract
Aging is associated with exacerbated brain injury after ischemic stroke. Herein, we explored the possible mechanisms underlying the age-associated exacerbated brain injury after ischemic stroke and determined whether therapeutic intervention with anesthetic post-conditioning would provide neuroprotection in aged rats. Male Fisher 344 rats (young, 4 months; aged, 24 months) underwent 2h of middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion, with or without sevoflurane post-conditioning for 15 min immediately at the onset of reperfusion. Compared with young rats, aged rats showed larger infarct size, worse neurological scores and more TUNEL-positive cells in the penumbral cerebral cortex at 24h after MCAO. However, edema formation and motor coordination were similar in both groups. Sevoflurane reduced the infarct size, edema formation, and TUNEL-positive cells, and improved the neurological outcome in young rats but not in aged rats. Molecular studies revealed that basal expression of the anti-apoptotic molecule B-cell lymphoma-2 (Bcl-2) in the brain was lower in aged rats compared with young rats before MCAO, while basal expression of the pro-apoptotic molecule Bcl-2-associated X protein (Bax) showed similar levels in both groups. MCAO reduced Bcl-2 expression and increased Bax expression in both groups; however, Bax increase was more pronounced in aged rats. In young rats, sevoflurane reversed the above MCAO-induced changes. In contrast, sevoflurane failed to enhance Bcl-2 expression but decreased Bax expression in aged rats. These findings suggest that aging-associated reduction in basal Bcl-2 expression in the brain contributes to increased neuronal injury by enhancing cell apoptosis after ischemic stroke. Sevoflurane post-conditioning failed to provide neuroprotection in aged rats, probably due to its inability to increase Bcl-2 levels and prevent apoptosis in the brain.
Collapse
Affiliation(s)
- P Dong
- Department of Anesthesiology, Qilu Hospital, Shandong University, No. 44 Wenhua Xi Road, Jinan City, Shandong Province 250012, China
| | - J Zhao
- Department of Anesthesiology, The People's Hospital of Chiping, No. 136 Wenhua Road, Chiping City, Shandong Province 252100, China
| | - Y Zhang
- Department of Anesthesiology, The First People's Hospital of Jining, No. 6 Jiankang Road, Jining City, Shandong Province 272011, China
| | - J Dong
- Department of Gynaecology and Obstetrics, Qilu Hospital, Shandong University, No. 44 Wenhua Xi Road, Jinan City, Shandong Province 250012, China
| | - L Zhang
- Department of Anesthesiology, Qilu Hospital, Shandong University, No. 44 Wenhua Xi Road, Jinan City, Shandong Province 250012, China
| | - D Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, No. 44 Wenhua Xi Road, Jinan City, Shandong Province 250012, China
| | - L Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, No. 44 Wenhua Xi Road, Jinan City, Shandong Province 250012, China
| | - X Zhang
- Department of Anesthesiology, Qilu Hospital, Shandong University, No. 44 Wenhua Xi Road, Jinan City, Shandong Province 250012, China
| | - B Yang
- Department of Anesthesiology, Qilu Hospital, Shandong University, No. 44 Wenhua Xi Road, Jinan City, Shandong Province 250012, China
| | - W Lei
- Department of Anesthesiology, Qilu Hospital, Shandong University, No. 44 Wenhua Xi Road, Jinan City, Shandong Province 250012, China.
| |
Collapse
|
15
|
Sohrabji F, Bake S, Lewis DK. Age-related changes in brain support cells: Implications for stroke severity. Neurochem Int 2013; 63:291-301. [PMID: 23811611 PMCID: PMC3955169 DOI: 10.1016/j.neuint.2013.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/31/2013] [Accepted: 06/19/2013] [Indexed: 12/14/2022]
Abstract
Stroke is one of the leading causes of adult disability and the fourth leading cause of mortality in the US. Stroke disproportionately occurs among the elderly, where the disease is more likely to be fatal or lead to long-term supportive care. Animal models, where the ischemic insult can be controlled more precisely, also confirm that aged animals sustain more severe strokes as compared to young animals. Furthermore, the neuroprotection usually seen in younger females when compared to young males is not observed in older females. The preclinical literature thus provides a valuable resource for understanding why the aging brain is more susceptible to severe infarction. In this review, we discuss the hypothesis that stroke severity in the aging brain may be associated with reduced functional capacity of critical support cells. Specifically, we focus on astrocytes, that are critical for detoxification of the brain microenvironment and endothelial cells, which play a crucial role in maintaining the blood brain barrier. In view of the sex difference in stroke severity, this review also discusses studies of middle-aged acyclic females as well as the effects of the estrogen on astrocytes and endothelial cells.
Collapse
Affiliation(s)
- Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States.
| | | | | |
Collapse
|
16
|
Liu F, McCullough LD. Interactions between age, sex, and hormones in experimental ischemic stroke. Neurochem Int 2012; 61:1255-65. [PMID: 23068990 DOI: 10.1016/j.neuint.2012.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/27/2022]
Abstract
Age, sex, and gonadal hormones have profound effects on ischemic stroke outcomes, although how these factors impact basic stroke pathophysiology remains unclear. There is a plethora of inconsistent data reported throughout the literature, primarily due to differences in the species examined, the timing and methods used to evaluate injury, the models used, and confusion regarding differences in stroke incidence as seen in clinical populations vs. effects on acute neuroprotection or neurorepair in experimental stroke models. Sex and gonadal hormone exposure have considerable independent impact on stroke outcome, but these factors also interact with each other, and the contribution of each differs throughout the lifespan. The contribution of sex and hormones to experimental stroke will be the focus of this review. Recent advances and our current understanding of age, sex, and hormone interactions in ischemic stroke with a focus on inflammation will be discussed.
Collapse
Affiliation(s)
- Fudong Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | | |
Collapse
|
17
|
Ankolekar S, Rewell S, Howells DW, Bath PMW. The Influence of Stroke Risk Factors and Comorbidities on Assessment of Stroke Therapies in Humans and Animals. Int J Stroke 2012; 7:386-97. [DOI: 10.1111/j.1747-4949.2012.00802.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The main driving force behind the assessment of novel pharmacological agents in animal models of stroke is to deliver new drugs to treat the human disease rather than to increase knowledge of stroke pathophysiology. There are numerous animal models of the ischaemic process and it appears that the same processes operate in humans. Yet, despite these similarities, the drugs that appear effective in animal models have not worked in clinical trials. To date, tissue plasminogen activator is the only drug that has been successfully used at the bedside in hyperacute stroke management. Several reasons have been put forth to explain this, but the failure to consider comorbidities and risk factors common in older people is an important one. In this article, we review the impact of the risk factors most studied in animal models of acute stroke and highlight the parallels with human stroke, and, where possible, their influence on evaluation of therapeutic strategies.
Collapse
Affiliation(s)
| | - Sarah Rewell
- Florey Neuroscience Institutes, Melbourne Brain Centre, Heidelberg, Australia
| | - David W. Howells
- Florey Neuroscience Institutes, Melbourne Brain Centre, Heidelberg, Australia
| | | |
Collapse
|
18
|
Armstead WM, Riley J, Cines DB, Higazi AAR. Combination therapy with glucagon and a novel plasminogen activator inhibitor-1-derived peptide enhances protection against impaired cerebrovasodilation during hypotension after traumatic brain injury through inhibition of ERK and JNK MAPK. Neurol Res 2012; 34:530-7. [PMID: 22642975 DOI: 10.1179/1743132812y.0000000039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Outcome of traumatic brain injury (TBI) is impaired by hypotension and glutamate, and TBI-associated release of endogenous tissue plasminogen activator (tPA) impairs cerebral autoregulation. Glucagon decreases central nervous system glutamate, lessens neuronal cell injury, and improves neurological score in mice after TBI. Glucagon partially protects against impaired cerebrovasodilation during hypotension after TBI in piglets by upregulating cAMP which decreases release of tPA. Pial artery dilation during hypotension is due to release of cAMP-dependent dilator prostaglandins (PG), such as PGE2 and PGI2. TBI impairs PGE2 and PGI2-mediated pial artery dilation, which contributes to disturbed cerebral autoregulation post-insult, by upregulating mitogen-activated protein kinase (MAPK). This study was designed to investigate relationships between tPA, prostaglandins, and MAPK as a mechanism to improve the efficacy of glucagon-mediated preservation of cerebrovasodilation during hypotension after TBI. METHODS Lateral fluid percussion brain injury (FPI) was induced in piglets equipped with a closed cranial window. ERK and JNK MAPK concentrations in cerebrospinal fluid were quantified by enzyme-linked immunosorbent assay. RESULTS Cerebrospinal fluid JNK MAPK was increased by FPI, but blunted by glucagon and the novel plasminogen activator inhibitor-1-derived peptide (PAI-1DP), Ac-RMAPEEIIMDRPFLYVVR-amide. FPI modestly increased, while glucagon and PAI-1DP decreased ERK MAPK. PGE2, PGI2, N-methyl-D-aspartate, and hypotension-induced pial artery dilation was blunted after FPI, partially protected by glucagon, and fully protected by glucagon+PAI-1DP, glucagon+JNK antagonist SP600125 or glucagon+ERK inhibitor U 0126. DISCUSSION Glucagon+PAI-1DP act in concert to protect against impairment of cerebrovasodilation during hypotension after TBI via inhibition of ERK and JNK MAPK.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
19
|
Cerebroprotective effects of TAK-937, a cannabinoid receptor agonist, on ischemic brain damage in middle cerebral artery occluded rats and non-human primates. Brain Res 2012; 1430:93-100. [DOI: 10.1016/j.brainres.2011.10.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/13/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022]
|
20
|
Popa-Wagner A, Buga AM, Kokaia Z. Perturbed cellular response to brain injury during aging. Ageing Res Rev 2011; 10:71-9. [PMID: 19900590 DOI: 10.1016/j.arr.2009.10.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 10/28/2009] [Indexed: 12/22/2022]
Abstract
Old age is associated with an enhanced susceptibility to stroke and poor recovery from brain injury, but the cellular processes underlying these phenomena are only partly understood. Therefore, studying the basic mechanisms underlying structural and functional recovery after brain injury in aged subjects is of considerable clinical interest. Behavioral and cytological analyses of rodents that have undergone experimental injury show that: (a) behaviorally, aged rodents are more severely impaired by ischemia than are young animals, and older rodents also show diminished functional recovery; (b) compared to young animals, aged animals develop a larger infarct area, as well as a necrotic zone characterized by a higher rate of cellular degeneration and a larger number of apoptotic cells; (c) both astrocytes and macrophages are activated strongly and early following stroke in aged rodents; (d) in older animals, the premature, intense cytoproliferative activity following brain injury leads to the precipitous formation of growth-inhibiting scar tissue, a phenomenon amplified by the persistent expression of neurotoxic factors; (e) though the timing is altered, the regenerative capability of the brain is largely preserved in rats, at least into early old age. Whether endogenous neurogenesis contributes to spontaneous recovery after stroke has not yet been established. If neurogenesis from endogenous neuronal stem cells is to be used therapeutically, an individual approach will be required to assess the possible extent of neurogenic response as well as the possibilities to alter this response for functional improvement or prevention of further loss of brain function.
Collapse
|
21
|
Age exaggerates proinflammatory cytokine signaling and truncates signal transducers and activators of transcription 3 signaling following ischemic stroke in the rat. Neuroscience 2010; 170:633-44. [PMID: 20633608 DOI: 10.1016/j.neuroscience.2010.07.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/01/2010] [Accepted: 07/06/2010] [Indexed: 11/23/2022]
Abstract
Neuroinflammation is associated with glial activation following a variety of brain injuries, including stroke. While activation of perilesional astrocytes and microglia following ischemic brain injury is well documented, the influence of age on these cellular responses after stroke is unclear. This study investigated the influence of advanced age on neuronal degeneration, neuroinflammation, and glial activation in female Sprague-Dawley rats after reversible embolic occlusion of the middle cerebral artery (MCAO). Results indicate that in comparison to young adult rats (3 months), aged rats (18 months) showed enhanced neuronal degeneration, altered microglial response, and a markedly increased expression of proinflammatory cytokines/chemokines following MCAO. In addition, the time-course for activation of signal transducers and activators of transcription 3 (STAT3), the signaling mechanism that regulates astrocyte reactivity, was truncated in the aged rats after MCAO. Moreover, the expression of suppressor of cytokine signaling 3 (SOCS3), which is associated with termination of astrogliosis, was enhanced as a function of age after MCAO. These findings are suggestive of an enhanced proinflammatory response and a truncated astroglial response as a function of advanced age following MCAO. These data provide further evidence of the prominent role played by age in the molecular and cellular responses to ischemic stroke and suggest that astrocytes may represent targets for future therapies aimed at improving stroke outcome.
Collapse
|
22
|
Armstead WM, Riley J, Kiessling JW, Cines DB, Higazi AAR. Novel plasminogen activator inhibitor-1-derived peptide protects against impairment of cerebrovasodilation after photothrombosis through inhibition of JNK MAPK. Am J Physiol Regul Integr Comp Physiol 2010; 299:R480-5. [PMID: 20538898 DOI: 10.1152/ajpregu.00256.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sole FDA-approved treatment for acute stroke is recombinant tissue-type plasminogen activator (rtPA). However, rtPA aggravates the impairment of cerebrovasodilation induced by global hypoxia/ischemia; this impairment is attenuated by the preinjury treatment with the plasminogen activator inhibitor derivative EEIIMD. MAPK (a family of kinases, p38, and JNK) is upregulated after cerebral ischemia. In this study, we determined whether the novel plasminogen activator inhibitor-derived peptide, Ac-RMAPEEIIMDRPFLYVVR-amide, (PAI-1-DP) given 30 min before or 2 h after, focal central nervous system injury induced by photothrombosis would preserve responses to cerebrovasodilators and the role of p38 and JNK MAPK in such effects. Cerebrospinal fluid JNK and p38 levels were elevated by photothrombotic injury, an effect potentiated by rtPA. Cerebrovasodilation was blunted by photothrombosis and reversed to vasoconstriction by rtPA but restored to dilation by PAI-1-DP pre- and posttreatment. PAI-1-DP blocked JNK, but preserved p38 MAPK upregulation after photothrombosis. The JNK MAPK antagonist SP600125 prevented, and the p38 antagonist SB203580 potentiated, impaired cerebrovasodilation after photothrombosis. These data indicate that rtPA impairs cerebrovasodilation after injury by activating JNK, while p38 MAPK is protective, and that the novel peptide PAI-1-DP protects by inhibiting activation of JNK by rtPA. JNK MAPK inhibitors, including PAI-1-DP, may offer a novel approach to increase the benefit-to-risk ratio of thrombolytic therapy and enable its use in central nervous system ischemic disorders.
Collapse
Affiliation(s)
- William M Armstead
- Dept. of Anesthesiology and Critical Care, 3620 Hamilton Walk, JM3, Univ. of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
23
|
Popa-Wagner A, Stöcker K, Balseanu AT, Rogalewski A, Diederich K, Minnerup J, Margaritescu C, Schäbitz WR. Effects of Granulocyte-Colony Stimulating Factor After Stroke in Aged Rats. Stroke 2010; 41:1027-31. [DOI: 10.1161/strokeaha.109.575621] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Aurel Popa-Wagner
- From the Department of Neurology (A.P.-W., A.B., C.M.), University of Greifswald, Greifswald, Germany; the Department of Molecular Medicine (A.B., C.M.), University of Medicine and Pharmacy, Craiova, Romania; and the Department of Neurology (K.S., A.R., K.D., J.M., W.-R.S.), EVK Bielefeld and University of Münster, Münster, Germany
| | - Kai Stöcker
- From the Department of Neurology (A.P.-W., A.B., C.M.), University of Greifswald, Greifswald, Germany; the Department of Molecular Medicine (A.B., C.M.), University of Medicine and Pharmacy, Craiova, Romania; and the Department of Neurology (K.S., A.R., K.D., J.M., W.-R.S.), EVK Bielefeld and University of Münster, Münster, Germany
| | - Adrian Tudor Balseanu
- From the Department of Neurology (A.P.-W., A.B., C.M.), University of Greifswald, Greifswald, Germany; the Department of Molecular Medicine (A.B., C.M.), University of Medicine and Pharmacy, Craiova, Romania; and the Department of Neurology (K.S., A.R., K.D., J.M., W.-R.S.), EVK Bielefeld and University of Münster, Münster, Germany
| | - Andreas Rogalewski
- From the Department of Neurology (A.P.-W., A.B., C.M.), University of Greifswald, Greifswald, Germany; the Department of Molecular Medicine (A.B., C.M.), University of Medicine and Pharmacy, Craiova, Romania; and the Department of Neurology (K.S., A.R., K.D., J.M., W.-R.S.), EVK Bielefeld and University of Münster, Münster, Germany
| | - Kai Diederich
- From the Department of Neurology (A.P.-W., A.B., C.M.), University of Greifswald, Greifswald, Germany; the Department of Molecular Medicine (A.B., C.M.), University of Medicine and Pharmacy, Craiova, Romania; and the Department of Neurology (K.S., A.R., K.D., J.M., W.-R.S.), EVK Bielefeld and University of Münster, Münster, Germany
| | - Jens Minnerup
- From the Department of Neurology (A.P.-W., A.B., C.M.), University of Greifswald, Greifswald, Germany; the Department of Molecular Medicine (A.B., C.M.), University of Medicine and Pharmacy, Craiova, Romania; and the Department of Neurology (K.S., A.R., K.D., J.M., W.-R.S.), EVK Bielefeld and University of Münster, Münster, Germany
| | - Claudiu Margaritescu
- From the Department of Neurology (A.P.-W., A.B., C.M.), University of Greifswald, Greifswald, Germany; the Department of Molecular Medicine (A.B., C.M.), University of Medicine and Pharmacy, Craiova, Romania; and the Department of Neurology (K.S., A.R., K.D., J.M., W.-R.S.), EVK Bielefeld and University of Münster, Münster, Germany
| | - Wolf-Rüdiger Schäbitz
- From the Department of Neurology (A.P.-W., A.B., C.M.), University of Greifswald, Greifswald, Germany; the Department of Molecular Medicine (A.B., C.M.), University of Medicine and Pharmacy, Craiova, Romania; and the Department of Neurology (K.S., A.R., K.D., J.M., W.-R.S.), EVK Bielefeld and University of Münster, Münster, Germany
| |
Collapse
|
24
|
Zhang L, Zhang ZG, Buller B, Jiang J, Jiang Y, Zhao D, Liu X, Morris D, Chopp M. Combination treatment with VELCADE and low-dose tissue plasminogen activator provides potent neuroprotection in aged rats after embolic focal ischemia. Stroke 2010; 41:1001-7. [PMID: 20203318 DOI: 10.1161/strokeaha.109.577288] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Treatment with a selective proteasome inhibitor, VELCADE, in combination with tissue plasminogen activator (tPA) extended the therapeutic window to 6 hours in young rats after stroke. However, stroke is a major cause of death and disability in the elderly. The present study investigated the effect of VELCADE in combination with a low-dose tPA on aged rats after embolic stroke. METHODS Male Wistar rats at the age of 18 to 20 months were treated with VELCADE (0.2 mg/kg) alone, a low-dose tPA (5 mg/kg) alone, combination of VELCADE and tPA, or saline 2 hours after embolic middle cerebral artery occlusion. To test the contribution of endothelial nitric oxide synthase to VELCADE-mediated neuroprotection, endothelial nitric oxide synthase knockout and wild-type mice were treated with VELCADE (0.5 mg/kg) 2 hours after embolic stroke. RESULTS Treatment with VELCADE significantly reduced infarct volume, whereas tPA alone did not reduce infarct volume and aggravated blood-brain barrier disruption in aged rats compared with saline-treated rats. However, the combination treatment significantly enhanced the reduction of infarct volume, which was associated with an increase in endothelial nitric oxide synthase activity compared with saline-treated rats. Additionally, the combination treatment promoted thrombolysis and did not increase the incidence of hemorrhage transformation. VELCADE significantly reduced lesion volume in wild-type mice but failed to significantly reduce lesion volume in endothelial nitric oxide synthase knockout mice. CONCLUSIONS Treatment with VELCADE exerts a neuroprotective effect in aged rats after stroke. The combination of VELCADE with the low-dose tPA further amplifies the neuroprotective effect. Endothelial nitric oxide synthase at least partly contributes to VELCADE-mediated neuroprotection after stroke.
Collapse
Affiliation(s)
- Li Zhang
- Henry Ford Health System, Department of Neurology, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Blood-brain barrier permeability and tPA-mediated neurotoxicity. Neuropharmacology 2010; 58:972-80. [PMID: 20060006 DOI: 10.1016/j.neuropharm.2009.12.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/26/2009] [Accepted: 12/18/2009] [Indexed: 11/20/2022]
Abstract
Tissue type plasminogen activator (tPA) can induce neuronal apoptosis, disrupt the blood-brain barrier (BBB), and promote dilation of the cerebral vasculature. The timing, sequence and contributions of these and other deleterious effects of tPA and their contribution to post-ischemic brain damage after stroke, have not been fully elucidated. To dissociate the effects of tPA on BBB permeability, cerebral vasodilation and protease-dependent pathways, we developed several tPA mutants and PAI-1 derived peptides constructed by computerized homology modeling of tPA. Our data show that intravenous administration of human tPA to rats increases BBB permeability through a non-catalytic process that is associated with reversible neurotoxicity, brain damage, mortality and contributes significantly to its brief therapeutic window. Furthermore, our data show that inhibiting the effect of tPA on BBB function without affecting its catalytic activity, improves outcome and significantly extends its therapeutic window in mechanical as well as in thromboembolic models of stroke.
Collapse
|
26
|
Kelly KA, Li X, Tan Z, VanGilder RL, Rosen CL, Huber JD. NOX2 inhibition with apocynin worsens stroke outcome in aged rats. Brain Res 2009; 1292:165-72. [PMID: 19635468 DOI: 10.1016/j.brainres.2009.07.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
This study utilized middle cerebral artery occlusion (MCAO) with tissue plasminogen activator (tPA) to assess inhibition of the NOX2 isoform of NADPH oxidase on brain injury and functional recovery in aged rats. Effects of NOX2 on the degree of brain injury and functional recovery following MCAO and tPA reperfusion was assessed in young adult and aged rats. Rats received apocynin (NOX2 inhibitor; 5 mg/kg) or saline 30 min prior to MCAO. At 24 h following MCAO, blood-brain barrier permeability (BBB), stroke infarct volume, edema formation, and oxidative damage were measured. Apocynin treatment in aged rats increased mortality rate and failed to improve functional outcome, total infarct volume, edema formation, and BBB permeability. Aged rats displayed increased BBB permeability to sucrose in the contralateral hemisphere following MCAO and diminished antioxidant capacity in the brain as compared to young adult rats. We conclude that inhibition of NOX2 in the aged rat exacerbates stroke injury and diminishes functional outcome. These results suggest age is an important factor in stroke damage and more rigorous examination of apocynin as a therapeutic agent for treatment of stroke must be done.
Collapse
Affiliation(s)
- Kimberly A Kelly
- Basic Pharmaceutical Sciences, West Virginia University, School of Pharmacy, PO Box 9530, Morgantown, WV 26506, USA
| | | | | | | | | | | |
Collapse
|