1
|
Li TJ, Lee TY, Lo Y, Lee LY, Li IC, Chen CC, Chang FC. Hericium erinaceus mycelium ameliorate anxiety induced by continuous sleep disturbance in vivo. BMC Complement Med Ther 2021; 21:295. [PMID: 34865649 PMCID: PMC8643634 DOI: 10.1186/s12906-021-03463-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Sleep disruption is a major public health issue and may increase the risk of mortality by ten-folds if an individual is sleeping less than 6 h per night. Sleep has changed dramatically during to the COVID-19 pandemic because COVID symptoms can lead to psychological distress including anxiety. Hericium erinaceus mycelium has been widely investigated in both the in vivo studies and clinical trials for its neuroprotective functions because the mycelium contains hericenones and erinacines, which synthesize the nerve growth factor and brain-derived neurotrophic factor (BDNF). Recent in vivo reports have shown showed that erinacine A-enriched Hericium erinaceus mycelium can modulate BDNF/TrkB/PI3K/Akt/GSK-3β pathways to induce an antidepressant-like effect. A large body of evidence indicates that erinacine can pass the blood-brain barrier and suggests its neuroprotective function in both peripheral and central nervous systems. Thus, Hericium erinaceus mycelium may be a dual-function supplement for sleep disruption improvement while sustaining anxiolytic effects. METHOD To simulate the condition of sleep disruption, the mice were subjected to the tail suspension test (TST) for 15 min every day during the same period for nine consecutive days. Two different doses (75 and 150 mg/kg) of Hericium erinaceus mycelium were administered orally 20 min prior to the TSTs before entering the light period of 12:12 h L:D cycle. All sleep-wake recording was recorded for 24 h using electroencephalogram and electromyogram. The elevated-plus-maze and open-field tests were conducted to record the behavior activities. RESULTS Consecutive TSTs prior to the light period could cause significant sleep disturbance and anxiety behavior in the elevated-plus-maze experiments. Results showed that administration with Hericium erinaceus mycelium at 150 mg/kg ameliorated the rodent anxiety (p < 0.05) and reversed the TST-induced NREM sleep disturbance in the dark period. CONCLUSION This is the first in vivo study suggesting that Hericium erinaceus mycelium has a dual potential role for anxiety relief through improving sleep disruptions.
Collapse
Affiliation(s)
- Tsung-Ju Li
- Biotech Research Institute, Grape King Bio, Taoyuan, 32542, Taiwan
| | - Tung-Yen Lee
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun Lo
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Ya Lee
- Biotech Research Institute, Grape King Bio, Taoyuan, 32542, Taiwan
| | - I-Chen Li
- Biotech Research Institute, Grape King Bio, Taoyuan, 32542, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio, Taoyuan, 32542, Taiwan.
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan.
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Fang-Chia Chang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung City, Taiwan.
- Department of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan.
| |
Collapse
|
2
|
Muheim CM, Singletary KG, Frank MG. A chemical-genetic investigation of BDNF-NtrkB signaling in mammalian sleep. Sleep 2021; 45:6372412. [PMID: 34537852 DOI: 10.1093/sleep/zsab237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/15/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES The neurotrophin brain derived neurotrophic factor (BDNF) is hypothesized to be a molecular mediator of mammalian sleep homeostasis. This hypothesis is supported by correlational findings and results obtained from pharmacology. BDNF binds with high affinity to the membrane bound receptor Neurotrophin Tyrosine Kinase Receptor B (NtrkB), which triggers several intracellular signaling cascades. It is therefore possible that BDNF's role in sleep homeostasis is mediated via NtrkB. We examined this hypothesis using a chemical-genetic technique that allows for rapid and selective inhibition of NtrkB in vivo. METHODS We used mutant mice bearing a point mutation in the NtrkB that allows for selective and reversible inactivation in the presence of a small binding molecule (1-NM-PP1). Using a cross-over design, we determined the effects of NtrkB inhibition on baseline sleep architecture and sleep homeostasis. RESULTS We find that NtrkB inhibition reduced REM sleep time and increased state-transitions but had no effect on sleep homeostasis. CONCLUSIONS These findings suggest that BDNF-NtrkB receptor signaling has relatively subtle roles in sleep architecture, but no role in sleep homeostasis.
Collapse
Affiliation(s)
- Christine M Muheim
- Washington State University Spokane, Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd, Spokane WA 99202, USA
| | - Kristan G Singletary
- Washington State University Spokane, Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd, Spokane WA 99202, USA
| | - Marcos G Frank
- Washington State University Spokane, Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Pharmaceutical and Biomedical Science Building 230, 412 E. Spokane Falls Blvd, Spokane WA 99202, USA.,WSU Health Sciences Spokane, Steve Gleason Institute for Neuroscience, 412 E. Spokane Falls Blvd, Spokane, WA 99202, USA
| |
Collapse
|
3
|
Niwa Y, Kanda GN, Yamada RG, Shi S, Sunagawa GA, Ukai-Tadenuma M, Fujishima H, Matsumoto N, Masumoto KH, Nagano M, Kasukawa T, Galloway J, Perrin D, Shigeyoshi Y, Ukai H, Kiyonari H, Sumiyama K, Ueda HR. Muscarinic Acetylcholine Receptors Chrm1 and Chrm3 Are Essential for REM Sleep. Cell Rep 2020; 24:2231-2247.e7. [PMID: 30157420 DOI: 10.1016/j.celrep.2018.07.082] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Accepted: 07/25/2018] [Indexed: 01/30/2023] Open
Abstract
Sleep regulation involves interdependent signaling among specialized neurons in distributed brain regions. Although acetylcholine promotes wakefulness and rapid eye movement (REM) sleep, it is unclear whether the cholinergic pathway is essential (i.e., absolutely required) for REM sleep because of redundancy from neural circuits to molecules. First, we demonstrate that synaptic inhibition of TrkA+ cholinergic neurons causes a severe short-sleep phenotype and that sleep reduction is mostly attributable to a shortened sleep duration in the dark phase. Subsequent comprehensive knockout of acetylcholine receptor genes by the triple-target CRISPR method reveals that a similar short-sleep phenotype appears in the knockout of two Gq-type acetylcholine receptors Chrm1 and Chrm3. Strikingly, Chrm1 and Chrm3 double knockout chronically diminishes REM sleep to an almost undetectable level. These results suggest that muscarinic acetylcholine receptors, Chrm1 and Chrm3, are essential for REM sleep.
Collapse
Affiliation(s)
- Yasutaka Niwa
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Genki N Kanda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Rikuhiro G Yamada
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoi Shi
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Genshiro A Sunagawa
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Maki Ukai-Tadenuma
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Fujishima
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naomi Matsumoto
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koh-Hei Masumoto
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osakasayama City, Osaka 589-8511, Japan; Center for Medical Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Mianmi-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osakasayama City, Osaka 589-8511, Japan
| | - Takeya Kasukawa
- Large Scale Data Managing Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - James Galloway
- School of Electrical Engineering and Computer Science, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Dimitri Perrin
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; School of Electrical Engineering and Computer Science, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osakasayama City, Osaka 589-8511, Japan
| | - Hideki Ukai
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit and Genetic Engineering Team, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
4
|
Kumar A, Kumar P, Pareek V, Faiq MA, Narayan RK, Raza K, Prasoon P, Sharma VK. Neurotrophin mediated HPA axis dysregulation in stress induced genesis of psychiatric disorders: Orchestration by epigenetic modifications. J Chem Neuroanat 2019; 102:101688. [PMID: 31568825 DOI: 10.1016/j.jchemneu.2019.101688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
Apart from their established role in embryonic development, neurotrophins (NTs) have diverse functions in the nervous system. Their role in the integration of physiological and biochemical aspects of the nervous system is currently attracting much attention. Based on a systematic analysis of the literature, we here propose a new paradigm that, by exploiting a novel role of NTs, may help explain the genesis of stress-related psychiatric disorders, opening new avenues for better management of the same. We hypothesize that NTs as an integrated network play a crucial role in maintaining an indivdual's psychological wellbeing. Given the evidence that stress can induce chronic disruption of the hypothalamic-pituitary-adrenal (HPA) axis which, in turn, is causally linked to several psychiatric disorders, this function may be mediated through the homeostatic mechanisms governing regulation of this axis. In fact, NTs, such as nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are known to participate in neuroendocrine regulation. Recent studies suggest epigenetic modification of NT-HPA axis interplay in the precipitation of psychiatric disorders. Our article highlights why this new knowledge regarding NTs should be considered in the etiogenesis and treatment of stress-induced psychopathology.
Collapse
|
6
|
Kumar A, Pareek V, Faiq MA, Kumar P, Raza K, Prasoon P, Dantham S, Mochan S. Regulatory role of NGFs in neurocognitive functions. Rev Neurosci 2017; 28:649-673. [DOI: 10.1515/revneuro-2016-0031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
AbstractNerve growth factors (NGFs), especially the prototype NGF and brain-derived neurotrophic factor (BDNF), have a diverse array of functions in the central nervous system through their peculiar set of receptors and intricate signaling. They are implicated not only in the development of the nervous system but also in regulation of neurocognitive functions like learning, memory, synaptic transmission, and plasticity. Evidence even suggests their role in continued neurogenesis and experience-dependent neural network remodeling in adult brain. They have also been associated extensively with brain disorders characterized by neurocognitive dysfunction. In the present article, we aimed to make an exhaustive review of literature to get a comprehensive view on the role of NGFs in neurocognitive functions in health and disease. Starting with historical perspective, distribution in adult brain, implied molecular mechanisms, and developmental basis, this article further provides a detailed account of NGFs’ role in specified neurocognitive functions. Furthermore, it discusses plausible NGF-based homeostatic and adaptation mechanisms operating in the pathogenesis of neurocognitive disorders and has presents a survey of such disorders. Finally, it elaborates on current evidence and future possibilities in therapeutic applications of NGFs with an emphasis on recent research updates in drug delivery mechanisms. Conclusive remarks of the article make a strong case for plausible role of NGFs in comprehensive regulation of the neurocognitive functions and pathogenesis of related disorders and advocate that future research should be directed to explore use of NGF-based mechanisms in the prevention of implicated diseases as well as to target these molecules pharmacologically.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, Puducherry 609602, India
| | - Vikas Pareek
- Computational Neuroscience and Neuroimaging Division, National Brain Research Centre (NBRC), Manesar, Haryana 122051, India
| | - Muneeb A. Faiq
- Department of Ophthalmology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pavan Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Khursheed Raza
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pranav Prasoon
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Subrahamanyam Dantham
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Sankat Mochan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
7
|
Watson AJ, Henson K, Dorsey SG, Frank MG. The truncated TrkB receptor influences mammalian sleep. Am J Physiol Regul Integr Comp Physiol 2014; 308:R199-207. [PMID: 25502751 DOI: 10.1152/ajpregu.00422.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin hypothesized to play an important role in mammalian sleep expression and regulation. In order to investigate the role of the truncated receptor for BDNF, TrkB.T1, in mammalian sleep, we examined sleep architecture and sleep regulation in adult mice constitutively lacking this receptor. We find that TrkB.T1 knockout mice have increased REM sleep time, reduced REM sleep latency, and reduced sleep continuity. These results demonstrate a novel role for the TrkB.T1 receptor in sleep expression and provide new insights into the relationship between BDNF, psychiatric illness, and sleep.
Collapse
Affiliation(s)
- Adam J Watson
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kyle Henson
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan G Dorsey
- School of Nursing, University of Maryland, Baltimore, Maryland; and
| | - Marcos G Frank
- College of Medical Sciences, Sleep and Performance Research Center, Washington State University Spokane, Spokane, Washington
| |
Collapse
|