1
|
Williams RAJ, Sánchez-Llatas CJ, Doménech A, Madrid R, Fandiño S, Cea-Callejo P, Gomez-Lucia E, Benítez L. Emerging and Novel Viruses in Passerine Birds. Microorganisms 2023; 11:2355. [PMID: 37764199 PMCID: PMC10536639 DOI: 10.3390/microorganisms11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
There is growing interest in emerging viruses that can cause serious or lethal disease in humans and animals. The proliferation of cloacal virome studies, mainly focused on poultry and other domestic birds, reveals a wide variety of viruses, although their pathogenic significance is currently uncertain. Analysis of viruses detected in wild birds is complex and often biased towards waterfowl because of the obvious interest in avian influenza or other zoonotic viruses. Less is known about the viruses present in the order Passeriformes, which comprises approximately 60% of extant bird species. This review aims to compile the most significant contributions on the DNA/RNA viruses affecting passerines, from traditional and metagenomic studies. It highlights that most passerine species have never been sampled. Especially the RNA viruses from Flaviviridae, Orthomyxoviridae and Togaviridae are considered emerging because of increased incidence or avian mortality/morbidity, spread to new geographical areas or hosts and their zoonotic risk. Arguably poxvirus, and perhaps other virus groups, could also be considered "emerging viruses". However, many of these viruses have only recently been described in passerines using metagenomics and their role in the ecosystem is unknown. Finally, it is noteworthy that only one third of the viruses affecting passerines have been officially recognized.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
| | - Ana Doménech
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Ricardo Madrid
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Sergio Fandiño
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo Cea-Callejo
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Esperanza Gomez-Lucia
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| |
Collapse
|
2
|
Rubbenstroth D. Avian Bornavirus Research—A Comprehensive Review. Viruses 2022; 14:v14071513. [PMID: 35891493 PMCID: PMC9321243 DOI: 10.3390/v14071513] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Avian bornaviruses constitute a genetically diverse group of at least 15 viruses belonging to the genus Orthobornavirus within the family Bornaviridae. After the discovery of the first avian bornaviruses in diseased psittacines in 2008, further viruses have been detected in passerines and aquatic birds. Parrot bornaviruses (PaBVs) possess the highest veterinary relevance amongst the avian bornaviruses as the causative agents of proventricular dilatation disease (PDD). PDD is a chronic and often fatal disease that may engulf a broad range of clinical presentations, typically including neurologic signs as well as impaired gastrointestinal motility, leading to proventricular dilatation. It occurs worldwide in captive psittacine populations and threatens private bird collections, zoological gardens and rehabilitation projects of endangered species. In contrast, only little is known about the pathogenic roles of passerine and waterbird bornaviruses. This comprehensive review summarizes the current knowledge on avian bornavirus infections, including their taxonomy, pathogenesis of associated diseases, epidemiology, diagnostic strategies and recent developments on prophylactic and therapeutic countermeasures.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| |
Collapse
|
3
|
Lipshutz SE, Howell CR, Buechlein AM, Rusch DB, Rosvall KA, Derryberry EP. How thermal challenges change gene regulation in the songbird brain and gonad: implications for sexual selection in our changing world. Mol Ecol 2022; 31:3613-3626. [PMID: 35567363 DOI: 10.1111/mec.16506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
Abstract
In a rapidly warming world, exposure to high temperatures may impact fitness, but the gene regulatory mechanisms that link sublethal heat to sexually selected traits are not well understood, particularly in endothermic animals. Our experiment used zebra finches (Taeniopygia guttata), songbirds that experience extreme temperature fluctuations in their native Australia. We exposed captive males to an acute thermal challenge (43°C) compared with thermoneutral (35°C) and lower (27°C) temperatures. We found significantly more heat dissipation behaviors at 43°C, a temperature previously shown to reduce song production and fertility, and more heat retention behaviors at 27°C. Next, we characterized transcriptomic responses in tissues important for mating effort - the posterior telencephalon, for its role in song production, and the testis, for its role in fertility and hormone production. Differential expression of hundreds of genes in the testes, but few in the brain, suggest the brain is less responsive to extreme temperatures. Nevertheless, gene network analyses revealed that expression related to dopaminergic signaling in the brain co-varied with heat dissipation behaviors, providing a mechanism by which temporary thermal challenges may alter motivational circuits for song production. In both brain and testis, we observed correlations between thermally sensitive gene networks and individual differences in thermoregulatory behavior. Although we cannot directly relate these gene regulatory changes to mating success, our results suggest that individual variation in response to thermal challenges could impact sexually selected traits in a warming world.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN, USA.,Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Clara R Howell
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.,Department of Biology, Duke University, Durham, NC, USA
| | - Aaron M Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
4
|
O'Rourke T, Martins PT, Asano R, Tachibana RO, Okanoya K, Boeckx C. Capturing the Effects of Domestication on Vocal Learning Complexity. Trends Cogn Sci 2021; 25:462-474. [PMID: 33810982 DOI: 10.1016/j.tics.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
Domesticated and vocal learning species can serve as informative model organisms for the reduction of reactive aggression and emergence of speech in our lineage. Amidst mounting evidence that domestication modifies vocal repertoires across different species, we focus on the domesticated Bengalese finch, which has a more complex song than the wild-type white-rumped munia. Our explanation for this effect revolves around the glutamate neurotransmitter system. Glutamate signaling (i) is implicated in birdsong learning, (ii) controls dopamine activity in neural circuits crucial for vocal learning, (iii) is disproportionately targeted in the evolution of domesticates, and (iv) regulates stress responses and aggressive behaviors attenuated under domestication. We propose that attenuated excitation of stress-related neural circuits potentiates vocal learning via altered dopaminergic signaling.
Collapse
Affiliation(s)
- Thomas O'Rourke
- Section of General Linguistics, University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute for Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Pedro Tiago Martins
- Section of General Linguistics, University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute for Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Rie Asano
- Department of Systematic Musicology, University of Cologne, 50923 Cologne, Germany
| | - Ryosuke O Tachibana
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 153-8902 Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 153-8902 Tokyo, Japan
| | - Cedric Boeckx
- Section of General Linguistics, University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute for Complex Systems (UBICS), 08028 Barcelona, Spain; Catalan Institute for Advanced Studies and Research (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
5
|
Lovell PV, Wirthlin M, Kaser T, Buckner AA, Carleton JB, Snider BR, McHugh AK, Tolpygo A, Mitra PP, Mello CV. ZEBrA: Zebra finch Expression Brain Atlas-A resource for comparative molecular neuroanatomy and brain evolution studies. J Comp Neurol 2020; 528:2099-2131. [PMID: 32037563 DOI: 10.1002/cne.24879] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
Abstract
An in-depth understanding of the genetics and evolution of brain function and behavior requires a detailed mapping of gene expression in functional brain circuits across major vertebrate clades. Here we present the Zebra finch Expression Brain Atlas (ZEBrA; www.zebrafinchatlas.org, RRID: SCR_012988), a web-based resource that maps the expression of genes linked to a broad range of functions onto the brain of zebra finches. ZEBrA is a first of its kind gene expression brain atlas for a bird species and a first for any sauropsid. ZEBrA's >3,200 high-resolution digital images of in situ hybridized sections for ~650 genes (as of June 2019) are presented in alignment with an annotated histological atlas and can be browsed down to cellular resolution. An extensive relational database connects expression patterns to information about gene function, mouse expression patterns and phenotypes, and gene involvement in human diseases and communication disorders. By enabling brain-wide gene expression assessments in a bird, ZEBrA provides important substrates for comparative neuroanatomy and molecular brain evolution studies. ZEBrA also provides unique opportunities for linking genetic pathways to vocal learning and motor control circuits, as well as for novel insights into the molecular basis of sex steroids actions, brain dimorphisms, reproductive and social behaviors, sleep function, and adult neurogenesis, among many fundamental themes.
Collapse
Affiliation(s)
- Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Taylor Kaser
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Alexa A Buckner
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Julia B Carleton
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Brian R Snider
- Center for Spoken Language Understanding, Institute on Development and Disability, Oregon Health and Science University, Portland, Oregon
| | - Anne K McHugh
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | | | - Partha P Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
6
|
Lovell PV, Huizinga NA, Getachew A, Mees B, Friedrich SR, Wirthlin M, Mello CV. Curation of microarray oligonucleotides and corresponding ESTs/cDNAs used for gene expression analysis in zebra finches. BMC Res Notes 2018; 11:309. [PMID: 29776372 PMCID: PMC5960091 DOI: 10.1186/s13104-018-3402-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/07/2018] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Zebra finches are a major model organism for investigating mechanisms of vocal learning, a trait that enables spoken language in humans. The development of cDNA collections with expressed sequence tags (ESTs) and microarrays has allowed for extensive molecular characterizations of circuitry underlying vocal learning and production. However, poor database curation can lead to errors in transcriptome and bioinformatics analyses, limiting the impact of these resources. Here we used genomic alignments and synteny analysis for orthology verification to curate and reannotate ~ 35% of the oligonucleotides and corresponding ESTs/cDNAs that make-up Agilent microarrays for gene expression analysis in finches. DATA DESCRIPTION We found that: (1) 5475 out of 43,084 oligos (a) failed to align to the zebra finch genome, (b) aligned to multiple loci, or (c) aligned to Chr_un only, and thus need to be flagged until a better genome assembly is available, or (d) reflect cloning artifacts; (2) Out of 9635 valid oligos examined further, 3120 were incorrectly named, including 1533 with no known orthologs; and (3) 2635 oligos required name update. The resulting curated dataset provides a reference for correcting gene identification errors in previous finch microarrays studies, and avoiding such errors in future studies.
Collapse
Affiliation(s)
- Peter V Lovell
- Department of Behavioral Neuroscience, OHSU, Portland, OR, 97221, USA
| | - Nicole A Huizinga
- Department of Behavioral Neuroscience, OHSU, Portland, OR, 97221, USA
| | - Abel Getachew
- Department of Behavioral Neuroscience, OHSU, Portland, OR, 97221, USA
| | - Brianna Mees
- Department of Behavioral Neuroscience, OHSU, Portland, OR, 97221, USA
| | | | - Morgan Wirthlin
- Department of Behavioral Neuroscience, OHSU, Portland, OR, 97221, USA.,Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, OHSU, Portland, OR, 97221, USA.
| |
Collapse
|
7
|
Lovell PV, Huizinga NA, Friedrich SR, Wirthlin M, Mello CV. The constitutive differential transcriptome of a brain circuit for vocal learning. BMC Genomics 2018; 19:231. [PMID: 29614959 PMCID: PMC5883274 DOI: 10.1186/s12864-018-4578-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/02/2018] [Indexed: 01/25/2023] Open
Abstract
Background The ability to imitate the vocalizations of other organisms, a trait known as vocal learning, is shared by only a few organisms, including humans, where it subserves the acquisition of speech and language, and 3 groups of birds. In songbirds, vocal learning requires the coordinated activity of a set of specialized brain nuclei referred to as the song control system. Recent efforts have revealed some of the genes that are expressed in these vocal nuclei, however a thorough characterization of the transcriptional specializations of this system is still missing. We conducted a rigorous and comprehensive analysis of microarrays, and conducted a separate analysis of 380 genes by in situ hybridizations in order to identify molecular specializations of the major nuclei of the song system of zebra finches (Taeniopygia guttata), a songbird species. Results Our efforts identified more than 3300 genes that are differentially regulated in one or more vocal nuclei of adult male birds compared to the adjacent brain regions. Bioinformatics analyses provided insights into the possible involvement of these genes in molecular pathways such as cellular morphogenesis, intrinsic cellular excitability, neurotransmission and neuromodulation, axonal guidance and cela-to-cell interactions, and cell survival, which are known to strongly influence the functional properties of the song system. Moreover, an in-depth analysis of specific gene families with known involvement in regulating the development and physiological properties of neuronal circuits provides further insights into possible modulators of the song system. Conclusion Our study represents one of the most comprehensive molecular characterizations of a brain circuit that evolved to facilitate a learned behavior in a vertebrate. The data provide novel insights into possible molecular determinants of the functional properties of the song control circuitry. It also provides lists of compelling targets for pharmacological and genetic manipulations to elucidate the molecular regulation of song behavior and vocal learning. Electronic supplementary material The online version of this article (10.1186/s12864-018-4578-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Sciences University, 3181 Sam Jackson Park Rd L470, Portland, OR, USA
| | - Nicole A Huizinga
- Department of Behavioral Neuroscience, Oregon Health and Sciences University, 3181 Sam Jackson Park Rd L470, Portland, OR, USA
| | - Samantha R Friedrich
- Department of Behavioral Neuroscience, Oregon Health and Sciences University, 3181 Sam Jackson Park Rd L470, Portland, OR, USA
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, Oregon Health and Sciences University, 3181 Sam Jackson Park Rd L470, Portland, OR, USA.,Current affiliation: Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Sciences University, 3181 Sam Jackson Park Rd L470, Portland, OR, USA.
| |
Collapse
|
8
|
Zhao Y, Zhang X, Wang R, Bing J, Wu F, Zhang Y, Xu J, Han Z, Zhang X, Zeng S. Erbin and ErbB2 play roles in the sexual differentiation of the song system nucleus HVC in bengalese finches (Lonchura Striata var. domestica). Dev Neurobiol 2017; 78:15-38. [PMID: 29082632 DOI: 10.1002/dneu.22551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/20/2017] [Accepted: 10/25/2017] [Indexed: 12/29/2022]
Abstract
Song control nuclei have distinct sexual differences in songbirds. However, the mechanism that underlies the sexual differentiation of song nuclei is still not well understood. Using a combination of anatomical, pharmacological, genetic, and behavioral approaches, the present study investigated the role of erbb2 (a homolog of the avian erythroblastic leukemia viral oncogene homolog 2) and the erbb2-interacting gene, erbin, in the sexual differentiation of the song nucleus HVC in the Bengalese finch. We first found that both erbin and erbb2 were expressed in the developing HVC at posthatch day (PHD) 15 in a male-biased fashion using qRT-PCR and in situ hybridization. Following the addition of a pharmaceutical inhibitor of the ErbB2 signaling pathway to the culture medium, cell proliferation in the cultured ventricle zone (VZ) that overlies the developing HVC decreased significantly. After the injection of erbin- or erbb2-interfering lentiviruses into the HVC and its overlying VZ at PHD 15, the cell proliferation in the VZ at PHD 24, the number of the differentiated neurons (Hu+ /BrdU+ or NeuN+ /BrdU+ ) in the HVC at PHD 31 or PHD 130, and the number of RA-projecting cells at PHD 130 all decreased significantly. Additionally, the adult songs displayed serious abnormalities. Finally, 173 male-biased genes were expressed in the developing HVC at PHD 15 using cDNA microarrays, of which 27.2% were Z-linked genes and approximately 20 genes were involved in the Erbin- or ErbB2-related signaling pathways. Our results provide some specific genetic factors that contribute to neurogenesis and sex differentiation in a song nucleus of songbirds. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 15-38, 2018.
Collapse
Affiliation(s)
- Yueliu Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Xuebo Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China.,College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Rui Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Jie Bing
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Fan Wu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Yitong Zhang
- College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Jincao Xu
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Zhongming Han
- Department of Otorhinolaryngolgoy, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Xinwen Zhang
- College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Shaoju Zeng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
9
|
Murphy K, James LS, Sakata JT, Prather JF. Advantages of comparative studies in songbirds to understand the neural basis of sensorimotor integration. J Neurophysiol 2017; 118:800-816. [PMID: 28331007 DOI: 10.1152/jn.00623.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/22/2022] Open
Abstract
Sensorimotor integration is the process through which the nervous system creates a link between motor commands and associated sensory feedback. This process allows for the acquisition and refinement of many behaviors, including learned communication behaviors such as speech and birdsong. Consequently, it is important to understand fundamental mechanisms of sensorimotor integration, and comparative analyses of this process can provide vital insight. Songbirds offer a powerful comparative model system to study how the nervous system links motor and sensory information for learning and control. This is because the acquisition, maintenance, and control of birdsong critically depend on sensory feedback. Furthermore, there is an incredible diversity of song organizations across songbird species, ranging from songs with simple, stereotyped sequences to songs with complex sequencing of vocal gestures, as well as a wide diversity of song repertoire sizes. Despite this diversity, the neural circuitry for song learning, control, and maintenance remains highly similar across species. Here, we highlight the utility of songbirds for the analysis of sensorimotor integration and the insights about mechanisms of sensorimotor integration gained by comparing different songbird species. Key conclusions from this comparative analysis are that variation in song sequence complexity seems to covary with the strength of feedback signals in sensorimotor circuits and that sensorimotor circuits contain distinct representations of elements in the vocal repertoire, possibly enabling evolutionary variation in repertoire sizes. We conclude our review by highlighting important areas of research that could benefit from increased comparative focus, with particular emphasis on the integration of new technologies.
Collapse
Affiliation(s)
- Karagh Murphy
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and
| | - Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jonathan F Prather
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and
| |
Collapse
|
10
|
Merullo DP, Cordes MA, Susan DeVries M, Stevenson SA, Riters LV. Neurotensin neural mRNA expression correlates with vocal communication and other highly-motivated social behaviors in male European starlings. Physiol Behav 2015; 151:155-61. [PMID: 26192712 DOI: 10.1016/j.physbeh.2015.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/31/2022]
Abstract
Vocalizations coordinate social interactions in many species and often are important for behaviors such as mate attraction or territorial defense. Although the neural circuitry underlying vocal communication is well-known for some animal groups, such as songbirds, the motivational processes that regulate vocal signals are not as clearly understood. Neurotensin (NT) is a neuropeptide implicated in motivation that can modulate the activity of dopaminergic neurons. Dopaminergic projections from the ventral tegmental area (VTA) are key to mediating highly motivated, goal-directed behaviors, including sexually-motivated birdsong. However, the role of NT in modifying vocal communication or other social behaviors has not been well-studied. Here in European starlings (Sturnus vulgaris) we analyzed relationships between sexually-motivated song and NT and NT1 receptor (NTSR1) expression in VTA. Additionally, we examined NT and NTSR1 expression in four regions that receive dopaminergic projections from VTA and are involved in courtship song: the medial preoptic nucleus (POM), the lateral septum (LS), Area X, and HVC. Relationships between NT and NTSR1 expression and non-vocal courtship and agonistic behaviors were also examined. NT expression in Area X positively related to sexually-motivated song production. NT expression in POM positively correlated with non-vocal courtship behavior and agonistic behavior. NT expression in POM was greatest in males owning nesting sites, and the opposite pattern was observed for NTSR1 expression in LS. These results are the first to implicate NT in Area X in birdsong, and further highlight NT as a potential neuromodulator for the control of vocal communication and other social behaviors.
Collapse
Affiliation(s)
- Devin P Merullo
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| | - Melissa A Cordes
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - M Susan DeVries
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Sharon A Stevenson
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Lauren V Riters
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
11
|
Olson CR, Hodges LK, Mello CV. Dynamic gene expression in the song system of zebra finches during the song learning period. Dev Neurobiol 2015; 75:1315-38. [PMID: 25787707 DOI: 10.1002/dneu.22286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/09/2015] [Indexed: 01/03/2023]
Abstract
The brain circuitry that controls song learning and production undergoes marked changes in morphology and connectivity during the song learning period in juvenile zebra finches, in parallel to the acquisition, practice and refinement of song. Yet, the genetic programs and timing of regulatory change that establish the neuronal connectivity and plasticity during this critical learning period remain largely undetermined. To address this question, we used in situ hybridization to compare the expression patterns of a set of 30 known robust molecular markers of HVC and/or area X, major telencephalic song nuclei, between adult and juvenile male zebra finches at different ages during development (20, 35, 50 days post-hatch, dph). We found that several of the genes examined undergo substantial changes in expression within HVC or its surrounds, and/or in other song nuclei. They fit into broad patterns of regulation, including those whose expression within HVC during this period increases (COL12A1, COL 21A1, MPZL1, PVALB, and CXCR7) or decreases (e.g., KCNT2, SAP30L), as well as some that show decreased expression in the surrounding tissue with little change within song nuclei (e.g. SV2B, TAC1). These results reveal a broad range of molecular changes that occur in the song system in concert with the song learning period. Some of the genes and pathways identified are potential modulators of the developmental changes associated with the emergence of the adult properties of the song control system, and/or the acquisition of learned vocalizations in songbirds.
Collapse
Affiliation(s)
- Christopher R Olson
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, Oregon, 97239-3098
| | - Lisa K Hodges
- Biology Department, Lewis and Clark College, 0615 S.W. Palatine Hill Road, Portland, Oregon 97219
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, Oregon, 97239-3098
| |
Collapse
|
12
|
Frankl-Vilches C, Kuhl H, Werber M, Klages S, Kerick M, Bakker A, de Oliveira EH, Reusch C, Capuano F, Vowinckel J, Leitner S, Ralser M, Timmermann B, Gahr M. Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds. Genome Biol 2015; 16:19. [PMID: 25631560 PMCID: PMC4373106 DOI: 10.1186/s13059-014-0578-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/23/2014] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND While the song of all songbirds is controlled by the same neural circuit, the hormone dependence of singing behavior varies greatly between species. For this reason, songbirds are ideal organisms to study ultimate and proximate mechanisms of hormone-dependent behavior and neuronal plasticity. RESULTS We present the high quality assembly and annotation of a female 1.2-Gbp canary genome. Whole genome alignments between the canary and 13 genomes throughout the bird taxa show a much-conserved synteny, whereas at the single-base resolution there are considerable species differences. These differences impact small sequence motifs like transcription factor binding sites such as estrogen response elements and androgen response elements. To relate these species-specific response elements to the hormone-sensitivity of the canary singing behavior, we identify seasonal testosterone-sensitive transcriptomes of major song-related brain regions, HVC and RA, and find the seasonal gene networks related to neuronal differentiation only in the HVC. Testosterone-sensitive up-regulated gene networks of HVC of singing males concerned neuronal differentiation. Among the testosterone-regulated genes of canary HVC, 20% lack estrogen response elements and 4 to 8% lack androgen response elements in orthologous promoters in the zebra finch. CONCLUSIONS The canary genome sequence and complementary expression analysis reveal intra-regional evolutionary changes in a multi-regional neural circuit controlling seasonal singing behavior and identify gene evolution related to the hormone-sensitivity of this seasonal singing behavior. Such genes that are testosterone- and estrogen-sensitive specifically in the canary and that are involved in rewiring of neurons might be crucial for seasonal re-differentiation of HVC underlying seasonal song patterning.
Collapse
Affiliation(s)
- Carolina Frankl-Vilches
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| | - Heiner Kuhl
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Martin Werber
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Sven Klages
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Martin Kerick
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Antje Bakker
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| | - Edivaldo Hc de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, Pará, and Faculdade de Ciências Naturais (ICEN), Universidade Federal do Pará, Belém, 66075-110, Brazil.
| | - Christina Reusch
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| | - Floriana Capuano
- Department of Biochemistry and Cambridge Systems Biology Centre, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Jakob Vowinckel
- Department of Biochemistry and Cambridge Systems Biology Centre, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Stefan Leitner
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
- Division of Physiology and Metabolism, MRC National Institute for Medical Research, the Ridgeway, Mill Hill, London, NW7 1AA, UK.
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Sequencing Core Facility, 14195, Berlin, Germany.
| | - Manfred Gahr
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, 82319, Seewiesen, Germany.
| |
Collapse
|
13
|
Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R, Roulhac PL, Howard JT, Wirthlin M, Lovell PV, Ganapathy G, Mouncastle J, Moseley MA, Thompson JW, Soderblom EJ, Iriki A, Kato M, Gilbert MTP, Zhang G, Bakken T, Bongaarts A, Bernard A, Lein E, Mello CV, Hartemink AJ, Jarvis ED. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 2014; 346:1256846. [PMID: 25504733 DOI: 10.1126/science.1256846] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes.
Collapse
Affiliation(s)
- Andreas R Pfenning
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
| | - Erina Hara
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Osceola Whitney
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Miriam V Rivas
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Rui Wang
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Petra L Roulhac
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Jason T Howard
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ganeshkumar Ganapathy
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - Jacquelyn Mouncastle
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA
| | - M Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - J Will Thompson
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erik J Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masaki Kato
- Laboratory for Symbolic Cognitive Development, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for Social Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Trygve Bakken
- Allen Institute for Brain Science, Seattle, WA 98103, USA
| | | | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA 98103, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98103, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Erich D Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, and Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
14
|
The opportunities and challenges of large-scale molecular approaches to songbird neurobiology. Neurosci Biobehav Rev 2014; 50:70-6. [PMID: 25280907 DOI: 10.1016/j.neubiorev.2014.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 09/08/2014] [Accepted: 09/22/2014] [Indexed: 01/31/2023]
Abstract
High-throughput methods for analyzing genome structure and function are having a large impact in songbird neurobiology. Methods include genome sequencing and annotation, comparative genomics, DNA microarrays and transcriptomics, and the development of a brain atlas of gene expression. Key emerging findings include the identification of complex transcriptional programs active during singing, the robust brain expression of non-coding RNAs, evidence of profound variations in gene expression across brain regions, and the identification of molecular specializations within song production and learning circuits. Current challenges include the statistical analysis of large datasets, effective genome curations, the efficient localization of gene expression changes to specific neuronal circuits and cells, and the dissection of behavioral and environmental factors that influence brain gene expression. The field requires efficient methods for comparisons with organisms like chicken, which offer important anatomical, functional and behavioral contrasts. As sequencing costs plummet, opportunities emerge for comparative approaches that may help reveal evolutionary transitions contributing to vocal learning, social behavior and other properties that make songbirds such compelling research subjects.
Collapse
|
15
|
Behavioral and neural trade-offs between song complexity and stress reaction in a wild and a domesticated finch strain. Neurosci Biobehav Rev 2014; 46 Pt 4:547-56. [DOI: 10.1016/j.neubiorev.2014.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 06/23/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022]
|
16
|
James LS, Sakata JT. Vocal motor changes beyond the sensitive period for song plasticity. J Neurophysiol 2014; 112:2040-52. [PMID: 25057147 DOI: 10.1152/jn.00217.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Behavior is critically shaped during sensitive periods in development. Birdsong is a learned vocal behavior that undergoes dramatic plasticity during a sensitive period of sensorimotor learning. During this period, juvenile songbirds engage in vocal practice to shape their vocalizations into relatively stereotyped songs. By the time songbirds reach adulthood, their songs are relatively stable and thought to be "crystallized." Recent studies, however, highlight the potential for adult song plasticity and suggest that adult song could naturally change over time. As such, we investigated the degree to which temporal and spectral features of song changed over time in adult Bengalese finches. We observed that the sequencing and timing of song syllables became more stereotyped over time. Increases in the stereotypy of syllable sequencing were due to the pruning of infrequently produced transitions and, to a lesser extent, increases in the prevalence of frequently produced transitions. Changes in song tempo were driven by decreases in the duration and variability of intersyllable gaps. In contrast to significant changes to temporal song features, we found little evidence that the spectral structure of adult song syllables changed over time. These data highlight differences in the degree to which temporal and spectral features of adult song change over time and support evidence for distinct mechanisms underlying the control of syllable sequencing, timing, and structure. Furthermore, the observed changes to temporal song features are consistent with a Hebbian framework of behavioral plasticity and support the notion that adult song should be considered a form of vocal practice.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Kato M, Okanoya K, Koike T, Sasaki E, Okano H, Watanabe S, Iriki A. Human speech- and reading-related genes display partially overlapping expression patterns in the marmoset brain. BRAIN AND LANGUAGE 2014; 133:26-38. [PMID: 24769279 DOI: 10.1016/j.bandl.2014.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/02/2014] [Accepted: 03/22/2014] [Indexed: 06/03/2023]
Abstract
Language is a characteristic feature of human communication. Several familial language impairments have been identified, and candidate genes for language impairments already isolated. Studies comparing expression patterns of these genes in human brain are necessary to further understanding of these genes. However, it is difficult to examine gene expression in human brain. In this study, we used a non-human primate (common marmoset; Callithrix jacchus) as a biological model of the human brain to investigate expression patterns of human speech- and reading-related genes. Expression patterns of speech disorder- (FoxP2, FoxP1, CNTNAP2, and CMIP) and dyslexia- (ROBO1, DCDC2, and KIAA0319) related genes were analyzed. We found the genes displayed overlapping expression patterns in the ocular, auditory, and motor systems. Our results enhance understanding of the molecular mechanisms underlying language impairments.
Collapse
Affiliation(s)
- Masaki Kato
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Laboratory for Biolinguistics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Center for Advanced Research on Logic and Sensibility (CARLS), Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.
| | - Kazuo Okanoya
- Laboratory for Biolinguistics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Taku Koike
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki, Kanagawa 210-0821, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; KEIO-RIKEN Research Center for Human Cognition, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; KEIO-RIKEN Research Center for Human Cognition, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan; Keio University Joint Research Laboratory, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shigeru Watanabe
- KEIO-RIKEN Research Center for Human Cognition, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan; Center for Advanced Research on Logic and Sensibility (CARLS), Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; KEIO-RIKEN Research Center for Human Cognition, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan; Center for Advanced Research on Logic and Sensibility (CARLS), Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.
| |
Collapse
|
18
|
Ye J, Rozdeba PJ, Morone UI, Daou A, Abarbanel HDI. Estimating the biophysical properties of neurons with intracellular calcium dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062714. [PMID: 25019821 DOI: 10.1103/physreve.89.062714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Indexed: 06/03/2023]
Abstract
We investigate the dynamics of a conductance-based neuron model coupled to a model of intracellular calcium uptake and release by the endoplasmic reticulum. The intracellular calcium dynamics occur on a time scale that is orders of magnitude slower than voltage spiking behavior. Coupling these mechanisms sets the stage for the appearance of chaotic dynamics, which we observe within certain ranges of model parameter values. We then explore the question of whether one can, using observed voltage data alone, estimate the states and parameters of the voltage plus calcium (V+Ca) dynamics model. We find the answer is negative. Indeed, we show that voltage plus another observed quantity must be known to allow the estimation to be accurate. We show that observing both the voltage time course V(t) and the intracellular Ca time course will permit accurate estimation, and from the estimated model state, accurate prediction after observations are completed. This sets the stage for how one will be able to use a more detailed model of V+Ca dynamics in neuron activity in the analysis of experimental data on individual neurons as well as functional networks in which the nodes (neurons) have these biophysical properties.
Collapse
Affiliation(s)
- Jingxin Ye
- Department of Physics, University of California, San Diego, La Jolla, California 92093-0374, USA
| | - Paul J Rozdeba
- Department of Physics, University of California, San Diego, La Jolla, California 92093-0374, USA
| | - Uriel I Morone
- Department of Physics, University of California, San Diego, La Jolla, California 92093-0374, USA
| | - Arij Daou
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60647, USA
| | - Henry D I Abarbanel
- Department of Physics and Marine Physical Laboratory (Scripps Institution of Oceanography) University of California, San Diego La Jolla, California 92093-0374, USA
| |
Collapse
|
19
|
Avian bornaviruses are widely distributed in canary birds (Serinus canaria f. domestica). Vet Microbiol 2013; 165:287-95. [PMID: 23631925 DOI: 10.1016/j.vetmic.2013.03.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/23/2013] [Accepted: 03/28/2013] [Indexed: 11/23/2022]
Abstract
Avian bornavirus (ABV) was identified in 2008 as the causative agent of proventricular dilatation disease (PDD) in psittacine birds. In addition, ABV variants were detected in wild waterfowl and in a canary bird. PDD-like diseases were also reported in various other avian species, but it remains unknown whether ABV is involved. In this study we detected ABV in 12 of 30 tested canary bird flocks (40%), indicating a wide distribution of ABV in captive canary birds in Germany. Sequence analysis identified several distinct ABV genotypes which differ markedly from the genotypes present in psittacine birds. Some canaries naturally infected with ABV exhibited gastrointestinal and neurological symptoms which resembled PDD in psittacines, while others did not show signs of disease. Canaries experimentally inoculated with ABV developed infections of the brain and various other organs. The experimentally infected canaries transmitted the virus to sentinel birds kept in the same aviary, but did not show any clinical signs during a five month observation period. Embryonated eggs originating from ABV-infected hens contained ABV-specific RNA, but virus could not be re-isolated from embryonic tissue. These results indicate that ABV is widely distributed in canary birds and due to its association to clinical signs should be considered as a potential pathogen of this species.
Collapse
|
20
|
Scharff C, Adam I. Neurogenetics of birdsong. Curr Opin Neurobiol 2012; 23:29-36. [PMID: 23102970 DOI: 10.1016/j.conb.2012.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/02/2012] [Accepted: 10/08/2012] [Indexed: 11/29/2022]
Abstract
Songbirds are a productive model organism to study the neural basis of auditory-guided vocal motor learning. Like human babies, juvenile songbirds learn many of their vocalizations by imitating an adult conspecific. This process is a product of genetic predispositions and the individual's life experience and has been investigated mainly by neuroanatomical, physiological and behavioral methods. Results have revealed general principles governing vertebrate motor behavior, sensitive periods, sexual dimorphism, social behavior regulation and adult neurogenesis. More recently, the emerging field of birdsong neurogenetics has advanced the way we think about genetic contributions to communication, mechanistically and conceptually.
Collapse
Affiliation(s)
- Constance Scharff
- Freie Universität Berlin, Institute of Biology, Takustraße 6, 14195 Berlin, Germany.
| | | |
Collapse
|
21
|
Matsunaga E, Suzuki K, Kobayashi T, Okanoya K. Comparative analysis of mineralocorticoid receptor expression among vocal learners (Bengalese finch and budgerigar) and non-vocal learners (quail and ring dove) has implications for the evolution of avian vocal learning. Dev Growth Differ 2011; 53:961-70. [PMID: 22010640 DOI: 10.1111/j.1440-169x.2011.01302.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mineralocorticoid receptor is the receptor for corticosteroids such as corticosterone or aldosterone. Previously, we found that mineralocorticoid receptor was highly expressed in song nuclei of a songbird, Bengalese finch (Lonchura striata var. domestica). Here, to examine the relationship between mineralocorticoid receptor expression and avian vocal learning, we analyzed mineralocorticoid receptor expression in the developing brain of another vocal learner, budgerigar (Melopsittacus undulatus) and non-vocal learners, quail (Coturnix japonica) and ring dove (Streptopelia capicola). Mineralocorticoid receptor showed vocal control area-related expressions in budgerigars as Bengalese finches, whereas no such mineralocorticoid receptor expressions were seen in the telencephalon of non-vocal learners. Thus, these results suggest the possibility that mineralocorticoid receptor plays a role in vocal development of parrots as songbirds and that the acquisition of mineralocorticoid receptor expression is involved in the evolution of avian vocal learning.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako 351-0198 Japan.
| | | | | | | |
Collapse
|
22
|
Matsunaga E, Okanoya K. Comparative gene expression analysis among vocal learners (bengalese finch and budgerigar) and non-learners (quail and ring dove) reveals variable cadherin expressions in the vocal system. Front Neuroanat 2011; 5:28. [PMID: 21541260 PMCID: PMC3083831 DOI: 10.3389/fnana.2011.00028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 04/07/2011] [Indexed: 11/13/2022] Open
Abstract
Birds use various vocalizations to communicate with one another, and some are acquired through learning. So far, three families of birds (songbirds, parrots, and hummingbirds) have been identified as having vocal learning ability. Previously, we found that cadherins, a large family of cell-adhesion molecules, show vocal control-area-related expression in a songbird, the Bengalese finch. To investigate the molecular basis of evolution in avian species, we conducted comparative analysis of cadherin expressions in the vocal and other neural systems among vocal learners (Bengalese finch and budgerigar) and a non-learner (quail and ring dove). The gene expression analysis revealed that cadherin expressions were more variable in vocal and auditory areas compared to vocally unrelated areas such as the visual areas among these species. Thus, it appears that such diverse cadherin expressions might have been related to generating species diversity in vocal behavior during the evolution of avian vocal learning.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako Saitama, Japan
| | | |
Collapse
|