1
|
Hong VM, Rade AD, Yan SM, Bhaskara A, Yousuf MS, Chen M, Martin SF, Liebl DJ, Price TJ, Kolber BJ. Loss of Sigma-2 Receptor/TMEM97 Is Associated with Neuropathic Injury-Induced Depression-Like Behaviors in Female Mice. eNeuro 2024; 11:ENEURO.0488-23.2024. [PMID: 38866499 PMCID: PMC11228697 DOI: 10.1523/eneuro.0488-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Previous studies have shown that ligands that bind to sigma-2 receptor/TMEM97 (s2R/TMEM97), a transmembrane protein, have anxiolytic/antidepressant-like properties and relieve neuropathic pain-like effects in rodents. Despite medical interest in s2R/TMEM97, little affective and pain behavioral characterization has been done using transgenic mice, which limits the development of s2R/TMEM97 as a viable therapeutic target. Using wild-type (WT) and global Tmem97 knock-out (KO) mice, we sought to identify the contribution of Tmem97 in modulating affective and pain-like behaviors using a battery of affective and pain assays, including open field, light/dark preference, elevated plus maze, forced swim test, tail suspension test, and the mechanical sensitivity tests. Our results demonstrate that female Tmem97 KO mice show less anxiety-like and depressive-like behaviors in light/dark preference and tail suspension tests but not in an open field, elevated plus maze, and forced swim tests at baseline. We next performed spared nerve injury in WT and Tmem97 KO mice to assess the role of Tmem97 in neuropathic pain-induced anxiety and depression. WT mice, but not Tmem97 KO mice, developed a prolonged neuropathic pain-induced depressive-like phenotype when tested 10 weeks after nerve injury in females. Our results show that Tmem97 plays a role in modulating anxiety-like and depressive-like behaviors in naive animals with a significant change in the presence of nerve injury in female mice. Overall, these data demonstrate that Tmem97 could be a target to alleviate affective comorbidities of pain disorders.
Collapse
Affiliation(s)
- Veronica M Hong
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Avaneesh D Rade
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Shen M Yan
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Amulya Bhaskara
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Muhammad Saad Yousuf
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Min Chen
- Department of Mathematical Sciences, School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, Texas 75080
| | - Stephen F Martin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712
| | - Daniel J Liebl
- Department of Neurosurgery, University of Miami, Miller School of Medicine, Miami, Florida 33146
| | - Theodore J Price
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Benedict J Kolber
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
2
|
Hawkey AB, Pippen E, Kenou B, Holloway Z, Slotkin TA, Seidler FJ, Levin ED. Persistent neurobehavioral and neurochemical anomalies in middle-aged rats after maternal diazinon exposure. Toxicology 2022; 472:153189. [PMID: 35452779 PMCID: PMC9655883 DOI: 10.1016/j.tox.2022.153189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022]
Abstract
Diazinon is an organophosphate pesticide that has a history of wide use. Developmental exposures to organophosphates lead to neurobehavioral changes that emerge early in life and can persist into adulthood. However, preclinical studies have generally evaluated changes through young adulthood, whereas the persistence or progression of deficits into middle age remain poorly understood. The current study evaluated the effects of maternal diazinon exposure on behavior and neurochemistry in middle age, at 1 year postpartum, comparing the results to our previous studies of outcomes at adolescence and in young adulthood (4 months of age) (Hawkey 2020). Female rats received 0, 0.5 or 1.0 mg/kg/day of diazinon via osmotic minipump throughout gestation and into the postpartum period. The offspring were tested on a battery of locomotor, affective, and cognitive tests at young adulthood and during middle age. Some of the neurobehavioral consequences of developmental DZN seen during adolescence and young adulthood faded with continued aging, whereas other neurobehavioral effects emerged with aging. At middle age, the rats showed few locomotor effects, in contrast to the locomotor hyperactivity that had been observed in adolescence. Notably, though, DZN exposure during development impaired reference memory performance in middle-aged males, an effect that had not been seen in the younger animals. Likewise, middle-aged females exposed to DZN showed deficient attentional accuracy, an effect not seen in young adults. Across adulthood, the continued potential for behavioral defects was associated with altered dopaminergic function, characterized by enhanced dopamine utilization that was regionally-selective (striatum but not frontal/parietal cortex). This study shows that the neurobehavioral impairments from maternal low dose exposure to diazinon not only persist, but may continue to evolve as animals enter middle age.
Collapse
Affiliation(s)
- Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, USA
| | - Erica Pippen
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, USA
| | - Bruny Kenou
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, USA
| | - Zade Holloway
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, USA
| | - Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, USA
| | - Frederic J Seidler
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, USA.
| |
Collapse
|
3
|
Dockman RL, Carpenter JM, Diaz AN, Benbow RA, Filipov NM. Sex differences in behavior, response to LPS, and glucose homeostasis in middle-aged mice. Behav Brain Res 2022; 418:113628. [PMID: 34687827 PMCID: PMC8671369 DOI: 10.1016/j.bbr.2021.113628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 12/23/2022]
Abstract
Sex and age have distinct influences and roles in behavior and immune reactivity; yet, most studies use adult male rodents with little attention to middle age, a time associated with key physiological transitions in both sexes. Thus, this study investigated sex differences during middle age in behavior, immune response to lipopolysaccharide (LPS), and glucose regulation in C57BL/6 mice with GFP-tagged monocytes/microglia. Behaviorally, males performed better in tests of motor function (Open Field [OF], Grip Strength, Sticker Removal, Gait, and Pole tests) and displayed less depressive- and anxiety-like behaviors across multiple mood tests (OF, Elevated Zero Maze, Sucrose Preference, and Swim test). However, females performed better in tests of cognition (Barnes Maze and Novel Object Recognition). Following behavioral assessment, mice were given LPS to characterize sex-dependent inflammagen responses. Females displayed greater sickness behavior in the OF, higher levels of peripheral cytokines, and subtle neuroinflammation in the cortex, striatum, and hippocampus. A separate middle-aged cohort was used for glucose tolerance and insulin sensitivity testing. Both sexes had excessive blood glucose rebound after insulin challenge, but displayed differences following glucose administration, where males had higher baseline glucose and females remained hyperglycemic. This study suggests that during middle-age male mice have better emotional regulation and motor function, but not cognitive ability than females. Further, males are less sensitive than females to the acute effects of LPS peripherally and centrally, but both sexes showed sex-specific impairments in blood glucose regulation. Overall, it appears that middle age is an important transition point with multiple sex differences, some of which are unique to this stage of life.
Collapse
Affiliation(s)
- Rachel L Dockman
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Jessica M Carpenter
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Alexa N Diaz
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Robert A Benbow
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
4
|
Popp S, Schmitt-Böhrer A, Langer S, Hofmann U, Hommers L, Schuh K, Frantz S, Lesch KP, Frey A. 5-HTT Deficiency in Male Mice Affects Healing and Behavior after Myocardial Infarction. J Clin Med 2021; 10:jcm10143104. [PMID: 34300270 PMCID: PMC8308004 DOI: 10.3390/jcm10143104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Anxiety disorders and depression are common comorbidities in cardiac patients. Mice lacking the serotonin transporter (5-HTT) exhibit increased anxiety-like behavior. However, the role of 5-HTT deficiency on cardiac aging, and on healing and remodeling processes after myocardial infarction (MI), remains unclear. Cardiological evaluation of experimentally naïve male mice revealed a mild cardiac dysfunction in ≥4-month-old 5-HTT knockout (−/−) animals. Following induction of chronic cardiac dysfunction (CCD) by MI vs. sham operation 5-HTT−/− mice with infarct sizes >30% experienced 100% mortality, while 50% of 5-HTT+/− and 37% of 5-HTT+/+ animals with large MI survived the 8-week observation period. Surviving (sham and MI < 30%) 5-HTT−/− mutants displayed reduced exploratory activity and increased anxiety-like behavior in different approach-avoidance tasks. However, CCD failed to provoke a depressive-like behavioral response in either 5-Htt genotype. Mechanistic analyses were performed on mice 3 days post-MI. Electrocardiography, histology and FACS of inflammatory cells revealed no abnormalities. However, gene expression of inflammation-related cytokines (TGF-β, TNF-α, IL-6) and MMP-2, a protein involved in the breakdown of extracellular matrix, was significantly increased in 5-HTT−/− mice after MI. This study shows that 5-HTT deficiency leads to age-dependent cardiac dysfunction and disrupted early healing after MI probably due to alterations of inflammatory processes in mice.
Collapse
Affiliation(s)
- Sandy Popp
- Comprehensive Heart Failure Center, University Hospital of Würzburg, 97078 Würzburg, Germany; (S.P.); (S.L.); (U.H.); (S.F.); (K.-P.L.)
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, Division of Molecular Psychiatry, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Angelika Schmitt-Böhrer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, 97080 Würzburg, Germany; (A.S.-B.); (L.H.)
| | - Simon Langer
- Comprehensive Heart Failure Center, University Hospital of Würzburg, 97078 Würzburg, Germany; (S.P.); (S.L.); (U.H.); (S.F.); (K.-P.L.)
| | - Ulrich Hofmann
- Comprehensive Heart Failure Center, University Hospital of Würzburg, 97078 Würzburg, Germany; (S.P.); (S.L.); (U.H.); (S.F.); (K.-P.L.)
- Medical Clinic and Policlinic I, University Hospital of Würzburg, 97080 Würzburg, Germany
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Leif Hommers
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, 97080 Würzburg, Germany; (A.S.-B.); (L.H.)
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Kai Schuh
- Institute of Physiology I, University of Würzburg, 97070 Würzburg, Germany;
| | - Stefan Frantz
- Comprehensive Heart Failure Center, University Hospital of Würzburg, 97078 Würzburg, Germany; (S.P.); (S.L.); (U.H.); (S.F.); (K.-P.L.)
- Medical Clinic and Policlinic I, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Klaus-Peter Lesch
- Comprehensive Heart Failure Center, University Hospital of Würzburg, 97078 Würzburg, Germany; (S.P.); (S.L.); (U.H.); (S.F.); (K.-P.L.)
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, Division of Molecular Psychiatry, University Hospital of Würzburg, 97080 Würzburg, Germany
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, 97080 Würzburg, Germany; (A.S.-B.); (L.H.)
- Department of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, 6229 Maastricht, The Netherlands
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Anna Frey
- Comprehensive Heart Failure Center, University Hospital of Würzburg, 97078 Würzburg, Germany; (S.P.); (S.L.); (U.H.); (S.F.); (K.-P.L.)
- Medical Clinic and Policlinic I, University Hospital of Würzburg, 97080 Würzburg, Germany
- Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, 97080 Würzburg, Germany
- Correspondence: ; Tel.: +49-931-201-39927
| |
Collapse
|
5
|
Houwing DJ, Schuttel K, Struik EL, Arling C, Ramsteijn AS, Heinla I, Olivier JDA. Perinatal fluoxetine treatment and dams' early life stress history alter affective behavior in rat offspring depending on serotonin transporter genotype and sex. Behav Brain Res 2020; 392:112657. [PMID: 32339551 DOI: 10.1016/j.bbr.2020.112657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 01/06/2023]
Abstract
Many women diagnosed with a major depression continue or initiate antidepressant treatment during pregnancy. Both maternal stress and selective serotonin inhibitor (SSRI) antidepressant treatment during pregnancy have been associated with changes in offspring behavior, including increased anxiety and depressive-like behavior. Our aim was to investigate the effects of the SSRI fluoxetine (FLX), with and without the presence of a maternal depression, on affective behavior in male and female rat offspring. As reduced serotonin transporter (SERT) availability has been associated with altered behavioral outcome, both offspring with normal (SERT+/+) and reduced (SERT+/-) SERT expression were included. For our animal model of maternal depression, SERT+/- dams exposed to early life stress were used. Perinatal FLX treatment and early life stress in dams (ELSD) had sex- and genotype-specific effects on affective behavior in the offspring. In female offspring, perinatal FLX exposure interacted with SERT genotype to increase anxiety and depressive-like behavior in SERT+/+, but not SERT+/-, females. In male offspring, ELSD reduced anxiety and interacted with SERT genotype to decrease depressive-like behavior in SERT+/-, but not SERT+/+, males. Altogether, SERT+/+ female offspring appear to be more sensitive than SERT+/- females to the effects of perinatal FLX exposure, while SERT+/- male offspring appear more sensitive than SERT+/+ males to the effects of ELSD on affective behavior. Our data suggest a role for offspring SERT genotype and sex in FLX and ELSD-induced effects on affective behavior, thereby contributing to our understanding of the effects of perinatal SSRI treatment on offspring behavior later in life.
Collapse
Affiliation(s)
- Danielle J Houwing
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Kirsten Schuttel
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Eline L Struik
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Chantal Arling
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anouschka S Ramsteijn
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - I Heinla
- Department of Psychology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
| | - Jocelien D A Olivier
- Department of Neurobiology, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
6
|
Molecular programs underlying differences in the expression of mood disorders in males and females. Brain Res 2019; 1719:89-103. [DOI: 10.1016/j.brainres.2019.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/20/2019] [Accepted: 05/13/2019] [Indexed: 01/13/2023]
|
7
|
Geng H, Peng D, Huang Y, Tang D, Gao J, Zhang Y, Zhang X. Changes in sexual performance and biochemical characterisation of functional neural regions: A study in serotonin transporter knockout male rats. Andrologia 2019; 51:e13291. [PMID: 31037750 DOI: 10.1111/and.13291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/17/2019] [Accepted: 03/22/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Hao Geng
- Department of Urology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Dangwei Peng
- Department of Urology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Yuanyuan Huang
- Department of Urology The Fourth Affiliated Hospital of Anhui Medical University Hefei China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Jingjing Gao
- Department of Urology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Yao Zhang
- Department of Urology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Xiansheng Zhang
- Department of Urology The First Affiliated Hospital of Anhui Medical University Hefei China
| |
Collapse
|
8
|
Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci Biobehav Rev 2019; 99:101-116. [DOI: 10.1016/j.neubiorev.2018.12.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
|
9
|
Assessment of fear and anxiety associated behaviors, physiology and neural circuits in rats with reduced serotonin transporter (SERT) levels. Transl Psychiatry 2019; 9:33. [PMID: 30670681 PMCID: PMC6343029 DOI: 10.1038/s41398-019-0368-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/15/2018] [Accepted: 10/05/2018] [Indexed: 01/11/2023] Open
Abstract
Genetic variation in serotonin transporter (SERT) that reduces transcriptional efficiency is associated with higher anxiety and fear traits and a greater incidence of post traumatic stress disorder (PTSD). Although previous studies have shown that rats with no expression of SERT (SERT-/-) have increased baseline anxiety behaviors, SERT+/- rats with low SERT expression (and more relevant to the clinical condition with low SERT expression) do not. Yet, no systematic studies of fear acquisition/extinction or their underlying neural mechanisms have been conducted in this preclinical genetic SERT+/- model. Here we sought to determine if SERT+/- or SERT-/-, compared to wildtype, rats would show exacerbated panic responses and/or persistent conditioned fear responses that may be associated with PTSD or phobia vulnerability. Results: Only SERT-/- rats showed increased baseline anxiety-like behaviors with heightened panic respiratory responses. However SERT+/- (also SERT-/-) rats showed enhanced acquisition of fear and delayed extinction of fear that was associated with changes in serotonergic-related genes (e.g., reduced 5-HT1A receptor) and disrupted inhibition within the basolateral amygdala (BLA). Furthermore, the disrupted fear responses in SERT+/- rats were normalized with 5HT1A antagonist infusions into the BLA. Enhanced acquisition and failure to extinguish fear memories displayed by both SERT-/- and SERT+/- rats are cardinal symptoms of disabling anxiety disorders such as phobias and PTSD. The data here support the hypothesis that reduced SERT function is a genetic risk that disrupts select gene expression and network properties in the amygdala that could result in vulnerability to these syndromes.
Collapse
|
10
|
Dadomo H, Gioiosa L, Cigalotti J, Ceresini G, Parmigiani S, Palanza P. What is stressful for females? Differential effects of unpredictable environmental or social stress in CD1 female mice. Horm Behav 2018; 98:22-32. [PMID: 29187314 DOI: 10.1016/j.yhbeh.2017.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Stressful life events are a major factor in the etiology of several diseases, such as cardiovascular, inflammatory and psychiatric disorders (i.e., depression and anxiety), with the two sexes greatly differing in vulnerability. In humans and other animals, physiological and behavioral responses to stress are strongly dependent on gender, and conditions that are stressful for males are not necessarily stressful for females. Hence the need of an animal model of social chronic stress specifically designed for females. In the present study we aimed to compare the effects of two different chronic stress procedures in female mice, by investigating the impact of 4weeks of nonsocial unpredictable, physical stress by the Chronic Mild Stress paradigm (CMS; Exp.1) or of Social Instability Stress (SIS; Exp.2) on physiological, endocrine and behavioral parameters in adult female mice. CMS had a pronounced effect on females' response to novelty (i.e., either novel environment or novel social stimulus), body weight growth and hormonal profile. Conversely, 4weeks of social instability did not alter females' response to novelty nor hormonal levels but induced anhedonia. Our findings thus showed that female mice were more sensitive to nonsocial stress due to unpredictable physical environment than to social instability stressors. Neither of these stress paradigms, however, induced a consistent behavioral and physiological stress response in female mice comparable to that induced by chronic stress procedures in male mice, thus confirming the difficulties of developing a robust and validated model of chronic psychosocial stress in female mice.
Collapse
Affiliation(s)
- Harold Dadomo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Gioiosa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Jenny Cigalotti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Graziano Ceresini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Parmigiani
- Department of Chemistry, Life Sciences and Environmental Sustainaibility, University of Parma, Parma, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
11
|
The Gain-of-Function Integrin β3 Pro33 Variant Alters the Serotonin System in the Mouse Brain. J Neurosci 2017; 37:11271-11284. [PMID: 29038237 DOI: 10.1523/jneurosci.1482-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022] Open
Abstract
Engagement of integrins by the extracellular matrix initiates signaling cascades that drive a variety of cellular functions, including neuronal migration and axonal pathfinding in the brain. Multiple lines of evidence link the ITGB3 gene encoding the integrin β3 subunit with the serotonin (5-HT) system, likely via its modulation of the 5-HT transporter (SERT). The ITGB3 coding polymorphism Leu33Pro (rs5918, PlA2) produces hyperactive αvβ3 receptors that influence whole-blood 5-HT levels and may influence the risk for autism spectrum disorder (ASD). Using a phenome-wide scan of psychiatric diagnoses, we found significant, male-specific associations between the Pro33 allele and attention-deficit hyperactivity disorder and ASDs. Here, we used knock-in (KI) mice expressing an Itgb3 variant that phenocopies the human Pro33 variant to elucidate the consequences of constitutively enhanced αvβ3 signaling to the 5-HT system in the brain. KI mice displayed deficits in multiple behaviors, including anxiety, repetitive, and social behaviors. Anatomical studies revealed a significant decrease in 5-HT synapses in the midbrain, accompanied by decreases in SERT activity and reduced localization of SERTs to integrin adhesion complexes in synapses of KI mice. Inhibition of focal adhesion kinase (FAK) rescued SERT function in synapses of KI mice, demonstrating that constitutive active FAK signaling downstream of the Pro32Pro33 integrin αvβ3 suppresses SERT activity. Our studies identify a complex regulation of 5-HT homeostasis and behaviors by integrin αvβ3, revealing an important role for integrins in modulating risk for neuropsychiatric disorders.SIGNIFICANCE STATEMENT The integrin β3 Leu33Pro coding polymorphism has been associated with autism spectrum disorders (ASDs) within a subgroup of patients with elevated blood 5-HT levels, linking integrin β3, 5-HT, and ASD risk. We capitalized on these interactions to demonstrate that the Pro33 coding variation in the murine integrin β3 recapitulates the sex-dependent neurochemical and behavioral attributes of ASD. Using state-of-the-art techniques, we show that presynaptic 5-HT function is altered in these mice, and that the localization of 5-HT transporters to specific compartments within the synapse, disrupted by the integrin β3 Pro33 mutation, is critical for appropriate reuptake of 5-HT. Our studies provide fundamental insight into the genetic network regulating 5-HT neurotransmission in the CNS that is also associated with ASD risk.
Collapse
|
12
|
Thompson BL, Levitt P. Complete or partial reduction of the Met receptor tyrosine kinase in distinct circuits differentially impacts mouse behavior. J Neurodev Disord 2015; 7:35. [PMID: 26523156 PMCID: PMC4628780 DOI: 10.1186/s11689-015-9131-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Our laboratory discovered that the gene encoding the receptor tyrosine kinase, MET, contributes to autism risk. Expression of MET is reduced in human postmortem temporal lobe in autism and Rett Syndrome. Subsequent studies revealed a role for MET in human and mouse functional and structural cortical connectivity. To further understand the contribution of Met to brain development and its impact on behavior, we generated two conditional mouse lines in which Met is deleted from select populations of central nervous system neurons. Mice were then tested to determine the consequences of disrupting Met expression. METHODS Mating of Emx1 (cre) and Met (fx/fx) mice eliminates receptor signaling from all cells arising from the dorsal pallium. Met (fx/fx) and Nestin (cre) crosses result in receptor signaling elimination from all neural cells. Behavioral tests were performed to assess cognitive, emotional, and social impairments that are observed in multiple neurodevelopmental disorders and that are in part subserved by circuits that express Met. RESULTS Met (fx/fx) /Emx1 (cre) null mice displayed significant hypoactivity in the activity chamber and in the T-maze despite superior performance on the rotarod. Additionally, these animals showed a deficit in spontaneous alternation. Surprisingly, Met (fx/fx; fx/+) /Nestin (cre) null and heterozygous mice exhibited deficits in contextual fear conditioning, and Met (fx/+) /Nestin (cre) heterozygous mice spent less time in the closed arms of the elevated plus maze. CONCLUSIONS These data suggest a complex contribution of Met in the development of circuits mediating social, emotional, and cognitive behavior. The impact of disrupting developmental Met expression is dependent upon circuit-specific deletion patterns and levels of receptor activity.
Collapse
Affiliation(s)
- Barbara L Thompson
- Chan Division of Occupational Science and Occupational Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089 USA ; Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| | - Pat Levitt
- Institute for the Developing Mind, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA ; Department of Pediatrics, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| |
Collapse
|
13
|
Kyzar EJ, Stewart AM, Kalueff AV. Effects of LSD on grooming behavior in serotonin transporter heterozygous (Sert⁺/⁻) mice. Behav Brain Res 2015; 296:47-52. [PMID: 26340513 DOI: 10.1016/j.bbr.2015.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/11/2015] [Accepted: 08/17/2015] [Indexed: 02/05/2023]
Abstract
Serotonin (5-HT) plays a crucial role in the brain, modulating mood, cognition and reward. The serotonin transporter (SERT) is responsible for the reuptake of 5-HT from the synaptic cleft and regulates serotonin signaling in the brain. In humans, SERT genetic variance is linked to the pathogenesis of various psychiatric disorders, including anxiety, autism spectrum disorders (ASD) and obsessive-compulsive disorder (OCD). Rodent self-grooming is a complex, evolutionarily conserved patterned behavior relevant to stress, ASD and OCD. Genetic ablation of mouse Sert causes various behavioral deficits, including increased anxiety and grooming behavior. The hallucinogenic drug lysergic acid diethylamide (LSD) is a potent serotonergic agonist known to modulate human and animal behavior. Here, we examined heterozygous Sert(+/-) mouse behavior following acute administration of LSD (0.32 mg/kg). Overall, Sert(+/-) mice displayed a longer duration of self-grooming behavior regardless of LSD treatment. In contrast, LSD increased serotonin-sensitive behaviors, such as head twitching, tremors and backwards gait behaviors in both Sert(+/+) and Sert(+/-) mice. There were no significant interactions between LSD treatment and Sert gene dosage in any of the behavioral domains measured. These results suggest that Sert(+/-) mice may respond to the behavioral effects of LSD in a similar manner to wild-type mice.
Collapse
Affiliation(s)
- Evan J Kyzar
- Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, 1601 W Taylor St, Chicago, IL 60612, USA.
| | | | - Allan V Kalueff
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Research Institute for Marine Drugs and Nutrition, College for Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
14
|
Altieri SC, Yang H, O'Brien HJ, Redwine HM, Senturk D, Hensler JG, Andrews AM. Perinatal vs genetic programming of serotonin states associated with anxiety. Neuropsychopharmacology 2015; 40:1456-70. [PMID: 25523893 PMCID: PMC4397404 DOI: 10.1038/npp.2014.331] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/05/2014] [Accepted: 12/07/2014] [Indexed: 12/24/2022]
Abstract
Large numbers of women undergo antidepressant treatment during pregnancy; however, long-term consequences for their offspring remain largely unknown. Rodents exposed to serotonin transporter (SERT)-inhibiting antidepressants during development show changes in adult emotion-like behavior. These changes have been equated with behavioral alterations arising from genetic reductions in SERT. Both models are highly relevant to humans yet they vary in their time frames of SERT disruption. We find that anxiety-related behavior and, importantly, underlying serotonin neurotransmission diverge between the two models. In mice, constitutive loss of SERT causes life-long increases in anxiety-related behavior and hyperserotonemia. Conversely, early exposure to the antidepressant escitalopram (ESC; Lexapro) results in decreased anxiety-related behavior beginning in adolescence, which is associated with adult serotonin system hypofunction in the ventral hippocampus. Adult behavioral changes resulting from early fluoxetine (Prozac) exposure were different from those of ESC and, although somewhat similar to SERT deficiency, were not associated with changes in hippocampal serotonin transmission in late adulthood. These findings reveal dissimilarities in adult behavior and neurotransmission arising from developmental exposure to different widely prescribed antidepressants that are not recapitulated by genetic SERT insufficiency. Moreover, they support a pivotal role for serotonergic modulation of anxiety-related behavior.
Collapse
Affiliation(s)
- Stefanie C Altieri
- Semel Institute for Neuroscience and Human Behavior and Hatos Center for Neuropharmacology, David Geffen School of Medicine, and California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Hongyan Yang
- Semel Institute for Neuroscience and Human Behavior and Hatos Center for Neuropharmacology, David Geffen School of Medicine, and California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Hannah J O'Brien
- Semel Institute for Neuroscience and Human Behavior and Hatos Center for Neuropharmacology, David Geffen School of Medicine, and California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Hannah M Redwine
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Damla Senturk
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Julie G Hensler
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anne M Andrews
- Semel Institute for Neuroscience and Human Behavior and Hatos Center for Neuropharmacology, David Geffen School of Medicine, and California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
15
|
Abstract
A large volume of clinical and experimental evidence documents sex differences in brain anatomy, chemistry, and function, as well as in stress and drug responses. The chronic mild stress model (CMS) is one of the most extensively investigated animal models of chronic stress. However, only a limited number of studies have been conducted in female rodents despite the markedly higher prevalence of major depression among women. Herein, we review CMS studies conducted in rats and mice of both sexes and further discuss intriguing sex-dependent behavioral and neurobiological findings. The PubMed literature search engine was used to find and collect all relevant articles analyzed in this review. Specifically, a multitermed search was performed with 'chronic mild stress', 'chronic unpredictable stress' and 'chronic variable stress' as base terms and 'sex', 'gender', 'females' and 'depression' as secondary terms in various combinations. Male and female rodents appear to be differentially affected by CMS application, depending on the behavioral, physiological, and neurobiological indices that are being measured. Importantly, the CMS paradigm, despite its limitations, has been successfully used to assess a constellation of interdisciplinary research questions in the sex differences field and has served as a 'silver bullet' in assessing the role of sex in the neurobiology of major depression.
Collapse
|
16
|
Johnson PL, Federici LM, Shekhar A. Etiology, triggers and neurochemical circuits associated with unexpected, expected, and laboratory-induced panic attacks. Neurosci Biobehav Rev 2014; 46 Pt 3:429-54. [PMID: 25130976 DOI: 10.1016/j.neubiorev.2014.07.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/24/2014] [Accepted: 07/31/2014] [Indexed: 12/18/2022]
Abstract
Panic disorder (PD) is a severe anxiety disorder that is characterized by recurrent panic attacks (PA), which can be unexpected (uPA, i.e., no clear identifiable trigger) or expected (ePA). Panic typically involves an abrupt feeling of catastrophic fear or distress accompanied by physiological symptoms such as palpitations, racing heart, thermal sensations, and sweating. Recurrent uPA and ePA can also lead to agoraphobia, where subjects with PD avoid situations that were associated with PA. Here we will review recent developments in our understanding of PD, which includes discussions on: symptoms and signs associated with uPA and ePAs; Diagnosis of PD and the new DSM-V; biological etiology such as heritability and gene×environment and gene×hormonal development interactions; comparisons between laboratory and naturally occurring uPAs and ePAs; neurochemical systems that are associated with clinical PAs (e.g. gene associations; targets for triggering or treating PAs), adaptive fear and panic response concepts in the context of new NIH RDoc approach; and finally strengths and weaknesses of translational animal models of adaptive and pathological panic states.
Collapse
Affiliation(s)
- Philip L Johnson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Lauren M Federici
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
17
|
Shan L, Schipper P, Nonkes LJP, Homberg JR. Impaired fear extinction as displayed by serotonin transporter knockout rats housed in open cages is disrupted by IVC cage housing. PLoS One 2014; 9:e91472. [PMID: 24658187 PMCID: PMC3962352 DOI: 10.1371/journal.pone.0091472] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/12/2014] [Indexed: 12/19/2022] Open
Abstract
Anxiety disorders are influenced by both environmental and genetic factors. A well-known example for gene x environment interactions in psychiatry is the low activity (s) allelic variant of the serotonin transporter (5-HTT) promoter polymorphism (5-HTTLPR) that in the context of stress increases risk for depression and post-traumatic stress disorder (PTSD). Previously, we observed robust anxiety-related phenotypes, such as an impairment in fear extinction, in 5-HTT knockout (5-HTT−/−) versus wild-type (5-HTT+/+) rats housed in open cages. Recently, housing conditions were changed from open cages to individually ventilated cages (IVC), which are associated with a high ventilation fold and noise. This switch in housing conditions prompted an unplanned 5-HTT gene x environment interaction study in our rats. The current study shows that lifetime stress by means of IVC cage housing abolished genotype differences in fear extinction between 5-HTT−/− and 5-HTT+/+ rats. Although this effect was not attributed specifically to either the 5-HTT+/+ or the 5-HTT−/− genotype, the findings are in agreement with the modulatory role of serotonin in the processing of environmental stimuli. Our findings also underline the possibility that housing conditions confound the interpretation of anxiety-related behaviours in rodents.
Collapse
Affiliation(s)
- Ling Shan
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience, Radboud University Nijmegen, Medical Centre, Nijmegen, The Netherlands
| | - Pieter Schipper
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience, Radboud University Nijmegen, Medical Centre, Nijmegen, The Netherlands
| | - Lourens J. P. Nonkes
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience, Radboud University Nijmegen, Medical Centre, Nijmegen, The Netherlands
| | - Judith R. Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, Department of Cognitive Neuroscience, Radboud University Nijmegen, Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
18
|
Sachs BD, Ni JR, Caron M. Sex differences in response to chronic mild stress and congenital serotonin deficiency. Psychoneuroendocrinology 2014; 40:123-9. [PMID: 24485484 PMCID: PMC3918518 DOI: 10.1016/j.psyneuen.2013.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/25/2013] [Accepted: 11/08/2013] [Indexed: 12/29/2022]
Abstract
Women exhibit a nearly twofold increased risk of developing depression and anxiety disorders when compared to men, a fact that has been hypothesized to result in part from increased stress susceptibility. Here, we used the tryptophan hydroxylase-2 R439H knock-in mouse (Tph2KI) and the chronic unpredictable mild stress (CMS) model to examine sex differences in response to congenital 5-HT deficiency and chronic stress. Our results demonstrate that female mice, but not 5-HT-deficient animals, exhibit significantly increased susceptibility to CMS-induced despair-like behavior in the forced swim test. In addition, female 5-HT-deficient mice exhibit anhedonia-like behavior in the sucrose preference test, whereas male 5-HT-deficient animals do not, suggesting that females exhibit increased sensitivity to at least some of the effects of congenital 5-HT deficiency. Although CMS did not reduce cell proliferation in the hippocampus, low levels of brain 5-HT were associated with increased hippocampal cell proliferation, an effect that was predominantly observed in females. Overall, these results highlight the importance of interactions between psychiatric disease risk factors such as sex, chronic stress and congenital 5-HT deficiency in the development of aberrant emotional behavior.
Collapse
Affiliation(s)
| | - Jason R. Ni
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Marc Caron
- Department of Cell Biology, Duke University, Durham, NC 27710, USA, Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
19
|
Seney ML, Ekong KI, Ding Y, Tseng GC, Sibille E. Sex chromosome complement regulates expression of mood-related genes. Biol Sex Differ 2013; 4:20. [PMID: 24199867 PMCID: PMC4175487 DOI: 10.1186/2042-6410-4-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/28/2013] [Indexed: 01/13/2023] Open
Abstract
Background Studies on major depressive and anxiety disorders suggest dysfunctions in brain corticolimbic circuits, including altered gamma-aminobutyric acid (GABA) and modulatory (serotonin and dopamine) neurotransmission. Interestingly, sexual dimorphisms in GABA, serotonin, and dopamine systems are also reported. Understanding the mechanisms behind these sexual dimorphisms may help unravel the biological bases of the heightened female vulnerability to mood disorders. Here, we investigate the contribution of sex-related factors (sex chromosome complement, developmental gonadal sex, or adult circulating hormones) to frontal cortex expression of selected GABA-, serotonin-, and dopamine-related genes. Methods As gonadal sex is determined by sex chromosome complement, the role of sex chromosomes cannot be investigated individually in humans. Therefore, we used the Four Core Genotypes (FCG) mouse model, in which sex chromosome complement and gonadal sex are artificially decoupled, to examine the expression of 13 GABA-related genes, 6 serotonin- and dopamine-related genes, and 8 associated signal transduction genes under chronic stress conditions. Results were analyzed by three-way ANOVA (sex chromosome complement × gonadal sex × circulating testosterone). A global perspective of gene expression changes was provided by heatmap representation and gene co-expression networks to identify patterns of transcriptional activities related to each main factor. Results We show that under chronic stress conditions, sex chromosome complement influenced GABA/serotonin/dopamine-related gene expression in the frontal cortex, with XY mice consistently having lower gene expression compared to XX mice. Gonadal sex and circulating testosterone exhibited less pronounced, more complex, and variable control over gene expression. Across factors, male conditions were associated with a tightly co-expressed set of signal transduction genes. Conclusions Under chronic stress conditions, sex-related factors differentially influence expression of genes linked to mood regulation in the frontal cortex. The main factor influencing expression of GABA-, serotonin-, and dopamine-related genes was sex chromosome complement, with an unexpected pro-disease effect in XY mice relative to XX mice. This effect was partially opposed by gonadal sex and circulating testosterone, although all three factors influenced signal transduction pathways in males. Since GABA, serotonin, and dopamine changes are also observed in other psychiatric and neurodegenerative disorders, these findings have broader implications for the understanding of sexual dimorphism in adult psychopathology.
Collapse
Affiliation(s)
| | | | | | | | - Etienne Sibille
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
20
|
Abstract
Mood disorders are common and debilitating conditions characterized in part by profound deficits in reward-related behavioural domains. A recent literature has identified important structural and functional alterations within the brain's reward circuitry--particularly in the ventral tegmental area-nucleus accumbens pathway--that are associated with symptoms such as anhedonia and aberrant reward-associated perception and memory. This Review synthesizes recent data from human and rodent studies from which emerges a circuit-level framework for understanding reward deficits in depression. We also discuss some of the molecular and cellular underpinnings of this framework, ranging from adaptations in glutamatergic synapses and neurotrophic factors to transcriptional and epigenetic mechanisms.
Collapse
Affiliation(s)
- Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. scott.russo@mssm. edu
| | | |
Collapse
|
21
|
Seney ML, Chang LC, Oh H, Wang X, Tseng GC, Lewis DA, Sibille E. The Role of Genetic Sex in Affect Regulation and Expression of GABA-Related Genes Across Species. Front Psychiatry 2013; 4:104. [PMID: 24062698 PMCID: PMC3775314 DOI: 10.3389/fpsyt.2013.00104] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/29/2013] [Indexed: 12/14/2022] Open
Abstract
Although circulating hormones and inhibitory gamma-aminobutyric acid (GABA)-related factors are known to affect mood, considerable knowledge gaps persist for biological mechanisms underlying the female bias in mood disorders. Here, we combine human and mouse studies to investigate sexual dimorphism in the GABA system in the context of major depressive disorder (MDD) and then use a genetic model to dissect the role of sex-related factors in GABA-related gene expression and anxiety-/depressive-like behaviors in mice. First, using meta-analysis of gene array data in human postmortem brain (N = 51 MDD subjects, 50 controls), we show that the previously reported down-regulation in MDD of somatostatin (SST), a marker of a GABA neuron subtype, is significantly greater in women with MDD. Second, using gene co-expression network analysis in control human subjects (N = 214; two frontal cortex regions) and expression quantitative trait loci mapping (N = 170 subjects), we show that expression of SST and the GABA-synthesizing enzymes glutamate decarboxylase 67 (GAD67) and GAD65 are tightly co-regulated and influenced by X-chromosome genetic polymorphisms. Third, using a rodent genetic model [Four Core Genotypes (FCG) mice], in which genetic and gonadal sex are artificially dissociated (N ≥ 12/group), we show that genetic sex (i.e., X/Y-chromosome) influences both gene expression (lower Sst, Gad67, Gad65 in XY mice) and anxiety-like behaviors (higher in XY mice). This suggests that in an intact male animal, the observed behavior represents the outcomes of male genetic sex increasing and male-like testosterone decreasing anxiety-like behaviors. Gonadal sex was the only factor influencing depressive-like behavior (gonadal males < gonadal females). Collectively, these combined human and mouse studies provide mechanistic insight into sexual dimorphism in mood disorders, and specifically demonstrate an unexpected role of male-like factors (XY genetic sex) on GABA-related genes and anxiety-like behaviors.
Collapse
Affiliation(s)
- Marianne L Seney
- Department of Psychiatry, University of Pittsburgh , Pittsburgh, PA , USA ; Translational Neuroscience Program, University of Pittsburgh , Pittsburgh, PA , USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Homberg JR, van den Hove DL. The serotonin transporter gene and functional and pathological adaptation to environmental variation across the life span. Prog Neurobiol 2012; 99:117-27. [DOI: 10.1016/j.pneurobio.2012.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 11/24/2022]
|
23
|
Effects of environmental manipulations in genetically targeted animal models of affective disorders. Neurobiol Dis 2012; 57:12-27. [PMID: 22525570 DOI: 10.1016/j.nbd.2012.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 12/31/2022] Open
Abstract
Mental illness is the leading cause of disability worldwide. We are only just beginning to reveal and comprehend the complex interaction that exists between the genetic makeup of an organism and the potential modifying effect of the environment in which it lives, and how this translates into mediating susceptibility to neurological and psychiatric conditions. The capacity to address this issue experimentally has been facilitated by the availability of rodent models which allow the precise manipulation of genetic and environmental factors. In this review, we discuss the valuable nature of animal models in furthering our understanding of the relationship between genetic and environmental factors in affective illnesses, such as anxiety and depressive disorders. We first highlight the behavioral impairments exhibited by genetically targeted animal models of affective disorders, and then provide a discussion of the underlying neurobiology, focusing on animal models that involve exposure to stress. This is followed by a review of recent studies that report of beneficial effects of environmental manipulations such as environmental enrichment and enhanced physical activity and discuss the likely mechanisms that mediate those benefits.
Collapse
|
24
|
Seney ML, Walsh C, Stolakis R, Sibille E. Neonatal testosterone partially organizes sex differences in stress-induced emotionality in mice. Neurobiol Dis 2012; 46:486-96. [PMID: 22394611 DOI: 10.1016/j.nbd.2012.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 01/29/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating disorder of altered mood regulation. Despite well established sex differences in MDD prevalence, the mechanism underlying the increased female vulnerability remains unknown. Although evidence suggests an influence of adult circulating hormone levels on mood (i.e. activational effects of hormones), MDD prevalence is consistently higher in women across life stages (and therefore hormonal states), suggesting that additional underlying structural or biological differences place women at higher risk. Studies in human subjects and in rodent models suggest a developmental origin for mood disorders, and interestingly, a developmental process also establishes sex differences in the brain. Hence, based on these parallel developmental trajectories, we hypothesized that a proportion of the female higher vulnerability to MDD may originate from the differential organization of mood regulatory neural networks early in life (i.e. organizational effects of hormones). To test this hypothesis in a rodent system, we took advantage of a well-established technique used in the field of sexual differentiation (neonatal injection with testosterone) to masculinize sexually dimorphic brain regions in female mice. We then investigated adult behavioral consequences relating to emotionality by comparing neonatal testosterone-treated females to normal males and females. Under baseline/trait conditions, neonatal testosterone treatment of female mice did not influence adult emotionality, but masculinized adult locomotor activity, as revealed by the activational actions of hormones. Conversely, the increased vulnerability of female mice to develop high emotionality following unpredictable chronic mild stress (UCMS) was partially masculinized by neonatal testosterone exposure, with no effect on post-UCMS locomotion. The elevated female UCMS-induced vulnerability did not differ between adult hormone treated groups. These results demonstrate that sex differences in adult emotionality in mice are partially caused by the organizational effects of sex hormones during development, hence supporting a developmental hypothesis of the human adult female prevalence of MDD.
Collapse
Affiliation(s)
- Marianne L Seney
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Altered oligodendrocyte structure and function is implicated in major psychiatric illnesses, including low cell number and reduced oligodendrocyte-specific gene expression in major depressive disorder (MDD). These features are also observed in the unpredictable chronic mild stress (UCMS) rodent model of the illness, suggesting that they are consequential to environmental precipitants; however, whether oligodendrocyte changes contribute causally to low emotionality is unknown. Focusing on 2'-3'-cyclic nucleotide 3'-phosphodiesterase (Cnp1), a crucial component of axoglial communication dysregulated in the amygdala of MDD subjects and UCMS-exposed mice, we show that altered oligodendrocyte integrity can have an unexpected functional role in affect regulation. Mice lacking Cnp1 (knockout, KO) displayed decreased anxiety- and depressive-like symptoms (i.e., low emotionality) compared with wild-type animals, a phenotypic difference that increased with age (3-9 months). This phenotype was accompanied by increased motor activity, but was evident before neurodegenerative-associated motor coordination deficits (≤ 9-12 months). Notably, Cnp1(KO) mice were less vulnerable to developing a depressive-like syndrome after either UCMS or chronic corticosterone exposure. Cnp1(KO) mice also displayed reduced fear expression during extinction, despite normal amygdala c-Fos induction after acute stress, together implicating dysfunction of an amygdala-related neural network, and consistent with proposed mechanisms for stress resiliency. However, the Cnp1(KO) behavioral phenotype was also accompanied by massive upregulation of oligodendrocyte- and immune-related genes in the basolateral amygdala, suggesting an attempt at functional compensation. Together, we demonstrate that the lack of oligodendrocyte-specific Cnp1 leads to resilient emotionality. However, combined with substantial molecular changes and late-onset neurodegeneration, these results suggest the low Cnp1 seen in MDD may cause unsustainable and maladaptive molecular compensations contributing to the disease pathophysiology.
Collapse
|
26
|
Neumann ID, Wegener G, Homberg JR, Cohen H, Slattery DA, Zohar J, Olivier JDA, Mathé AA. Animal models of depression and anxiety: What do they tell us about human condition? Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1357-75. [PMID: 21129431 DOI: 10.1016/j.pnpbp.2010.11.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/24/2010] [Accepted: 11/19/2010] [Indexed: 01/07/2023]
Abstract
While modern neurobiology methods are necessary they are not sufficient to elucidate etiology and pathophysiology of affective disorders and develop new treatments. Achievement of these goals is contingent on applying cutting edge methods on appropriate disease models. In this review, the authors present four rodent models with good face-, construct-, and predictive-validity: the Flinders Sensitive rat line (FSL); the genetically "anxious" High Anxiety-like Behavior (HAB) line; the serotonin transporter knockout 5-HTT(-/-) rat and mouse lines; and the post-traumatic stress disorder (PTSD) model induced by exposure to predator scent, that they have employed to investigate the nature of depression and anxiety.
Collapse
Affiliation(s)
- I D Neumann
- Dept of Behavioural Neuroendocrinology, Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Haenisch B, Bönisch H. Depression and antidepressants: Insights from knockout of dopamine, serotonin or noradrenaline re-uptake transporters. Pharmacol Ther 2011; 129:352-68. [DOI: 10.1016/j.pharmthera.2010.12.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 12/15/2022]
|
28
|
Integrated behavioral z-scoring increases the sensitivity and reliability of behavioral phenotyping in mice: relevance to emotionality and sex. J Neurosci Methods 2011; 197:21-31. [PMID: 21277897 DOI: 10.1016/j.jneumeth.2011.01.019] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/07/2011] [Accepted: 01/20/2011] [Indexed: 11/23/2022]
Abstract
Defining anxiety- and depressive-like states in mice (emotionality) is best characterized by the use of complementary tests, leading sometimes to puzzling discrepancies and lack of correlation between similar paradigms. To address this issue, we hypothesized that integrating measures along the same behavioral dimensions in different tests would reduce the intrinsic variability of single tests and provide a robust characterization of the underlying "emotionality" of individual mouse, similarly as mood and related syndromes are defined in humans through various related symptoms over time. We describe the use of simple mathematical and integrative tools to help phenotype animals across related behavioral tests (syndrome diagnosis) and experiments (meta-analysis). We applied z-normalization across complementary measures of emotionality in different behavioral tests after unpredictable chronic mild stress (UCMS) or prolonged corticosterone exposure - two approaches to induce anxious-/depressive-like states in mice. Combining z-normalized test values, lowered the variance of emotionality measurement, enhanced the reliability of behavioral phenotyping, and increased analytical opportunities. Comparing integrated emotionality scores across studies revealed a robust sexual dimorphism in the vulnerability to develop high emotionality, manifested as higher UCMS-induced emotionality z-scores, but lower corticosterone-induced scores in females compared to males. Interestingly, the distribution of individual z-scores revealed a pattern of increased baseline emotionality in female mice, reminiscent of what is observed in humans. Together, we show that the z-scoring method yields robust measures of emotionality across complementary tests for individual mice and experimental groups, hence facilitating the comparison across studies and refining the translational applicability of these models.
Collapse
|
29
|
Abstract
The incidence of mood disorders is known to be influenced by both genetic as well as environmental factors. Increasingly, however it is becoming clear that few genetic and environmental factors act alone, but that instead they regularly act in concert to determine predisposition to psychiatric disorders. Quite a few cases now have been reported in which stratification of subjects by exposure to environmental pathogens has been shown to alter the association between specific genetic variants and mental illness. The best studied of such measured gene-by-environment risk factors for mental illness is the increased risk for major depression reported among persons carrying the short variant (S allele) of a functional polymorphism in the serotonin transporter (5-HTT, SLC6A4) gene promoter and who have been exposed to stressful life events. Recently, a large number of laboratories have tried to model the interaction between 5-HTTLPR genotype and early/adult stress in mouse. Findings from their studies have helped to define the rodent orthologs of the environmental stressors and behavioral traits involved in risk for depression. Furthermore, several of these studies attempted to identify changes in molecular substrates that might underlie the 5-HTT x stress risk factor, pointing to the hippocampus and frontal cortex as critical brain structures involved in the interaction between 5-HTT gene variation and early and adult stress, respectively. These results will serve to help inform clinical research into the origins of major depression and other mental illnesses with interacting genetic and environmental risk factors.
Collapse
|