1
|
Mohammadi M, Tavassoli Z, Anvari S, Javan M, Fathollahi Y. Avoidance and escape conditioning adjust adult neurogenesis to conserve a fit hippocampus in adult male rodents. J Neurosci Res 2024; 102:e25291. [PMID: 38284841 DOI: 10.1002/jnr.25291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
In this study, the connection between cognitive behaviors and the adult rodent hippocampus was investigated. Recording field potentials at performant pathway (PP)-hippocampal dentate gyrus (DG) synapses in transverse slices from the dorsal (d), intermediate (i), and ventral (v) hippocampus showed differences in paired-pulse responses and long-term potentiation in rats. The Barnes maze (BM) and passive avoidance (PA) tests indicated a decrease in escape latency and step-through latency in both rats and mice over training days. A decrease in the use of random or sequential strategy while an increase in the use of direct strategy to search for an escape box occurred in both groups. Evaluation of the levels of neurogenesis markers (Ki67 and BrdU/NeuN) by immunofluorescence assay in the dDG, iDG, and vDG revealed a long-axis disparity in the hippocampal dentate baseline cell proliferation and exposure to the BM and PA task changed the profile of baseline cell proliferation along the DG in both rats and mice. Also, these learning experiences changed the profile of BrdU+ /NeuN+ cells along the DG of rats. Quantitation of hippocampal BDNF protein levels using ELISA exhibited no changes in BDNF levels due to learning experiences in rats. We demonstrate that PP-DG synaptic efficacy and neurogenesis are organized along a gradient. Avoidance and escape conditioning themselves are sufficient to change and calibrate adult neurogenesis along the hippocampal long axis in rodents. Further research will be required to determine the precise mechanisms underlying the role of experience-derived neuroplasticity in cognitive function and decline.
Collapse
Affiliation(s)
- Masoud Mohammadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Tavassoli
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sohrab Anvari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Anvari S, Foolad F, Javan M, Mirnajafi-Zadeh J, Fathollahi Y. A distinct impact of repeated morphine exposure on synaptic plasticity at Schaffer collateral-CA1, temporoammonic-CA1, and perforant pathway-dentate gyrus synapses along the longitudinal axis of the hippocampus. Hippocampus 2023; 33:47-62. [PMID: 36514833 DOI: 10.1002/hipo.23488] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
We aimed to study how morphine affects synaptic transmission in the dentate gyrus and CA1 regions along the hippocampal long axis. For this, recording and measuring of field excitatory postsynaptic potentials (fEPSPs) were utilized to test the effects of repeated morphine exposure on paired-pulse evoked responses and long-term potentiation (LTP) at Schaffer collateral-CA1 (Sch-CA1), temporoammonic-CA1 (TA-CA1) and perforant pathway-dentate gyrus (PP-DG) synapses in transverse slices from the dorsal (DH), intermediate (IH), and ventral (VH) hippocampus in adult male rats. After repeated morphine exposure, the expression of opioid receptors and the α1 and α5 GABAA subunits were also examined. We found that repeated morphine exposure blunt the difference between the DH and the VH in their basal levels of synaptic transmission at Sch-CA1 synapses that were seen in the control groups. Significant paired-pulse facilitation of excitatory synaptic transmission was observed at Sch-CA1 synapses in slices taken from all three hippocampal segments as well as at PP-DG synapses in slices taken from the VH segment in the morphine-treated groups as compared to the control groups. Interestingly, significant paired-pulse inhibition of excitatory synaptic transmission was observed at TA-CA1 synapses in the DH slices from the morphine-treated group as compared to the control group. While primed-burst stimulation (a protocol reflecting normal neuronal firing) induced a robust LTP in hippocampal subfields in all control groups, resulting in a decaying LTP at TA-CA1 synapses in the VH slices and at PP-DG synapses in both the IH and VH slices taken from the morphine-treated rats. In the DH of morphine-treated rats, we found increased levels of the mRNAs encoding the α1 and α5 GABAA subunits as compared to the control group. Taken together, these findings suggest the potential mechanisms through which repeated morphine exposure causes differential changes in circuit excitability and synaptic plasticity in the dentate gyrus and CA1 regions along the hippocampal long axis.
Collapse
Affiliation(s)
- Sohrab Anvari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Forough Foolad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Khalaji N, Aminpour G, Pourheydar B, Abdollahzade N, Parsaie H, Derafshpour L. The pattern of hippocampal neuronal, LTP and unilateral labyrinthectomy in male rats: the role of exercise and curcumin. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep210041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A wide range of cognitive disorders, long-term potentiation (LTP) disorders, and biochemical changes have been reported in labyrinthectomy situations in the hippocampus of rodents. In order to investigate whether exercise and/or curcumin induce LTP and increase neurons in the hippocampus of unilateral labyrinthectomy male rats, after undergoing labyrinthectomy, animals were subjected to treadmill exercises after the intraperitoneal injection of curcumin five days per week, for 30 days. An increase of LTP and neuron count of the hippocampus was observed in unilateral labyrinthectomy rats. Interestingly the combination of exercise and curcumin did not enhance LTP in unilateral labyrinthectomy rats. These findings demonstrated that treadmill exercise and curcumin individually, significantly affect reinforcement of many of the pathological processes playing a role in increasing memory in unilateral labyrinthectomy situations.
Collapse
Affiliation(s)
- N. Khalaji
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, 5715799313 Urmia, Iran
| | - G. Aminpour
- Student Research Committee, Urmia University of Medical Sciences, 5715799313 Urmia, Iran
| | - B. Pourheydar
- Neurophysiology Research Center, Urmia University of Medical Sciences, 5715799313 Urmia, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, 5715799313 Urmia, Iran
| | - N. Abdollahzade
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, 5715799313 Urmia, Iran
| | - H. Parsaie
- Department of Anatomy, Faculty of Medicine science, Iran University of Medical Sciences, Tehran, Iran
| | - L. Derafshpour
- Neurophysiology Research Center, Urmia University of Medical Sciences, 5715799313 Urmia, Iran
| |
Collapse
|
4
|
Aghazadeh R, Roshan-Milani S, Drafshpour L, Saboory E. Effects of prenatal methamphetamine exposure on spatial cognition and hippocampal synaptic plasticity in adolescent rats. Int J Dev Neurosci 2022; 82:471-485. [PMID: 35707884 DOI: 10.1002/jdn.10202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
Global rise in methamphetamine (MA) abuse during pregnancy has placed a large number of children at risk for the adverse consequences of prenatal methamphetamine exposure (PME). While behavioral and neurocognitive deficits of PME have been extensively studied in humans and adult rodents, far less is known regarding the sex- and dose-dependent effects of PME as well as the underlying mechanisms. Adolescence in nonhuman primates is also a less explored territory. In the present study, PME was inducted by oral treatment to pregnant rats on gestational days 15-19 with either low-dose (0.1 mg/ml) or high-dose (0.6 mg/ml)) of MA. The cognitive effects of PME were then evaluated in two adolescence age-intervals: early adolescent (started on postnatal day (PND) 21) and mid adolescent (started on PND 33), among male and female rat offspring using Morris water maze (MWM) test. Alterations in hippocampal synaptic plasticity in Schaffer collaterals-CA1 pathway were also measured in vitro. Results of behavioral test showed that PME led to serious deficits of learning and memory abilities in both male and female rat offspring. PME also depressed LTP in most of the PME subgroups. Moreover, 21-day-old rats were more sensitive to PME-induced cognitive impairment in MWM tasks, but not in hippocampal synaptic plasticity, than 33-day-old rats. No sex-dependent effects of PME were found on the cognitive function and synaptic plasticity. These findings confirmed that PME impacted negatively on cognitive performance in prepubertal male and female rats, and the impairment of hippocampal synaptic functions might partly play a significant role in these effects.
Collapse
Affiliation(s)
- Razieh Aghazadeh
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Roshan-Milani
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Drafshpour
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of addiction studies, School of medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Khani F, Pourmotabbed A, Hosseinmardi N, Nedaei SE, Fathollahi Y, Azizi H. Impairment of spatial memory and dorsal hippocampal synaptic plasticity in adulthood due to adolescent morphine exposure. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110532. [PMID: 35149126 DOI: 10.1016/j.pnpbp.2022.110532] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022]
Abstract
Opioid exposure during adolescence, a crucial period of neurodevelopment, has lasting neurological and behavioral consequences and affects the cognitive functions in adulthood. This study investigated the effects of adolescent morphine exposure in spatial learning and memory and synaptic plasticity of the CA1 area of the dorsal hippocampus. Adolescent Wistar rats received increasing doses of morphine for 1, 5, and 10 days. Acute morphine group was injected 2.5 mg/kg morphine for 1 day, subchronic morphine group for 5 days, with an increasing dose of 2.5 mg/kg and reached to the dose of 12.5 mg/kg and chronic morphine group for 10 days that began with an increasing dose of 2.5 mg/kg and reached to the dose of 25 mg/kg. Then after 25 days and reaching adulthood, spatial learning and memory were evaluated via the Morris water maze (MWM) test. Moreover, we test the electrophysiological properties of dorsal hippocampal plasticity in adult rats by in vitro field potential recordings. Subchronic and chronic adolescent morphine exposure impaired spatial learning and memory in the MWM test. Baseline synaptic responses in the chronic morphine group were increased and long-term potentiation (LTP) impaired in the CA1 area in subchronic and chronic morphine groups. In adulthood, the slope of the field excitatory postsynaptic potential (fEPSP) required to elicit a half-maximal population spike (PS) amplitude was significantly larger in subchronic and chronic adolescent morphine exposure compared to the saline group. Therefore, subchronic and chronic adolescent morphine exposure altered synaptic transmission and plasticity in addition to learning and memory. Long-term morphine exposure during adolescence can interfere with neurodevelopment, making a persistent impression on plasticity and cognitive capability in adulthood.
Collapse
Affiliation(s)
- Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Salimi Z, Khajehpour L, Moradpour F, Moazedi AA, Pourmotabbed A, Zarei F. Nandrolone improve synaptic plasticity at the hippocampus CA1 area and spatial localization in the Morris water maze of male adolescent rats. Neurosci Res 2019; 158:21-29. [PMID: 31499080 DOI: 10.1016/j.neures.2019.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/23/2019] [Accepted: 09/05/2019] [Indexed: 11/19/2022]
Abstract
Nandrolone is the most popular compound that are mainly abused. Experimental studies have reported that administration of nandrolone affects cognitive performance. So, the aim of this study is to evaluate the effect of nandrolone on spatial localization and synaptic plasticity of male adolescent rats. Experimantal groups received DMSO and nandrolone (10, 30 and 60 μg, i.c.v.). Another aim is to evaluate the role of castration on spatial learning and memory changes induced by nandrolone. Therefore, the rats of fifth and sixth groups were castrated and received DMSO or nandrolone. Analysis showed that escape latency and traveled distance in the group which received nandrolone (60 μg) were significantly lower than control group. Also, the escape latency and traveled distance in the group of castration which received nandrolone was significantly higher than nandrolone treated group. The results of field potential recording showed that fEPSP-LTP in nandrolone-treated group was higher than DMSO-treated group. The magnitude of fEPSP-LTP in the group of castration which received nandrolone was significantly lower than nandrolone-treated group. The results demonstrated that nandrolone improved spatial learning, but castration could abolished nandrolone-induced spatial learning improvement. These results indicating that at least some effect of nandrolone on learning induced through changes in gonadal function.
Collapse
Affiliation(s)
- Zahra Salimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Lotfollah Khajehpour
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Farshad Moradpour
- Fertility & Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Ahmad Ali Moazedi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Zarei
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
7
|
Derafshpour L, Saboory E, Vafaei AA, Rashidy-Pour A, Roshan-Milani S, Rasmi Y, Panahi Y, Sameni H. Interactive Effects of Exercise, Sex Hormones, and Transient Congenital Hypothyroidism on Long-Term Potentiation in Hippocampal Slices of Rat Offspring. Basic Clin Neurosci 2019; 10:119-135. [PMID: 31031899 PMCID: PMC6484195 DOI: 10.32598/bcn.9.10.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/25/2017] [Accepted: 04/30/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction: The long-term adverse effects of transient thyroid function abnormalities at birth on intellectual development are proven. The effect of exercise increases in the presence of sex hormones. The current study aimed at investigating the possibility that a combination of sex hormones and exercise has synergistic effects on neural plasticity in Transient Congenital Hypothyroidism (TCH) rats. Methods: To induce hypothyroidism in the mothers, Propylthiouracil (PTU) was added to drinking water (100 mg/L) on the 6th day of gestation and continued until the 21st Postnatal Day. From Postnatal Day (PND) 28 to 47, the female and male pups received 17β-estradiol and testosterone, respectively. The mild treadmill exercise began 30 minutes after the sex hormones or vehicle administration. On PND 48, electrophysiological experiments were performed on brain slices. Results: Increase of Long-Term Potentiation (LTP) was observed in sedentary-non-hormone female rats of TCH group, compared with that of the control. The exercise enhanced LTP in control rats, but the hormones showed no significant effect. The effect of exercise and sex hormone was not significant in the TCH group. The combination of exercise and testosterone enhanced LTP in TCH male rats, while the combination of exercise and estradiol or each of them individually did not produce such an effect on LTP in TCH female rats. Conclusion: The study findings showed an increase in excitatory transmission despite the returning of thyroid hormone levels to normal range in TCH female rats. Also a combination treatment including exercise and testosterone enhanced LTP in male rats of TCH group, which was a gender-specific event.
Collapse
Affiliation(s)
- Leila Derafshpour
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.,Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Ali Vafaei
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Shiva Roshan-Milani
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Panahi
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamidreza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
8
|
Borjkhani M, Bahrami F, Janahmadi M. Assessing the Effects of Opioids on Pathological Memory by a Computational Model. Basic Clin Neurosci 2018; 9:275-288. [PMID: 30519386 PMCID: PMC6276537 DOI: 10.32598/bcn.9.4.275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
Introduction: Opioids hijack learning and memory formation mechanisms of brain and induce a pathological memory in the hippocampus. This effect is mainly mediated by modifications in glutamatergic system. Speaking more precisely, Opioids presence in a synapse inhibits blockage of N-Methyl-D-Aspartate Receptor (NMDAR) by Mg2+, enhances conductance of NMDAR and thus, induces false Long-Term Potentiation (LTP). Methods: Based on experimental observations of different researchers, we developed a mathematical model for a pyramidal neuron of the hippocampus to study this false LTP. The model contains a spine of the pyramidal neuron with NMDAR, α-Amino-3-hydroxy-5-Methyl-4-isoxazole Propionic Acid Receptors (AMPARs), and Voltage-Gated Calcium Channels (VGCCs). The model also describes Calmodulin-dependent protein Kinase II (CaMKII) and AMPAR phosphorylation processes which are assumed to be the indicators of LTP induction in the synapse. Results: Simulation results indicate that the effect of inhibition of blockage of NMDARs by Mg2+ on the false LTP is not as crucial as the effect of NMDAR’s conductance modification by opioids. We also observed that activation of VGCCs has a dominant role in inducing pathological LTP. Conclusion: Our results confirm that preventing this pathological LTP is possible by three different mechanisms: 1. By decreasing NMDAR’s conductance; and 2. By attenuating VGCC’s mediated current; and 3. By enhancing glutamate clearance rate from the synapse.
Collapse
Affiliation(s)
- Mehdi Borjkhani
- Motor Control and Computational Neuroscience Laboratory, School of Electrical & Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fariba Bahrami
- Motor Control and Computational Neuroscience Laboratory, School of Electrical & Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Glial cells modulate hippocampal synaptic plasticity in morphine dependent rats. Brain Res Bull 2018; 140:97-106. [DOI: 10.1016/j.brainresbull.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 12/24/2022]
|
10
|
Abstract
According to a broad range of research, opioids consumption can lead to pathological memory formation. Experimental observations suggested that hippocampal glutamatergic synapses play an indispensable role in forming such a pathological memory. It has been suggested that memory formation at the synaptic level is developed through LTP induction. Here, we attempt to computationally indicate how morphine induces pathological LTP at hippocampal CA3-CA1 synapses. Then, based on simulations, we will suggest how one can prevent this type of pathological LTP. To this purpose, a detailed computational model is presented, which consists of one pyramidal neuron and one interneuron both from CA3, one CA1 pyramidal neuron, and one astrocyte. Based on experimental findings morphine affects the hippocampal neurons in three primary ways: 1) disinhibitory mechanism of interneurons in CA3, 2) enhancement of NMDARs current by μ Opioid Receptor (μOR) activation and 3) by attenuation of astrocytic glutamate reuptake ability. By utilizing these effects, simulations were implemented. Our results indicate that morphine can induce LTP by all aforementioned possible mechanisms. Based on our simulation results, attenuation of pathologic LTP achieved mainly by stimulation of astrocytic glutamate transporters, down-regulation of the astrocytic metabotropic glutamate receptors (mGlurs) or by applying NMDAR’s antagonist. Based on our observations, we suggest that astrocyte has a dominant role in forming addiction-related memories. This finding may help researchers in exploring drug actions for preventing relapse.
Collapse
Affiliation(s)
- Mehdi Borjkhani
- CIPCE, Motor Control and Computational Neuroscience Laboratory, School of ECE, College of Engineering, University of Tehran, Tehran, Iran
| | - Fariba Bahrami
- CIPCE, Motor Control and Computational Neuroscience Laboratory, School of ECE, College of Engineering, University of Tehran, Tehran, Iran
- * E-mail:
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Amri J, Sadegh M, Moulaei N, Palizvan MR. Transgenerational modification of hippocampus TNF-α and S100B levels in the offspring of rats chronically exposed to morphine during adolescence. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 44:95-102. [PMID: 28750172 DOI: 10.1080/00952990.2017.1348509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND TNF-α and S100B are important signaling factors that are involved in many aberrant conditions of the brain. Chronic morphine exposure causes aberrant modifications in the brain. OBJECTIVES We examined the consequences of chronic morphine consumption by parents before mating on hippocampus TNF-α and S100B levels in the parents and their offspring. METHODS A total of 12 adult female and 12 adult male Wistar rats were used as parents. Each gender was divided randomly into two groups: control and morphine consumer. Morphine consumer groups received morphine sulfate dissolved in drinking water (0.4 mg/ml) for 60 days. Control groups received water. Thirty days before mating, morphine was replaced with water. All offspring also received water. The hippocampus of both parental and offspring groups was extracted to measure TNF-α and S100B levels using an ELISA. RESULTS Hippocampus TNF-α levels were significantly increased due to chronic morphine use in both male and female parents compared to those of control parents (P < 0.01). Moreover, both male and female offspring of morphine-exposed parents showed a significant increase in hippocampus TNF-α levels compared to those of control offspring (P < 0.01). Hippocampus levels of S100B were significantly decreased in male (P < 0.05) but not female morphine consumer parents relative to control parents. Both male and female offspring of morphine-exposed parents showed significant decreases in hippocampus S100B levels (P < 0.05) compared to those of control offspring. CONCLUSIONS The consequences of chronic morphine use by parents, even when it is stopped long before mating and pregnancy, could induce modifications in the hippocampus of the next generation.
Collapse
Affiliation(s)
- Jamal Amri
- a Department of Biochemistry and Genetics, Faculty of Medicine , Arak University of Medical Sciences , Arak , Iran
| | - Mehdi Sadegh
- b Department of Physiology, Faculty of Medicine , Arak University of Medical Sciences , Arak , Iran
| | - Neda Moulaei
- b Department of Physiology, Faculty of Medicine , Arak University of Medical Sciences , Arak , Iran
| | - Mohammad Reza Palizvan
- b Department of Physiology, Faculty of Medicine , Arak University of Medical Sciences , Arak , Iran
| |
Collapse
|
12
|
Antagonism of orexin type-1 receptors (OX1Rs) attenuates naloxone-precipitated morphine withdrawal syndrome in rat dorsal hippocampus. Pharmacol Biochem Behav 2017; 158:39-48. [DOI: 10.1016/j.pbb.2017.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/09/2017] [Accepted: 06/01/2017] [Indexed: 11/22/2022]
|
13
|
Moradpour F, Fathollahi Y, Naghdi N, Hosseinmardi N, Javan M. Prepubertal castration-associated developmental changes in sigma-1 receptor gene expression levels regulate hippocampus area CA1 activity during adolescence. Hippocampus 2016; 26:933-46. [PMID: 26860755 DOI: 10.1002/hipo.22576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 11/08/2022]
Abstract
The functional relevance of sigma-1 (σ1 ) receptor expression in the rat hippocampal CA1 during adolescence (i.e., 35-60 days old) was explored. A selective antagonist for the σ1 receptor subtype, BD-1047, was applied to study hippocampal long-term potentiation (LTP) and spatial learning performance. Changes in the expression of the σ1 receptor subtype and its function were compared between castrated and sham-castrated rats. Castration reduced the magnitude of both field excitatory postsynaptic potential (fEPSP)-LTP and population spike (PS)-LTP at 35 days (d). BD-1047 decreased PS-LTP in sham-castrated rats, whereas BD-1047 reversed the effect of castration on fEPSP-LTP at 35 d. In addition, BD1047 impaired spatial learning and augmented σ1 receptor mRNA levels in castrated rats at 35 d. Surprisingly, neither castration nor BD1047 had an effect on fEPSP-LTP and PS-LTP, spatial learning ability or gene expression levels at 45 d. Castration had no effect on fEPSP-LTP but reduced PS-LTP at 60 d. BD1047 increased the magnitude of fEPSP-LTP, but had no effect on PS-LTP in castrated rats at 60 d. However, BD1047 reduced spatial learning ability, and σ1 receptor mRNA levels were decreased in castrated rats at 60 d. This study shows that σ1 receptors play a role in the regulation of both CA1 synaptic efficacy and spatial learning performance. The regulatory role of σ1 receptors in activity-dependent CA1-LTP is locality- and age-dependent, whereas its role in spatial learning ability is only age-dependent. Prepubertal castration-associated changes in the expression and function of the σ1 receptor during adolescence may play a developmental role in the regulation of hippocampal area CA1 activity and plasticity. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Farshad Moradpour
- Department of Physiology Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Physiology School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yaghoub Fathollahi
- Department of Physiology Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Nargess Hosseinmardi
- Department of Physiology School of Medicine, Shahid Behsheti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Tian H, Xu Y, Liu F, Wang G, Hu S. Effect of acute fentanyl treatment on synaptic plasticity in the hippocampal CA1 region in rats. Front Pharmacol 2015; 6:251. [PMID: 26578961 PMCID: PMC4626754 DOI: 10.3389/fphar.2015.00251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD), mainly characterized by short-term decline of learning and memory, occurs after operations under anesthesia. However, the underlying mechanisms are poorly understood. The μ-opioid receptors (MOR) are highly expressed in interneurons of hippocampus, and is believed to be critical for the dysfunction of synaptic plasticity between hippocampal neurons. Therefore, we investigated the effect of fentanyl, a strong agonist of MOR and often used for anesthesia and analgesia in clinical settings, on hippocampal synaptic plasticity in the Schaffer-collateral CA1 pathway during acute exposure and washout in vitro. Our results revealed that acute fentanyl exposure (0.01, 0.1, 1 μM) dose-dependently increased the field excitatory postsynaptic potentials (fEPSPs), which was prevented by pre-administration of picrotoxin (50 μM) or MOR antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH2 (CTOP, 10 μM). While fentanyl exposure-increased fEPSPs amplitude was prevented by picrotoxin [an inhibitor of γ-aminobutyric acid receptor (GABAR)] treatment or fentanyl washout, pretreatment of picrotoxin failed to prevent the fentanyl-impaired long-term potentiation (LTP) of synaptic strength as well as the fentanyl-enhanced long-term depression (LTD). These results demonstrated that fentanyl acute exposure and washout increases hippocampal excitability in the Schaffer-collateral CA1 pathway, depending on disinhibiting interneurons after MOR activation. In addition, fentanyl acute exposure and washout modulated synaptic plasticity, but the inhibitory activation was not critical. Elucidating the detailed mechanisms for synaptic dysfunction after fentanyl exposure and washout may provide insights into POCD generation after fentanyl anesthesia.
Collapse
Affiliation(s)
- Hai Tian
- Clinic of Anesthesiology, No. 324 Hospital of the People's Liberation Army Chongqing, China
| | - Yueming Xu
- Clinic of Anesthesiology, No. 324 Hospital of the People's Liberation Army Chongqing, China
| | - Fucun Liu
- Clinic of Pharmacology, No. 324 Hospital of the People's Liberation Army Chongqing, China
| | - Guowei Wang
- Department of Medical Affairs, No. 324 Hospital of the People's Liberation Army Chongqing, China
| | - Sanjue Hu
- Institute of Neurosciences, The Fourth Military Medical University Xi'an, China
| |
Collapse
|
15
|
Wójtowicz T, Mozrzymas JW. Diverse impact of neuronal activity at θ frequency on hippocampal long-term plasticity. J Neurosci Res 2015; 93:1330-44. [PMID: 25789967 DOI: 10.1002/jnr.23581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/05/2015] [Accepted: 02/10/2015] [Indexed: 12/29/2022]
Abstract
Brain oscillatory activity is considered an essential aspect of brain function, and its frequency can vary from <1 Hz to >200 Hz, depending on the brain states and projection. Episodes of rhythmic activity accompany hippocampus-dependent learning and memory in vivo. Therefore, long-term synaptic potentiation (LTP) and long-term depression, which are considered viable substrates of learning and memory, are often experimentally studied in paradigms of patterned high-frequency (>50 Hz) and low-frequency (<5 Hz) stimulation. However, the impact of intermediate frequencies on neuronal plasticity remains less well understood. In particular, hippocampal neurons are specifically tuned for activity at θ frequency (4-8 Hz); this band contributes significantly to electroencephalographic signals, and it is likely to be involved in shaping synaptic strength in hippocampal circuits. Here, we review in vitro and in vivo studies showing that variation of θ-activity duration may affect long-term modification of synaptic strength and neuronal excitability in the hippocampus. Such θ-pulse-induced neuronal plasticity 1) is long-lasting, 2) may be built on previously stabilized potentiation in the synapse, 3) may produce opposite changes in synaptic strength, and 4) requires complex molecular machinery. Apparently innocuous episodes of low-frequency synaptic activity may have a profound impact on network signaling, thereby contributing to information processing in the hippocampus and beyond. In addition, θ-pulse-induced LTP might be an advantageous protocol in studies of specific molecular mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- Tomasz Wójtowicz
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
16
|
Kervern M, Silvestre de Ferron B, Alaux-Cantin S, Fedorenko O, Antol J, Naassila M, Pierrefiche O. Aberrant NMDA-dependent LTD after perinatal ethanol exposure in young adult rat hippocampus. Hippocampus 2015; 25:912-23. [PMID: 25581546 DOI: 10.1002/hipo.22414] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2015] [Indexed: 12/29/2022]
Abstract
Irreversible cognitive deficits induced by ethanol exposure during fetal life have been ascribed to a lower NMDA-dependent synaptic long-term potentiation (LTP) in the hippocampus. Whether NMDA-dependent long-term depression (LTD) may also play a critical role in those deficits remains unknown. Here, we show that in vitro LTD induced with paired-pulse low frequency stimulation is enhanced in CA1 hippocampus field of young adult rats exposed to ethanol during brain development. Furthermore, single pulse low frequency stimulation, ineffective at this age (LFS600), induced LTD after ethanol exposure accompanied with a stronger response than controls during LFS600, thus revealing an aberrant form of activity-dependent plasticity at this age. Blocking NMDA receptor or GluN2B containing NMDA receptor prevented both the stronger response during LFS600 and LTD whereas Zinc, an antagonist of GluN2A containing NMDA receptor, was ineffective on both responses. In addition, LFS600-induced LTD was revealed in controls only with a reduced-Mg(2+) medium. In whole dissected hippocampus CA1 field, perinatal ethanol exposure increased GluN2B subunit expression in the synaptic compartment whereas GluN2A was unaltered. Using pharmacological tools, we suggest that LFS600 LTD was of synaptic origin. Altogether, we describe a new mechanism by which ethanol exposure during fetal life induces a long-term alteration of synaptic plasticity involving NMDA receptors, leading to an aberrant LTD. We suggest this effect of ethanol may reflect a delayed maturation of the synapse and that aberrant LTD may also participates to long-lasting cognitive deficits in fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olivier Pierrefiche
- INSERM ERi 24 - GRAP, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, C.U.R.S., UPJV, Amiens, France
| |
Collapse
|
17
|
Atwood BK, Lovinger DM, Mathur BN. Presynaptic long-term depression mediated by Gi/o-coupled receptors. Trends Neurosci 2014; 37:663-73. [PMID: 25160683 DOI: 10.1016/j.tins.2014.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 01/20/2023]
Abstract
Long-term depression (LTD) of the efficacy of synaptic transmission is now recognized as an important mechanism for the regulation of information storage and the control of actions, as well as for synapse, neuron, and circuit development. Studies of LTD mechanisms have focused mainly on postsynaptic AMPA-type glutamate receptor trafficking. However, the focus has now expanded to include presynaptically expressed plasticity, the predominant form being initiated by presynaptically expressed Gi/o-coupled metabotropic receptor (Gi/o-GPCR) activation. Several forms of LTD involving activation of different presynaptic Gi/o-GPCRs as a 'common pathway' are described. We review here the literature on presynaptic Gi/o-GPCR-mediated LTD, discuss known mechanisms, gaps in our knowledge, and evaluate whether all Gi/o-GPCRs are capable of inducing presynaptic LTD.
Collapse
Affiliation(s)
- Brady K Atwood
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, 5625 Fishers Lane, MSC 9411, Bethesda, MD 20852-9411, USA
| | - David M Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, 5625 Fishers Lane, MSC 9411, Bethesda, MD 20852-9411, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
18
|
Fakira AK, Portugal GS, Carusillo B, Melyan Z, Morón JA. Increased small conductance calcium-activated potassium type 2 channel-mediated negative feedback on N-methyl-D-aspartate receptors impairs synaptic plasticity following context-dependent sensitization to morphine. Biol Psychiatry 2014; 75:105-14. [PMID: 23735878 PMCID: PMC3992971 DOI: 10.1016/j.biopsych.2013.04.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/17/2013] [Accepted: 04/29/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hippocampal long-term potentiation (LTP) is impaired following repeated morphine administration paired with a novel context. This procedure produces locomotor sensitization that can be abolished by blocking calcium (Ca(2+))-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) in the hippocampus. However, the mechanisms underlying LTP impairment remain unclear. Here, we investigate the role of N-methyl-D-aspartate receptors (NMDARs), AMPARs, and small conductance Ca(2+)-activated potassium type 2 (SK2) channels in LTP induction after context-dependent sensitization to morphine. METHODS Mice were treated with saline or escalating doses of morphine (5, 8, 10, and 15 mg/kg) every 12 hours in a locomotor activity chamber and a challenge dose of 5 mg/kg morphine was given 1 week later. After the challenge, the hippocampi were removed to assay phosphatase 2A (PP2A) activity, NMDAR, and SK2 channel synaptic expression or to perform electrophysiological recordings. RESULTS Impaired hippocampal LTP, which accompanied morphine-induced context-dependent sensitization, could not be restored by blocking Ca(2+)-permeable AMPARs. Context-dependent sensitization to morphine altered hippocampal NMDAR subunit composition and enhanced the SK2 channel-mediated negative feedback on NMDAR. Increased PP2A activity observed following context-dependent sensitization suggests that the potentiated SK2 channel effect on NMDAR was mediated by increased SK2 sensitivity to Ca(2+). Finally, inhibition of SK2 channel or PP2A activity restored LTP. CONCLUSIONS Our studies demonstrate that the SK2 channel-NMDAR feedback loop plays a role in opiate-induced impairment of hippocampal plasticity and that the positive modulation of SK2 channels occurs via increases in PP2A activity. This provides further evidence that small conductance Ca(2+)-activated potassium channels play a role in drug-induced plasticity.
Collapse
Affiliation(s)
- Amanda K Fakira
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - George S Portugal
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Brianna Carusillo
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Zare Melyan
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Jose A Morón
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York.
| |
Collapse
|
19
|
Acupuncture Stimulation Attenuates Impaired Emotional-Like Behaviors and Activation of the Noradrenergic System during Protracted Abstinence following Chronic Morphine Exposure in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:216503. [PMID: 24527041 PMCID: PMC3912640 DOI: 10.1155/2014/216503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/04/2013] [Accepted: 11/21/2013] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to evaluate whether acupuncture stimulation attenuates withdrawal-induced behaviors in the rats during protracted abstinence following chronic morphine exposure. To do this, male rats were first exposed to morphine gradually from 20 to 100 mg/kg for 5 days, and subsequently naloxone was injected once to extend despair-related withdrawal behaviors for 4 weeks. Acupuncture stimulation was performed once at the SP6 (Sanyinjiao) acupoint on rat's; hind leg for 5 min during protracted abstinence from morphine. The acupuncture stimulation significantly decreased despair-like behavior deficits in the forced swimming test and low sociability in the open-field test as well as increased open-arm exploration in the elevated plus maze test in the last week of 4-week withdrawal period. Also the acupuncture stimulation significantly suppressed the increase in the hypothalamic corticotropin-releasing factor (CRF) expression, the decrease in the tyrosine hydroxylase expression in the locus coeruleus, and the decrease in the hippocampal brain-derived neurotrophic factor mRNA expression, induced by repeated injection of morphine. Taken together, these findings demonstrate that the acupuncture stimulation of SP6 significantly reduces withdrawal-induced behaviors, induced by repeated administration of morphine in rats, possibly through the modulation of hypothalamic CRF and the central noradrenergic system.
Collapse
|
20
|
Sadegh M, Fathollahi Y, Semnanian S. The chronic treatment in vivo of salicylate or morphine alters excitatory effects of subsequent salicylate or morphine tests in vitro in hippocampus area CA1. Eur J Pharmacol 2013; 721:103-8. [DOI: 10.1016/j.ejphar.2013.09.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 09/18/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
|
21
|
Yang S, Wen D, Dong M, Li D, Sun D, Ma C, Cong B. Effects of cholecystokinin-8 on morphine-induced spatial reference memory impairment in mice. Behav Brain Res 2013; 256:346-53. [DOI: 10.1016/j.bbr.2013.08.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 12/31/2022]
|
22
|
Moradpour F, Fathollahi Y, Naghdi N, Hosseinmardi N, Javan M. Prepubertal castration causes the age-dependent changes in hippocampal long-term potentiation. Synapse 2013; 67:235-44. [DOI: 10.1002/syn.21636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/28/2012] [Accepted: 01/03/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Farshad Moradpour
- Department of Physiology; School of Medical Sciences; Tarbiat Modares University; Tehran; Iran
| | - Yaghoub Fathollahi
- Department of Physiology; School of Medical Sciences; Tarbiat Modares University; Tehran; Iran
| | - Nasser Naghdi
- Department of Physiology and Pharmacology; Pasteur Institute of Iran; 13164; Tehran; Iran
| | - Nargess Hosseinmardi
- Department of Physiology; Medical School; Shahid Beheshti University of Medical Sciences; Evin, Tehran; Iran
| | - Mohammad Javan
- Department of Physiology; School of Medical Sciences; Tarbiat Modares University; Tehran; Iran
| |
Collapse
|
23
|
Lee B, Sur B, Yeom M, Shim I, Lee H, Hahm DH. Effect of berberine on depression- and anxiety-like behaviors and activation of the noradrenergic system induced by development of morphine dependence in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:379-86. [PMID: 23269899 PMCID: PMC3526741 DOI: 10.4196/kjpp.2012.16.6.379] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 11/05/2012] [Accepted: 11/10/2012] [Indexed: 01/12/2023]
Abstract
The purpose of this study was to evaluate whether berberine (BER) administration could attenuate depression- and anxiety-like behaviors and increase corticotrophin-releasing factor (CRF) and tyrosine hydroxylase (TH) expression following chronic morphine withdrawal in rats. Male rats were exposed to chronic, intermittent, escalating morphine (10~50 mg/kg) for 10 days. After the last morphine injection, depression- and anxiety-like beahvior associated with morphine discontinuation persisted for at least three days during withdrawal without any change in ambulatory activity. Daily BER administration significantly decreased immobility in the forced swimming test and increased open-arm exploration in the elevated plus maze test. BER administration also significantly blocked the increase in hypothalamic CRF expression and TH expression in the locus coeruleus (LC) and the decrease in hippocampal brain-derived neurotrophic factor (BDNF) mRNA expression. Taken together, these findings demonstrated that BER administration significantly reduced morphine withdrawal-associated behaviors following discontinuation of repeated morphine administration in rats, possibly through modulation of hypothalamic CRF and the central noradrenergic system. BER may be a useful agent for treating or alleviating complex withdrawal symptoms and preventing morphine use relapses.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Bongjun Sur
- The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
- The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
- The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
- The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
24
|
Salmani ME, Fathollahi Y, Mirnajafizadeh J, Semnanian S. Epileptogenic insult alters endogenous adenosine control on long-term changes in synaptic strength by theta pattern stimulation in hippocampus area CA1. Synapse 2011; 65:189-97. [PMID: 20665697 DOI: 10.1002/syn.20834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The impact of theta patterning of the stimulation on the kindling effects of pentylenetetrazol (PTZ) was studied in rat hippocampus area CA1 in vitro. A potential involvement of adenosine A1 receptors was also examined. Primed-bursts stimulation (PBs) and theta pulse stimulation (TPS) were used as patterned activities. Stimulus patterns were applied to the Schaffer collateral afferents of hippocampal slices from both control and PTZ-kindled rats, the field excitatory postsynaptic potentials (fEPSP) and population spikes (PS) were simultaneously recorded from stratum radiatum and stratum pyramidale, respectively. Experiments were carried out in the presence or absence of the adenosine A1 receptor antagonist CPX. The following changes in kindled vs. control slices were observed. PBs was unable to produce both fEPSP LTP and PS LTP in untreated slices. When A1 receptor antagonist CPX was applied before PBs, both fEPSP LTP and PS LTP were elicited. PS LTP was selectively depressed by TPS (applied at 60 min after LTP induction) exclusively when A1 receptors were blocked, while TPS failed to depress PS LTP in untreated PBs-exposed slices. These findings suggest that seizing entails lasting changes in hippocampus area CA1 so that LTP induction by PBs is masked due to intensive adenosine release which in turn prevents TPS to induce PS LTD in epileptic CA1 network.
Collapse
|
25
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
26
|
Kealy J, Commins S. Frequency-dependent changes in synaptic plasticity and brain-derived neurotrophic factor (BDNF) expression in the CA1 to perirhinal cortex projection. Brain Res 2010; 1326:51-61. [PMID: 20193668 DOI: 10.1016/j.brainres.2010.02.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/18/2010] [Accepted: 02/22/2010] [Indexed: 12/25/2022]
Abstract
The ability of a synapse to be modulated both positively and negatively may be considered as a plausible model for the formation of learning and memory. The CA1 to perirhinal cortex projection is one of the multiple hippocampal-neocortical projections considered to be crucially involved in memory consolidation. We and others have previously demonstrated the ability of this projection to undergo long-term potentiation (LTP), however it is currently unknown whether the CA1-perirhinal projection can also be modified negatively (i.e. demonstrate long-term depression (LTD)). Here we investigate whether the CA1 to perirhinal projection in vivo in the anaesthetised animal shows a frequency-dependent pattern of synaptic plasticity that is coupled with brain-derived neurotrophic factor (BDNF) expression. Five groups of animals were used and each group underwent one of five different stimulation protocols (1 Hz, 5 Hz, 10 Hz, 50 Hz or 100 Hz) followed by post-stimulation recordings at baseline stimulation intensity (0.05 Hz) for 1h. Paired-pulse facilitation (PPF) recordings were taken both during baseline and 1h post-stimulation across six inter-pulse intervals (IPIs). Following all experiments, tissue samples were taken from area CA1 and perirhinal cortex from both the unstimulated and stimulated hemispheres of each brain and analysed for BDNF. Results indicated that LTP was observed following 50 Hz and 100 Hz HFS but LTD was not observed following any low-frequency stimulation. Pre- and post-stimulation PPF recordings revealed no difference for any of the stimulation frequencies, suggesting that the plasticity observed may involve a post- rather than a presynaptic mechanism. Finally, changes in BDNF were positively correlated with stimulation frequency in the area CA1 but the same pattern was not observed in the perirhinal cortex. These findings suggest that the CA1 to perirhinal cortex projection is electrophysiologically excitatory in nature and that changes in BDNF levels in this projection may not be predictive of changes in synaptic plasticity.
Collapse
Affiliation(s)
- John Kealy
- Department of Psychology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | | |
Collapse
|
27
|
Tariq A, Ai J, Chen G, Sabri M, Jeon H, Shang X, Macdonald R. Loss of long-term potentiation in the hippocampus after experimental subarachnoid hemorrhage in rats. Neuroscience 2010; 165:418-26. [DOI: 10.1016/j.neuroscience.2009.10.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/29/2009] [Accepted: 10/19/2009] [Indexed: 12/01/2022]
|