1
|
Qiu X, Yang Y, Da X, Wang Y, Chen Z, Xu C. Satellite glial cells in sensory ganglia play a wider role in chronic pain via multiple mechanisms. Neural Regen Res 2024; 19:1056-1063. [PMID: 37862208 PMCID: PMC10749601 DOI: 10.4103/1673-5374.382986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 10/22/2023] Open
Abstract
Satellite glial cells are unique glial cells that surround the cell body of primary sensory neurons. An increasing body of evidence suggests that in the presence of inflammation and nerve damage, a significant number of satellite glial cells become activated, thus triggering a series of functional changes. This suggests that satellite glial cells are closely related to the occurrence of chronic pain. In this review, we first summarize the morphological structure, molecular markers, and physiological functions of satellite glial cells. Then, we clarify the multiple key roles of satellite glial cells in chronic pain, including gap junction hemichannel Cx43, membrane channel Pannexin1, K channel subunit 4.1, ATP, purinergic P2 receptors, and a series of additional factors and their receptors, including tumor necrosis factor, glutamate, endothelin, and bradykinin. Finally, we propose that future research should focus on the specific sorting of satellite glial cells, and identify genomic differences between physiological and pathological conditions. This review provides an important perspective for clarifying mechanisms underlying the peripheral regulation of chronic pain and will facilitate the formulation of new treatment plans for chronic pain.
Collapse
Affiliation(s)
- Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yuanzhi Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaoli Da
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Greco C, Basso L, Désormeaux C, Fournel A, Demuynck B, Lafendi L, Chapiro S, Lemoine A, Zhu YY, Knauf C, Cenac N, Boucheix C, Dietrich G. Endothelin-1 Exhibiting Pro-Nociceptive and Pro-Peristaltic Activities Is Increased in Peritoneal Carcinomatosis. FRONTIERS IN PAIN RESEARCH 2022; 2:613187. [PMID: 35295482 PMCID: PMC8915553 DOI: 10.3389/fpain.2021.613187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Peritoneal carcinomatosis often results in alterations in intestinal peristalsis and recurrent abdominal pain. Pain management in these patients is often unsatisfactory. This study aimed to investigate whether endothelin-1 (EDN1) was involved in pain mediation in peritoneal carcinomatosis, and thus whether the EDN1 pathway could be a new therapeutic target for peritoneal carcinomatosis-associated pain. Methods: EDN1 plasma levels and abdominal pain severity were assessed in patients with abdominal tumors, with or without peritoneal carcinomatosis, and in healthy donors. The effects of EDN1 on the visceromotor response to colorectal distension, and on colonic contractions were then examined in mice, and the mechanism of action of EDN1 was then investigated by measuring the impact of EDN1 exposure on calcium mobilization in cultured neurons. Inhibition studies were also performed to determine if the effects of EDN1 exposure could be reversed by EDN1-specific receptor antagonists. Results: A positive correlation between EDN1 plasma levels and abdominal pain was identified in patients with peritoneal carcinomatosis. EDN1 exposure increased visceral sensitivity and the amplitude of colonic contractions in mice and induced calcium mobilization by direct binding to its receptors on sensory neurons. The effects of EDN1 were inhibited by antagonists of the EDN1 receptors. Conclusions: This preliminary study, using data from patients with peritoneal carcinomatosis combined with data from experiments performed in mice, suggests that EDN1 may play a key role mediating pain in peritoneal carcinomatosis. Our findings suggest that antagonists of the EDN1 receptors might be beneficial in the management of pain in patients with peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Céline Greco
- UMR-S935, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France.,Department of Pain Management and Palliative Care, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Lilian Basso
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Cléo Désormeaux
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Audren Fournel
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Benedicte Demuynck
- Department of Oncology, Montereau-Fault-Yonne Hospital, Montereau, France
| | - Leila Lafendi
- Department of Medical Biology and Physiology, Montereau-Fault-Yonne Hospital, Montereau, France
| | - Sylvie Chapiro
- Department of Palliative Care, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Antoinette Lemoine
- UMR-S1093, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France.,Department of Biochemistry, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Ying-Ying Zhu
- UMR-S935, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France
| | - Claude Knauf
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nicolas Cenac
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Claude Boucheix
- UMR-S935, INSERM, Univ. Paris-Sud, Université Paris Saclay, Villejuif, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
3
|
Nakatomi C, Hitomi S, Yamaguchi K, Hsu CC, Seta Y, Harano N, Iwata K, Ono K. Cisplatin induces TRPA1-mediated mechanical allodynia in the oral mucosa. Arch Oral Biol 2021; 133:105317. [PMID: 34823152 DOI: 10.1016/j.archoralbio.2021.105317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cisplatin, a platinum-based anticancer drug, produces reactive oxygen species (ROS) in many cell types and induces mechanical allodynia in the hands and/or feet (chemotherapy-induced painful neuropathy: CIPN). In this study, we examined the possibility of inducing neuropathy in the oral region using oral keratinocytes and rats. METHODS Human oral keratinocytes (HOKs) were used to evaluate ROS generation after cisplatin application by a ROS-reactive fluorescent assay. In rats, after cisplatin administrations (two times), the trigeminal ganglion (TG) was investigated by electron microscopy and quantitative RT-PCR. Using our proprietary assay system, oral pain-related behaviors were observed in cisplatin-treated rats. RESULTS In rats, cisplatin administration reduced food intake and body weight. In electron microscopic analysis, glycogen granules in the TG were depleted following administration, although organelles were intact. In HOK cells, cisplatin significantly increased ROS generation with cell death, similar to glycolysis inhibitors. Cisplatin administration did not show any effects on Trpa1 mRNA levels in the TG. However, the same procedure induced hypersensitivity to mechanical stimulation and the TRPA1 agonist allyl isothiocyanate in the oral mucosa. Mechanical hypersensitivity was inhibited by the antioxidative drug α-lipoic acid and the TRPA1 antagonist HC-030031, similar to that of the hind paw. CONCLUSION The present findings suggest that cisplatin induces TRPA1-mediated CIPN due to ROS generation in the oral region. This study will provide a better understanding of persistent oral pain in cancer patients.
Collapse
Affiliation(s)
- Chihiro Nakatomi
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | | | - Chia-Chien Hsu
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Yuji Seta
- Division of Anatomy, Kyushu Dental University, Fukuoka, Japan
| | - Nozomu Harano
- Division of Dental Anesthesiology, Kyushu Dental University, Fukuoka, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan.
| |
Collapse
|
4
|
Endothelin-1 enhances acid-sensing ion channel currents in rat primary sensory neurons. Acta Pharmacol Sin 2020; 41:1049-1057. [PMID: 32107467 PMCID: PMC7468575 DOI: 10.1038/s41401-019-0348-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022] Open
Abstract
Endothelin-1 (ET-1), an endogenous vasoactive peptide, has been found to play an important role in peripheral pain signaling. Acid-sensing ion channels (ASICs) are key sensors for extracellular protons and contribute to pain caused by tissue acidosis. It remains unclear whether an interaction exists between ET-1 and ASICs in primary sensory neurons. In this study, we reported that ET-1 enhanced the activity of ASICs in rat dorsal root ganglia (DRG) neurons. In whole-cell voltage-clamp recording, ASIC currents were evoked by brief local application of pH 6.0 external solution in the presence of TRPV1 channel blocker AMG9810. Pre-application with ET-1 (1−100 nM) dose-dependently increased the proton-evoked ASIC currents with an EC50 value of 7.42 ± 0.21 nM. Pre-application with ET-1 (30 nM) shifted the concentration–response curve of proton upwards with a maximal current response increase of 61.11% ± 4.33%. We showed that ET-1 enhanced ASIC currents through endothelin-A receptor (ETAR), but not endothelin-B receptor (ETBR) in both DRG neurons and CHO cells co-expressing ASIC3 and ETAR. ET-1 enhancement was inhibited by blockade of G-protein or protein kinase C signaling. In current-clamp recording, pre-application with ET-1 (30 nM) significantly increased acid-evoked firing in rat DRG neurons. Finally, we showed that pharmacological blockade of ASICs by amiloride or APETx2 significantly alleviated ET-1-induced flinching and mechanical hyperalgesia in rats. These results suggest that ET-1 sensitizes ASICs in primary sensory neurons via ETAR and PKC signaling pathway, which may contribute to peripheral ET-1-induced nociceptive behavior in rats.
Collapse
|
5
|
Vellani V, Sabatini C, Milia C, Caselli G, Lanza M, Letari O, Rovati LC, Giacomoni C. CR4056, a powerful analgesic imidazoline-2 receptor ligand, inhibits the inflammation-induced PKCε phosphorylation and membrane translocation in sensory neurons. Br J Pharmacol 2019; 177:48-64. [PMID: 31454418 DOI: 10.1111/bph.14845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE CR4056 is a first-in-class imidazoline-2 (I2 ) receptor ligand characterized by potent analgesic activity in different experimental animal models of pain. In a recent phase II clinical trial, CR4056 effectively reduced pain in patients with knee osteoarthritis. In the present study, we investigated the effects of CR4056 on PKCε translocation in vitro and on PKCε activation in vivo in dorsal root ganglia (DRG) neurons. EXPERIMENTAL APPROACH Effects of CR4056 on bradykinin-induced PKCε translocation were studied in rat sensory neurons by immunocytochemistry. PKCε activation was investigated by immunohistochemistry analysis of DRG from complete Freund's adjuvant-treated animals developing local hyperalgesia. The analgesic activity of CR4056 was tested on the same animals. KEY RESULTS CR4056 inhibited PKCε translocation with very rapid and long-lasting activity. CR4056 decreased hyperalgesia and phospho-PKCε immunoreactivity in the DRG neurons innervating the inflamed paw. The effect of CR4056 on PKCε translocation was blocked by pertussis toxin, implying that the intracellular pathways involved Gi proteins. The inhibition of PKCε translocation by CR4056 was independent of the α2 -adrenoeceptor and, surprisingly, was also independent of idazoxan-sensitive I2 binding sites. The I2 agonist 2BFI had no effect alone but potentiated the activity of low concentrations of CR4056. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that CR4056 shares the ability to inhibit PKCε translocation with other analgesics. Whether the inhibition of PKCε involves binding to specific subtype(s) of I2 receptors should be further investigated. If so, this would be a new mode of action of a highly specific I2 receptor ligand.
Collapse
Affiliation(s)
- Vittorio Vellani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Chiara Sabatini
- Rottapharm Biotech, Monza, Italy.,PhD Program in Neuroscience, Dipartimento di Medicina e chirurgia, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Chiara Milia
- PhD Program in Neuroscience, Dipartimento di Medicina e chirurgia, Università degli Studi di Milano-Bicocca, Monza, Italy
| | | | | | | | | | - Chiara Giacomoni
- Dipartimento di Economia, Scienze e Diritto, Università degli Studi della Repubblica di San Marino, San Marino
| |
Collapse
|
6
|
Ito M, Ono K, Hitomi S, Nodai T, Sago T, Yamaguchi K, Harano N, Gunnjigake K, Hosokawa R, Kawamoto T, Inenaga K. Prostanoid-dependent spontaneous pain and PAR 2-dependent mechanical allodynia following oral mucosal trauma: involvement of TRPV1, TRPA1 and TRPV4. Mol Pain 2018; 13:1744806917704138. [PMID: 28381109 PMCID: PMC5407658 DOI: 10.1177/1744806917704138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract During dental treatments, intraoral appliances frequently induce traumatic ulcers in the oral mucosa. Such mucosal injury-induced mucositis leads to severe pain, resulting in poor quality of life and decreased cooperation in the therapy. To elucidate mucosal pain mechanisms, we developed a new rat model of intraoral wire-induced mucositis and investigated pain mechanisms using our proprietary assay system for conscious rats. A thick metal wire was installed in the rats between the inferior incisors for one day. In the mucosa of the mandibular labial fornix region, which was touched with a free end of the wire, traumatic ulcer and submucosal abscess were induced on day 1. The ulcer was quickly cured until next day and abscess formation was gradually disappeared until five days. Spontaneous nociceptive behavior was induced on day 1 only, and mechanical allodynia persisted over day 3. Antibiotic pretreatment did not affect pain induction. Spontaneous nociceptive behavior was sensitive to indomethacin (cyclooxygenase inhibitor), ONO-8711 (prostanoid receptor EP1 antagonist), SB-366791, and HC-030031 (TRPV1 and TRPA1 antagonists, respectively). Prostaglandin E2 and 15-deoxyΔ12,14-prostaglandin J2 were upregulated only on day 1. In contrast, mechanical allodynia was sensitive to FSLLRY-NH2 (protease-activated receptor PAR2 antagonist) and RN-1734 (TRPV4 antagonist). Neutrophil elastase, which is known as a biased agonist for PAR2, was upregulated on days 1 to 2. These results suggest that prostanoids and PAR2 activation elicit TRPV1- and TRPA1-mediated spontaneous pain and TRPV4-mediated mechanical allodynia, respectively, independently of bacterial infection, following oral mucosal trauma. The pathophysiological pain mechanism suggests effective analgesic approaches for dental patients suffering from mucosal trauma-induced pain.
Collapse
|
7
|
Feldman-Goriachnik R, Hanani M. The effects of endothelin-1 on satellite glial cells in peripheral ganglia. Neuropeptides 2017; 63:37-42. [PMID: 28342550 DOI: 10.1016/j.npep.2017.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/01/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022]
Abstract
Endothelins (ET) are a family of highly active neuropeptides with manifold influences via ET receptors (ETR) in both the peripheral and central nervous systems. We have shown previously that satellite glial cells (SGCs) in mouse trigeminal ganglia (TG) are extremely sensitive to ET-1 in evoking [Ca2+]in increase, apparently via ETBR activation, but there is no functional information on ETR in SGCs of other peripheral ganglia. Here we tested the effects of ET-1 on SGCs in nodose ganglia (NG), which is sensory, and superior cervical ganglia (Sup-CG), which is part of the sympathetic nervous system, and further investigated the influence of ET-1 on SGCs in TG. Using calcium imaging we found that SGCs in intact, freshly isolated NG and Sup-CG are highly sensitive to ET-1, with threshold concentration at 0.1nM. Our results showed that [Ca2+]in elevation in response to ET-1 was partially due to Ca2+ influx from the extracellular space and partially to Ca2+ release from intracellular stores. Using receptor selective ETR agonists and antagonists, we found that the responses were mediated by mixed ETAR/ETBR in SGCs of NG and predominantly by ETBR in SGCs of Sup-CG. By employing intracellular dye injection we examined coupling among SGCs around different neurons in the presence of 5nM ET-1 and observed coupling inhibition in all the three ganglion types. In summary, our work showed that SGCs in mouse sensory and sympathetic ganglia are highly sensitive to ET-1 and that this peptide markedly reduces SGCs coupling. We conclude that ET-1, which may participate in neuron-glia communications, has similar functions in wide range of peripheral ganglia.
Collapse
Affiliation(s)
- Rachel Feldman-Goriachnik
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel.
| |
Collapse
|
8
|
Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen). ScientificWorldJournal 2017; 2017:3595903. [PMID: 28299349 PMCID: PMC5337398 DOI: 10.1155/2017/3595903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/17/2017] [Indexed: 01/23/2023] Open
Abstract
Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKCε) translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs). We found that gabapentin significantly reduced PKCε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen), a very commonly used analgesic drug, also produces inhibition of PKCε. We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients.
Collapse
|
9
|
Fattori V, Serafim KGG, Zarpelon AC, Borghi SM, Pinho-Ribeiro FA, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA. Differential regulation of oxidative stress and cytokine production by endothelin ET A and ET B receptors in superoxide anion-induced inflammation and pain in mice. J Drug Target 2016; 25:264-274. [PMID: 27701898 DOI: 10.1080/1061186x.2016.1245308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The present study investigated whether endothelin-1 acts via ETA or ETB receptors to mediate superoxide anion-induced pain and inflammation. Mice were treated with clazosentan (ETA receptor antagonist) or BQ-788 (ETB receptor antagonist) prior to stimulation with the superoxide anion donor, KO2. Intraplantar treatment with 30 nmol of clazosentan or BQ-788 reduced mechanical hyperalgesia (47% and 42%), thermal hyperalgesia (68% and 76%), oedema (50% and 30%); myeloperoxidase activity (64% and 32%), and overt-pain like behaviours, such as paw flinching (42% and 42%) and paw licking (38% and 62%), respectively. Similarly, intraperitoneal treatment with 30 nmol of clazosentan or BQ-788 reduced leukocyte recruitment to the peritoneal cavity (58% and 32%) and abdominal writhing (81% and 77%), respectively. Additionally, intraplantar treatment with clazosentan or BQ-788 decreased spinal (45% and 41%) and peripheral (47% and 47%) superoxide anion production as well as spinal (47% and 47%) and peripheral (33% and 54%) lipid peroxidation, respectively. Intraplantar treatment with clazosentan, but not BQ-788, reduced spinal (71%) and peripheral (51%) interleukin-1 beta as well as spinal (59%) and peripheral (50%) tumor necrosis factor-alpha production. Therefore, the present study unveils the differential mechanisms by which ET-1, acting on ETA or ETB receptors, regulates superoxide anion-induced inflammation and pain.
Collapse
Affiliation(s)
- Victor Fattori
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Karla G G Serafim
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Ana C Zarpelon
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Sergio M Borghi
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Felipe A Pinho-Ribeiro
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - José C Alves-Filho
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Thiago M Cunha
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Fernando Q Cunha
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Rúbia Casagrande
- c Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde , Universidade Estadual de Londrina , Londrina , Brazil
| | - Waldiceu A Verri
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| |
Collapse
|
10
|
Abstract
Itch is a unique sensation associated with the scratch reflex. Although the scratch reflex plays a protective role in daily life by removing irritants, chronic itch remains a clinical challenge. Despite urgent clinical need, itch has received relatively little research attention and its mechanisms have remained poorly understood until recently. The goal of the present review is to summarize our current understanding of the mechanisms of acute as well as chronic itch and classifications of the primary itch populations in relationship to transient receptor potential (Trp) channels, which play pivotal roles in multiple somatosensations. The convergent involvement of Trp channels in diverse itch signaling pathways suggests that Trp channels may serve as promising targets for chronic itch treatments.
Collapse
Affiliation(s)
- Shuohao Sun
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Receptors, cells and circuits involved in pruritus of systemic disorders. Biochim Biophys Acta Mol Basis Dis 2014; 1842:869-92. [DOI: 10.1016/j.bbadis.2014.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 12/12/2022]
|
12
|
Vellani V, Franchi S, Prandini M, Moretti S, Castelli M, Giacomoni C, Sacerdote P. Effects of NSAIDs and paracetamol (acetaminophen) on protein kinase C epsilon translocation and on substance P synthesis and release in cultured sensory neurons. J Pain Res 2013; 6:111-20. [PMID: 23429763 PMCID: PMC3575176 DOI: 10.2147/jpr.s36916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Celecoxib, diclofenac, ibuprofen, and nimesulide are nonsteroidal anti-inflammatory drugs (NSAIDs) very commonly used for the treatment of moderate to mild pain, together with paracetamol (acetaminophen), a very widely used analgesic with a lesser anti-inflammatory effect. In the study reported here, we tested the efficacy of celecoxib, diclofenac, and ibuprofen on preprotachykinin mRNA synthesis, substance P (SP) release, prostaglandin E2 (PGE2) release, and protein kinase C epsilon (PKCɛ) translocation in rat cultured sensory neurons from dorsal root ganglia (DRGs). The efficacy of these NSAIDs was compared with the efficacy of paracetamol and nimesulide in in vitro models of hyperalgesia (investigated previously). While nimesulide and paracetamol, as in previous experiments, decreased the percentage of cultured DRG neurons showing translocation of PKCɛ caused by 100 nM thrombin or 1 μM bradykinin in a dose-dependent manner, the other NSAIDs tested did not have a significant effect. The amount of SP released by peptidergic neurons and the expression level of preprotachykinin mRNA were assessed in basal conditions and after 70 minutes or 36 hours of stimulation with an inflammatory soup (IS) containing potassium chloride, thrombin, bradykinin, and endothelin-1. The release of SP at 70 minutes was inhibited only by nimesulide, while celecoxib and diclofenac were effective at 36 hours. The mRNA basal level of the SP precursor preprotachykinin expressed in DRG neurons was reduced only by nimesulide, while the increased levels expressed during treatment with the IS were significantly reduced by all drugs tested, with the exception of ibuprofen. All drugs were able to decrease basal and IS-stimulated PGE2 release. Our study demonstrates novel mechanisms of action of commonly used NSAIDS.
Collapse
Affiliation(s)
- Vittorio Vellani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Yamamoto T, Ono K, Hitomi S, Harano N, Sago T, Yoshida M, Nunomaki M, Shiiba S, Watanabe S, Nakanishi O, Inenaga K. Endothelin receptor-mediated responses in trigeminal ganglion neurons. J Dent Res 2013; 92:335-9. [PMID: 23396520 DOI: 10.1177/0022034513478428] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recent evidence implicates endothelin in nociception, but it is unclear how endothelin activates trigeminal ganglion (TRG) neurons. In the present study, we investigated the expression of the endothelin receptors ETA and ETB and endothelin-induced responses in rat TRG neurons. Double-immunofluorescence studies demonstrated that ETA and ETB were expressed in TRG neurons and that 26% of ETA- or ETB-expressing neurons expressed both receptors. During whole-cell patch-clamp recording, endothelin-1 enhanced an induced current in response to capsaicin, a TRPV1 agonist, in approximately 20% of dissociated neurons. The enhancement was blocked by the PKC inhibitor chelerythrine and by the ETA antagonist BQ-123, but not by the ETB antagonist BQ-788. Ca(2+)-imaging showed that endothelin-1 increased the intracellular Ca(2+) concentration in more than 20% of the dissociated neurons. Importantly, unlike the effect of endothelin-1 on capsaicin-induced current, the Ca(2+) response was largely suppressed by BQ-788 but not by BQ-123. These results suggest that ETA-mediated TRPV1 hyperactivation via PKC activation and ETB-mediated Ca(2+) mobilization occurs in different subsets of TRG neurons. These endothelin-induced responses may contribute to the induction of orofacial pain. The ETB-mediated function in TRG neurons is a special feature in the trigeminal system because of no ETB expression in dorsal root ganglion neurons.
Collapse
Affiliation(s)
- T Yamamoto
- Division of Physiology, Kokurakitaku, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Detection of environmental stimuli that provoke an aversive response has been shown to involve many receptors in the periphery. Probably the least-studied of these stimuli are those that induce the perception of itch (pruritus), an often-experienced unpleasant stimulus. This review covers the ligands and their receptors which are known to cause primary sensory neuron activation and initiate itch sensation. Also covered are several itch-inducing substances which may act indirectly by activating other cell types in the periphery which then signal to primary neurons. Finally, progress in identifying candidate neurotransmitters that sensory neurons use to propagate the itch signal is discussed.
Collapse
Affiliation(s)
- Benjamin McNeil
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Baltimore, Maryland 21205 USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Baltimore, Maryland 21205 USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 USA
| |
Collapse
|