1
|
Savva K, Zachariou M, Bourdakou MM, Dietis N, Spyrou GM. D Re Amocracy: A Method to Capitalise on Prior Drug Discovery Efforts to Highlight Candidate Drugs for Repurposing. Int J Mol Sci 2024; 25:5319. [PMID: 38791356 PMCID: PMC11121186 DOI: 10.3390/ijms25105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In the area of drug research, several computational drug repurposing studies have highlighted candidate repurposed drugs, as well as clinical trial studies that have tested/are testing drugs in different phases. To the best of our knowledge, the aggregation of the proposed lists of drugs by previous studies has not been extensively exploited towards generating a dynamic reference matrix with enhanced resolution. To fill this knowledge gap, we performed weight-modulated majority voting of the modes of action, initial indications and targeted pathways of the drugs in a well-known repository, namely the Drug Repurposing Hub. Our method, DReAmocracy, exploits this pile of information and creates frequency tables and, finally, a disease suitability score for each drug from the selected library. As a testbed, we applied this method to a group of neurodegenerative diseases (Alzheimer's, Parkinson's, Huntington's disease and Multiple Sclerosis). A super-reference table with drug suitability scores has been created for all four neurodegenerative diseases and can be queried for any drug candidate against them. Top-scored drugs for Alzheimer's Disease include agomelatine, mirtazapine and vortioxetine; for Parkinson's Disease, they include apomorphine, pramipexole and lisuride; for Huntington's, they include chlorpromazine, fluphenazine and perphenazine; and for Multiple Sclerosis, they include zonisamide, disopyramide and priralfimide. Overall, DReAmocracy is a methodology that focuses on leveraging the existing drug-related experimental and/or computational knowledge rather than a predictive model for drug repurposing, offering a quantified aggregation of existing drug discovery results to (1) reveal trends in selected tracks of drug discovery research with increased resolution that includes modes of action, targeted pathways and initial indications for the investigated drugs and (2) score new candidate drugs for repurposing against a selected disease.
Collapse
Affiliation(s)
- Kyriaki Savva
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus; (K.S.); (M.Z.); (M.M.B.)
| | - Margarita Zachariou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus; (K.S.); (M.Z.); (M.M.B.)
| | - Marilena M. Bourdakou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus; (K.S.); (M.Z.); (M.M.B.)
| | - Nikolas Dietis
- Experimental Pharmacology Laboratory, Medical School, University of Cyprus, Nicosia 2115, Cyprus;
| | - George M. Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2370, Cyprus; (K.S.); (M.Z.); (M.M.B.)
| |
Collapse
|
2
|
Athari SZ, Farajdokht F, Keyhanmanesh R, Mohaddes G. AMPK Signaling Pathway as a Potential Therapeutic Target for Parkinson's Disease. Adv Pharm Bull 2024; 14:120-131. [PMID: 38585465 PMCID: PMC10997932 DOI: 10.34172/apb.2024.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease caused by the loss of dopaminergic neurons. Genetic factors, inflammatory responses, oxidative stress, metabolic disorders, cytotoxic factors, and mitochondrial dysfunction are all involved in neuronal death in neurodegenerative diseases. The risk of PD can be higher in aging individuals due to decreased mitochondrial function, energy metabolism, and AMP-activated protein kinase (AMPK) function. The potential of AMPK to regulate neurodegenerative disorders lies in its ability to enhance antioxidant capacity, reduce oxidative stress, improve mitochondrial function, decrease mitophagy and macroautophagy, and inhibit inflammation. In addition, it has been shown that modulating the catalytic activity of AMPK can protect the nervous system. This article reviews the mechanisms by which AMPK activation can modulate PD.
Collapse
Affiliation(s)
- Seyed Zanyar Athari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA
| |
Collapse
|
3
|
Kim B, Kang Y, Mendelson FE, Hayes JM, Savelieff MG, Nagrath S, Feldman EL. Palmitate and glucose increase amyloid precursor protein in extracellular vesicles: Missing link between metabolic syndrome and Alzheimer's disease. J Extracell Vesicles 2023; 12:e12340. [PMID: 37898562 PMCID: PMC10613125 DOI: 10.1002/jev2.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 10/30/2023] Open
Abstract
The metabolic syndrome (MetS) and Alzheimer's disease share several pathological features, including insulin resistance, abnormal protein processing, mitochondrial dysfunction and elevated inflammation and oxidative stress. The MetS constitutes elevated fasting glucose, obesity, dyslipidaemia and hypertension and increases the risk of developing Alzheimer's disease, but the precise mechanism remains elusive. Insulin resistance, which develops from a diet rich in sugars and saturated fatty acids, such as palmitate, is shared by the MetS and Alzheimer's disease. Extracellular vesicles (EVs) are also a point of convergence, with altered dynamics in both the MetS and Alzheimer's disease. However, the role of palmitate- and glucose-induced insulin resistance in the brain and its potential link through EVs to Alzheimer's disease is unknown. We demonstrate that palmitate and high glucose induce insulin resistance and amyloid precursor protein phosphorylation in primary rat embryonic cortical neurons and human cortical stem cells. Palmitate also triggers insulin resistance in oligodendrocytes, the supportive glia of the brain. Palmitate and glucose enhance amyloid precursor protein secretion from cortical neurons via EVs, which induce tau phosphorylation when added to naïve neurons. Additionally, EVs from palmitate-treated oligodendrocytes enhance insulin resistance in recipient neurons. Overall, our findings suggest a novel theory underlying the increased risk of Alzheimer's disease in MetS mediated by EVs, which spread Alzheimer's pathology and insulin resistance.
Collapse
Affiliation(s)
- Bhumsoo Kim
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Yoon‐Tae Kang
- Department of Chemical Engineering and Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Faye E. Mendelson
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - John M. Hayes
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Sunitha Nagrath
- Department of Chemical Engineering and Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
4
|
Marrano N, Biondi G, Borrelli A, Rella M, Zambetta T, Di Gioia L, Caporusso M, Logroscino G, Perrini S, Giorgino F, Natalicchio A. Type 2 Diabetes and Alzheimer's Disease: The Emerging Role of Cellular Lipotoxicity. Biomolecules 2023; 13:183. [PMID: 36671568 PMCID: PMC9855893 DOI: 10.3390/biom13010183] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Type 2 diabetes (T2D) and Alzheimer's diseases (AD) represent major health issues that have reached alarming levels in the last decades. Although growing evidence demonstrates that AD is a significant comorbidity of T2D, and there is a ~1.4-2-fold increase in the risk of developing AD among T2D patients, the involvement of possible common triggers in the pathogenesis of these two diseases remains largely unknown. Of note, recent mechanistic insights suggest that lipotoxicity could represent the missing ring in the pathogenetic mechanisms linking T2D to AD. Indeed, obesity, which represents the main cause of lipotoxicity, has been recognized as a major risk factor for both pathological conditions. Lipotoxicity can lead to inflammation, insulin resistance, oxidative stress, ceramide and amyloid accumulation, endoplasmic reticulum stress, ferroptosis, and autophagy, which are shared biological events in the pathogenesis of T2D and AD. In the current review, we try to provide a critical and comprehensive view of the common molecular pathways activated by lipotoxicity in T2D and AD, attempting to summarize how these mechanisms can drive future research and open the way to new therapeutic perspectives.
Collapse
Affiliation(s)
- Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Borrelli
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Martina Rella
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Tommaso Zambetta
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ludovico Di Gioia
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariangela Caporusso
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giancarlo Logroscino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione Cardinale G. Panico, 73039 Lecce, Italy
| | - Sebastio Perrini
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
5
|
Sánchez-Alegría K, Arias C. Functional consequences of brain exposure to saturated fatty acids: From energy metabolism and insulin resistance to neuronal damage. Endocrinol Diabetes Metab 2023; 6:e386. [PMID: 36321333 PMCID: PMC9836261 DOI: 10.1002/edm2.386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Saturated fatty acids (FAs) are the main component of high-fat diets (HFDs), and high consumption has been associated with the development of insulin resistance, endoplasmic reticulum stress and mitochondrial dysfunction in neuronal cells. In particular, the reduction in neuronal insulin signaling seems to underlie the development of cognitive impairments and has been considered a risk factor for Alzheimer's disease (AD). METHODS This review summarized and critically analyzed the research that has impacted the field of saturated FA metabolism in neurons. RESULTS We reviewed the mechanisms for free FA transport from the systemic circulation to the brain and how they impact neuronal metabolism. Finally, we focused on the molecular and the physiopathological consequences of brain exposure to the most abundant FA in the HFD, palmitic acid (PA). CONCLUSION Understanding the mechanisms that lead to metabolic alterations in neurons induced by saturated FAs could help to develop several strategies for the prevention and treatment of cognitive impairment associated with insulin resistance, metabolic syndrome, or type II diabetes.
Collapse
Affiliation(s)
- Karina Sánchez-Alegría
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
6
|
Yang AJT, Mohammad A, Tsiani E, Necakov A, MacPherson REK. Chronic AMPK Activation Reduces the Expression and Alters Distribution of Synaptic Proteins in Neuronal SH-SY5Y Cells. Cells 2022; 11:cells11152354. [PMID: 35954198 PMCID: PMC9367429 DOI: 10.3390/cells11152354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Neuronal growth and synaptic function are dependent on precise protein production and turnover at the synapse. AMPK-activated protein kinase (AMPK) represents a metabolic node involved in energy sensing and in regulating synaptic protein homeostasis. However, there is ambiguity surrounding the role of AMPK in regulating neuronal growth and health. This study examined the effect of chronic AMPK activation on markers of synaptic function and growth. Retinoic-acid-differentiated SH-SY5Y human neuroblastoma cells were treated with A-769662 (100 nM) or Compound C (30 nM) for 1, 3, or 5 days before AMPK, mTORC1, and markers for synapse function were examined. Cell morphology, neuronal marker content, and location were quantified after 5 days of treatment. AMPK phosphorylation was maintained throughout all 5 days of treatment with A-769662 and resulted in chronic mTORC1 inhibition. Lower total, soma, and neuritic neuronal marker contents were observed following 5 d of AMPK activation. Neurite protein abundance and distribution was lower following 5 days of A-769662 treatment. Our data suggest that chronic AMPK activation impacts synaptic protein content and reduces neurite protein abundance and distribution. These results highlight a distinct role that metabolism plays on markers of synapse health and function.
Collapse
Affiliation(s)
- Alex J. T. Yang
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
| | - Ahmad Mohammad
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rebecca E. K. MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
- Correspondence:
| |
Collapse
|
7
|
Vesga-Jiménez DJ, Martin C, Barreto GE, Aristizábal-Pachón AF, Pinzón A, González J. Fatty Acids: An Insight into the Pathogenesis of Neurodegenerative Diseases and Therapeutic Potential. Int J Mol Sci 2022; 23:2577. [PMID: 35269720 PMCID: PMC8910658 DOI: 10.3390/ijms23052577] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
One of the most common lipids in the human body is palmitic acid (PA), a saturated fatty acid with essential functions in brain cells. PA is used by cells as an energy source, besides being a precursor of signaling molecules and protein tilting across the membrane. Although PA plays physiological functions in the brain, its excessive accumulation leads to detrimental effects on brain cells, causing lipotoxicity. This mechanism involves the activation of toll-like receptors (TLR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, with the consequent release of pro-inflammatory cytokines, increased production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy impairment. Importantly, some of the cellular changes induced by PA lead to an augmented susceptibility to the development of Alzheimer's and Parkinson´s diseases. Considering the complexity of the response to PA and the intrinsic differences of the brain, in this review, we provide an overview of the molecular and cellular effects of PA on different brain cells and their possible relationships with neurodegenerative diseases (NDs). Furthermore, we propose the use of other fatty acids, such as oleic acid or linoleic acid, as potential therapeutic approaches against NDs, as these fatty acids can counteract PA's negative effects on cells.
Collapse
Affiliation(s)
- Diego Julián Vesga-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA;
| | - Cynthia Martin
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA;
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Andrés Felipe Aristizábal-Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
| |
Collapse
|
8
|
Neumann NR, Thompson DC, Vasiliou V. AMPK activators for the prevention and treatment of neurodegenerative diseases. Expert Opin Drug Metab Toxicol 2021; 17:1199-1210. [PMID: 34632898 DOI: 10.1080/17425255.2021.1991308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION As the global population ages at an unprecedented rate, the burden of neurodegenerative diseases is expected to grow. Given the profound impact illness like dementia exert on individuals and society writ large, researchers, physicians, and scientific organizations have called for increased investigation into their treatment and prevention. Both metformin and aspirin have been associated with improved cognitive outcomes. These agents are related in their ability to stimulate AMP kinase (AMPK). Momordica charantia, another AMPK activator, is a component of traditional medicines and a novel agent for the treatment of cancer. It is also being evaluated as a nootropic agent. AREAS COVERED This article is a comprehensive review which examines the role of AMPK activation in neuroprotection and the role that AMPK activators may have in the management of dementia and cognitive impairment. It evaluates the interaction of metformin, aspirin, and Momordica charantia, with AMPK, and reviews the literature characterizing these agents' impact on neurodegeneration. EXPERT OPINION We suggest that AMPK activators should be considered for the treatment and prevention of neurodegenerative diseases. We identify multiple areas of future investigation which may have a profound impact on patients worldwide.
Collapse
Affiliation(s)
- Natalie R Neumann
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, USA
| | - David C Thompson
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Liu YJ, Kuo HC, Chern Y. A system-wide mislocalization of RNA-binding proteins in motor neurons is a new feature of ALS. Neurobiol Dis 2021; 160:105531. [PMID: 34634461 DOI: 10.1016/j.nbd.2021.105531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive degeneration of motor neurons. Mislocalization of TAR DNA-binding protein 43 (TDP-43) is an early event in the formation of cytoplasmic TDP-43-positive inclusions in motor neurons and a hallmark of ALS. However, the underlying mechanism and the pathogenic impact of this mislocalization are relatively unexplored. We previously reported that abnormal AMPK activation mediates TDP-43 mislocalization in motor neurons of humans and mice with ALS. In the present study, we hypothesized that other nuclear proteins are mislocalized in the cytoplasm of motor neurons due to the AMPK-mediated phosphorylation of importin-α1 and subsequently contribute to neuronal degeneration in ALS. To test this hypothesis, we analyzed motor neurons of sporadic ALS patients and found that when AMPK is activated, importin-α1 is abnormally located in the nucleus. Multiple integrative molecular and cellular approaches (including proteomics, immunoprecipitation/western blot analysis, immunohistological evaluations and gradient analysis of preribosomal complexes) were employed to demonstrate that numerous RNA binding proteins are mislocalized in a rodent motor neuron cell line (NSC34) and human motor neurons derived from iPSCs during AMPK activation. We used comparative proteomic analysis of importin-α1 complexes that were immunoprecipitated with a phosphorylation-deficient mutant of importin-α1 (importin-α1-S105A) and a phosphomimetic mutant of importin-α1 (importin-α1-S105D) to identify 194 proteins that have stronger affinity for the unphosphorylated form than the phosphorylated form of importin-α1. Furthermore, GO and STRING analyses suggested that RNA processing and protein translation is the major machinery affected by abnormalities in the AMPK-importin-α1 axis. Consistently, the expression of importin-α1-S105D alters the assembly of preribosomal complexes and increases cell apoptosis. Collectively, we propose that by impairing importin-α1-mediated nuclear import, abnormal AMPK activation in motor neurons alters the cellular distribution of many RNA-binding proteins, which pathogenically affect multiple cellular machineries in motor neurons and contribute to ALS pathogenesis.
Collapse
Affiliation(s)
- Yu-Ju Liu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
10
|
Gravandi MM, Fakhri S, Zarneshan SN, Yarmohammadi A, Khan H. Flavonoids modulate AMPK/PGC-1α and interconnected pathways toward potential neuroprotective activities. Metab Brain Dis 2021; 36:1501-1521. [PMID: 33988807 DOI: 10.1007/s11011-021-00750-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 01/29/2023]
Abstract
As progressive, chronic, incurable and common reasons for disability and death, neurodegenerative diseases (NDDs) are significant threats to human health. Besides, the increasing prevalence of neuronal gradual degeneration and death during NDDs has made them a global concern. Since yet, no effective treatment has been developed to combat multiple dysregulated pathways/mediators and related complications in NDDs. Therefore, there is an urgent need to create influential and multi-target factors to combat neuronal damages. Accordingly, the plant kingdom has drawn a bright future. Among natural entities, flavonoids are considered a rich source of drug discovery and development with potential biological and medicinal activities. Growing studies have reported multiple dysregulated pathways in NDDs, which among those mediator AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) play critical roles. In this line, critical role of flavonoids in the upregulation of AMPK/PGC-1α pathway seems to pave the road in the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), aging, central nervous system (brain/spinal cord) damages, stroke, and other NDDs. In the present study, the regulatory role of flavonoids in managing various NDDs has been shown to pass through AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
11
|
Lee MTW, Mahy W, Rackham MD. The medicinal chemistry of mitochondrial dysfunction: a critical overview of efforts to modulate mitochondrial health. RSC Med Chem 2021; 12:1281-1311. [PMID: 34458736 PMCID: PMC8372206 DOI: 10.1039/d1md00113b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are subcellular organelles that perform a variety of critical biological functions, including ATP production and acting as hubs of immune and apoptotic signalling. Mitochondrial dysfunction has been extensively linked to the pathology of multiple neurodegenerative disorders, resulting in significant investment from the drug discovery community. Despite extensive efforts, there remains no disease modifying therapies for neurodegenerative disorders. This manuscript aims to review the compounds historically used to modulate the mitochondrial network through the lens of modern medicinal chemistry, and to offer a perspective on the evidence that relevant exposure was achieved in a representative model and that exposure was likely to result in target binding and engagement of pharmacology. We hope this manuscript will aid the community in identifying those targets and mechanisms which have been convincingly (in)validated with high quality chemical matter, and those for which an opportunity exists to explore in greater depth.
Collapse
Affiliation(s)
| | - William Mahy
- MSD The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | | |
Collapse
|
12
|
Cui Y, Yang M, Wang Y, Ren J, Lin P, Cui C, Song J, He Q, Hu H, Wang K, Sun Y. Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway. FASEB J 2021; 35:e21485. [PMID: 33709562 DOI: 10.1096/fj.202002247rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Cognitive dysfunction often occurs in diabetes mellitus patients. This study aimed to investigate the efficacy of melatonin (MLT) in improving diabetes-associated cognitive decline and the underlying mechanism involved. Type 2 diabetic mice and palmitic acid (PA)-stimulated BV-2 cells were treated by MLT, and the potential mechanisms among MLT, cognition, and autophagy were explored. The results showed that type 2 diabetic mice showed obvious learning and memory impairments in the Morris water maze test compared with normal controls, which could be ameliorated by MLT treatment. Meanwhile, MLT administration significantly improved neuroinflammation and regulated microglial apoptosis. Furthermore, autophagy inhibitor 3-methyladenine (3-MA) increased the microglial inflammation and apoptosis, indicating that the treatment effect of MLT was mediated by autophagy. Lastly, MLT treatment significantly decreased the levels of toll-like receptors 4 (TLR4), phosphorylated-protein kinase B (Akt), and phosphorylated-mechanistic target of rapamycin (mTOR), indicating that blocking TLR4/Akt/mTOR pathway might be an underlying basis for the anti-inflammatory and anti-apoptosis effects of MLT. Collectively, our study suggested that MLT could improve learning and memory in type 2 diabetic mice by activating autophagy via the TLR4/Akt/mTOR pathway, thereby inhibiting neuroinflammation and microglial apoptosis.
Collapse
Affiliation(s)
- Yixin Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Mengmeng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Yilin Wang
- Department of Traumatic Orthopedics, Peking University People's Hospital, Beijing, China
| | - Jianmin Ren
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Peng Lin
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Qin He
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Huiqing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| |
Collapse
|
13
|
Yoo HS, Won SB, Kwon YH. Luteolin Induces Apoptosis and Autophagy in HCT116 Colon Cancer Cells via p53-Dependent Pathway. Nutr Cancer 2021; 74:677-686. [PMID: 33757400 DOI: 10.1080/01635581.2021.1903947] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although a dietary phytochemical luteolin has been shown to regulate various anticancer mechanisms, a role of luteolin in autophagy regulation is mostly unidentified. Here, we investigated whether luteolin exhibits its anticancer effects by induction of apoptosis and autophagy in a p53-dependent manner in colon cancer cells. Cell viability was determined using trypan blue exclusion test. The expressions of proteins and mRNAs were measured by immunoblotting and reverse transcription polymerase chain reaction, respectively. Luteolin at 10 - 20 μM induced cytotoxicity in p53 wild-type HCT116 colon cancer cells but not in p53 mutant HT-29 cells and normal colon cells. Luteolin exhibited its anticancer effect by increasing p53 phosphorylation and p53 target gene expression, leading to apoptosis and cell cycle arrest in HCT116 cells. We identified that luteolin can induce autophagy in p53 wild-type cells but not in p53 mutant cells, suggesting that luteolin-induced autophagy is p53-dependent; however, chloroquine-mediated inhibition of autophagy did not alter cytotoxicity and apoptosis of cells treated with luteolin. In conclusion, the present data showed that luteolin inhibits the growth of HCT116 colon cancer cells through p53-dependent regulation of apoptosis and cell cycle arrest regardless of the induction of autophagy.
Collapse
Affiliation(s)
- Ho Soo Yoo
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Sae Bom Won
- Department of Human Nutrition and Food Science, Chungwoon University, Hongseong, Chungnam, Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul, Korea.,Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| |
Collapse
|
14
|
The Bewildering Effect of AMPK Activators in Alzheimer's Disease: Review of the Current Evidence. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9895121. [PMID: 32149150 PMCID: PMC7049408 DOI: 10.1155/2020/9895121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a multifactorial neurodegenerative disease characterized by progressive cognitive dysfunction. It is the most common form of dementia. The pathologic hallmarks of the disease include extracellular amyloid plaque, intracellular neurofibrillary tangles, and oxidative stress, to mention some of them. Despite remarkable progress in the understanding of the pathogenesis of the disease, drugs for cure or disease-modifying therapy remain somewhere in the distance. From recent time, the signaling molecule AMPK is gaining enormous attention in the AD drug research. AMPK is a master regulator of cellular energy metabolism, and recent pieces of evidence show that perturbation of its function is highly ascribed in the pathology of AD. Several drugs are known to activate AMPK, but their effect in AD remains to be controversial. In this review, the current shreds of evidence on the effect of AMPK activators in Aβ accumulation, tau aggregation, and oxidative stress are addressed. Positive and negative effects are reported with regard to Aβ and tauopathy but only positive in oxidative stress. We also tried to dissect the molecular interplays where the bewildering effects arise from.
Collapse
|
15
|
Loehfelm A, Elder MK, Boucsein A, Jones PP, Williams JM, Tups A. Docosahexaenoic acid prevents palmitate-induced insulin-dependent impairments of neuronal health. FASEB J 2020; 34:4635-4652. [PMID: 32030816 DOI: 10.1096/fj.201902517r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
The importance of fatty acids (FAs) for healthy brain development and function has become more evident in the past decades. However, most studies focus on the hypothalamus as an important FA-sensing brain region involved in energy homeostasis. Less work has been done to evaluate the effects of FAs on brain regions such as the hippocampus or cortex, two important centres of learning, memory formation, and cognition. Furthermore, the mechanisms of how FAs modulate the neuronal development and function are incompletely understood. Therefore, this study examined the effects of the saturated FA palmitic acid (PA) and the polyunsaturated FA docosahexaenoic acid (DHA) on primary hippocampal and cortical cultures isolated from P0/P1 Sprague Dawley rat pups. Exposure to PA, but not DHA, resulted in severe morphological changes in primary neurons such as cell body swelling, axonal and dendritic blebbing, and a reduction in synaptic innervation, compromising healthy cell function and excitability. Pharmacological assessment revealed that the PA-mediated alterations were caused by overactivation of neuronal insulin signaling, demonstrated by insulin stimulation and phosphoinositide 3-kinase inhibition. Remarkably, co-exposure to DHA prevented all PA-induced morphological changes. This work provides new insights into how FAs can affect the cytoskeletal rearrangements and neuronal function via modulation of insulin signaling.
Collapse
Affiliation(s)
- Aline Loehfelm
- Department of Physiology, School of Medical Sciences, Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Megan K Elder
- Department of Anatomy, School of Medical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Alisa Boucsein
- Department of Physiology, School of Medical Sciences, Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Peter P Jones
- Department of Physiology and HeartOtago, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, School of Medical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Alexander Tups
- Department of Physiology, School of Medical Sciences, Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Mohammadinejad R, Ahmadi Z, Tavakol S, Ashrafizadeh M. Berberine as a potential autophagy modulator. J Cell Physiol 2019; 234:14914-14926. [PMID: 30770555 DOI: 10.1002/jcp.28325] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Today, pharmacognosy is considered a valuable science in the prevention and treatment of diseases. Among herbals, Berberine is an isoquinoline alkaloid found in the Berberis species. Surprisingly, it shows antimicrobial, antiviral, antidiarrheal, antipyretic, and anti-inflammatory potential. Furthermore, it diminishes drug resistance in cancer therapy and enhances tumor suppression in part through autophagy and cell cycle arrest mechanisms. In the present review, we discuss the effect of berberine on diverse cellular pathways and describe how berberine acts as an autophagy modulator to adjust physiologic and pathologic conditions and diminishes drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, Shushtar, Khuzestan, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
17
|
Li C, Chen K, Jia M, Ding X, Jiang Z, Li L, Zhang D. AMPK promotes survival and adipogenesis of ischemia-challenged ADSCs in an autophagy-dependent manner. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1498-1510. [PMID: 30296594 DOI: 10.1016/j.bbalip.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 12/24/2022]
Abstract
Some studies have shown that transplanted fat tissues usually cannot survive for long if adipose-derived stem cells (ADSCs) are removed from the tissues in advance. It is more meaningful to explore the mechanism mediating survival and differentiation of ADSCs in the transplanted microenvironment. AMP-activated protein kinase (AMPK) has been shown to be one of the energy receptors that regulate many aspects of cellular metabolism. AMPK activation has been implicated in models of adult ischemic injury, but the mechanism and the regulating effects of AMPK on survival and adipogenesis of transplanted ADSCs are still little known. In this study, we simulated the transplanted microenvironment using oxygen-glucose deprivation (OGD) to test the survival and adipogenesis of ADSCs. We found that OGD treatment triggered significant apoptosis and promoted autophagy. Simultaneously, OGD hindered the differentiation of ADSCs into mature adipocytes. After inhibiting AMPK, the OGD-induced apoptosis rate increased but autophagy was inhibited. The adipogenesis level also decreased. To show that the effects of AMPK on apoptosis and adipogenesis were autophagy-dependent, we pre-inhibited or pre-promoted autophagy with siATG7 or rapamycin while blocking AMPK. We found that inhibiting or improving autophagy exacerbated or alleviated the role of AMPK prohibition in apoptosis and adipogenesis. Furthermore, we showed that AMPK inhibition significantly lowered ULK1 activity but promoted mTOR activity, so that to inhibit autophagy. Our study shows that AMPK plays a protective role in maintaining survival and adipogenesis of OGD-challenged ADSCs partly by positively regulating autophagy. AMPK positively regulates autophagy by inhibiting mTOR but promoting ULK1 activity in OGD condition.
Collapse
Affiliation(s)
- Chichi Li
- Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou City, Zhejiang Province 325000, PR China
| | - Kewei Chen
- Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou City, Zhejiang Province 325000, PR China
| | - Minghui Jia
- Otolaryngology Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou City, Zhejiang Province 325000, PR China
| | - Xi Ding
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou City, Zhejiang Province 325000, PR China
| | - Zipei Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou City, Zhejiang Province 325000, PR China
| | - Liqun Li
- Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou City, Zhejiang Province 325000, PR China.
| | - Dan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou City, Zhejiang Province 325000, PR China.
| |
Collapse
|
18
|
Ng YW, Say YH. Palmitic acid induces neurotoxicity and gliatoxicity in SH-SY5Y human neuroblastoma and T98G human glioblastoma cells. PeerJ 2018; 6:e4696. [PMID: 29713567 PMCID: PMC5924683 DOI: 10.7717/peerj.4696] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Obesity-related central nervous system (CNS) pathologies like neuroinflammation and reactive gliosis are associated with high-fat diet (HFD) related elevation of saturated fatty acids like palmitic acid (PA) in neurons and astrocytes of the brain. Methods Human neuroblastoma cells SH-SY5Y (as a neuronal model) and human glioblastoma cells T98G (as an astrocytic model), were treated with 100–500 µM PA, oleic acid (OA) or lauric acid (LA) for 24 h or 48 h, and their cell viability was assessed by 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of stable overexpression of γ-synuclein (γ-syn), a neuronal protein recently recognized as a novel regulator of lipid handling in adipocytes, and transient overexpression of Parkinson’s disease (PD) α-synuclein [α-syn; wild-type (wt) and its pathogenic mutants A53T, A30P and E46K] in SH-SY5Y and T98G cells, were also evaluated. The effects of co-treatment of PA with paraquat (PQ), a Parkinsonian pesticide, and leptin, a hormone involved in the brain-adipose axis, were also assessed. Cell death mode and cell cycle were analyzed by Annexin V/PI flow cytometry. Reactive oxygen species (ROS) level was determined using 2′,7′-dichlorofluorescien diacetate (DCFH-DA) assay and lipid peroxidation level was determined using thiobarbituric acid reactive substances (TBARS) assay. Results MTT assay revealed dose- and time-dependent PA cytotoxicity on SH-SY5Y and T98G cells, but not OA and LA. The cytotoxicity was significantly lower in SH-SY5Y-γ-syn cells, while transient overexpression of wt α-syn or its PD mutants (A30P and E46K, but not A53T) modestly (but still significantly) rescued the cytotoxicity of PA in SH-SY5Y and T98G cells. Co-treatment of increasing concentrations of PQ exacerbated PA’s neurotoxicity. Pre-treatment of leptin, an anti-apoptotic adipokine, did not successfully rescue SH-SY5Y cells from PA-induced cytotoxicity—suggesting a mechanism of PA-induced leptin resistance. Annexin V/PI flow cytometry analysis revealed PA-induced increase in percentages of cells in annexin V-positive/PI-negative quadrant (early apoptosis) and subG0-G1 fraction, accompanied by a decrease in G2-M phase cells. The PA-induced ROS production and lipid peroxidation was at greater extent in T98G as compared to that in SH-SY5Y. Discussion In conclusion, PA induces apoptosis by increasing oxidative stress in neurons and astrocytes. Taken together, the results suggest that HFD may cause neuronal and astrocytic damage, which indirectly proposes that CNS pathologies involving neuroinflammation and reactive gliosis could be prevented via the diet regimen.
Collapse
Affiliation(s)
- Yee-Wen Ng
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Perak, Malaysia
| | - Yee-How Say
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Perak, Malaysia
| |
Collapse
|
19
|
Sun J, Mu Y, Jiang Y, Song R, Yi J, Zhou J, Sun J, Jiao X, Prinz RA, Li Y, Xu X. Inhibition of p70 S6 kinase activity by A77 1726 induces autophagy and enhances the degradation of superoxide dismutase 1 (SOD1) protein aggregates. Cell Death Dis 2018; 9:407. [PMID: 29540819 PMCID: PMC5851998 DOI: 10.1038/s41419-018-0441-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
Abstract
Autophagy plays a central role in degrading misfolded proteins such as mutated superoxide dismutase 1 (SOD1), which forms aggregates in motor neurons and is involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). Autophagy is activated when UNC-51-like kinase 1 (ULK1) is phosphorylated at S555 and activated by AMP-activated protein kinase (AMPK). Autophagy is suppressed when ULK1 is phosphorylated at S757 by the mechanistic target of rapamycin (mTOR). Whether p70 S6 kinase 1 (S6K1), a serine/threonine kinase downstream of mTOR, can also regulate autophagy remains uncertain. Here we report that inhibition of S6K1 by A77 1726, the active metabolite of an anti-inflammatory drug leflunomide, induced mTOR feedback activation and ULK1S757 phosphorylation in NSC34 cells, a hybrid mouse motoneuron cell line. Unexpectedly, A77 1726 did not suppress but rather induced autophagy by increasing AMPKT172 and ULK1S555 phosphorylation. Similar observations were made with PF-4708671, a specific S6K1 inhibitor, or with S6K1 siRNA. Further studies showed that A77 1726 induced AMPK phosphorylation by activating the TGF-β-activated kinase 1 (TAK1). Functional studies revealed that A77 1726 induced co-localization of mutant SOD1G93A protein aggregates with autophagosomes and accelerated SOD1G93A protein degradation, which was blocked by inhibition of autophagy through autophagy-related protein 7 (ATG7) siRNA. Our study suggests that S6K1 inhibition induces autophagy through TAK1-mediated AMPK activation in NSC34 cells, and that blocking S6K1 activity by a small molecule inhibitor such as leflunomide may offer a new strategy for ALS treatment.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Yarong Mu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Yuanyuan Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Jianxin Yi
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Jingsong Zhou
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Jun Sun
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Xinan Jiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Richard A Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL, 60201, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiulong Xu
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
- Department of Cell and Molecular Medicine Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
20
|
Xu X, Sun J, Song R, Doscas ME, Williamson AJ, Zhou J, Sun J, Jiao X, Liu X, Li Y. Inhibition of p70 S6 kinase (S6K1) activity by A77 1726, the active metabolite of leflunomide, induces autophagy through TAK1-mediated AMPK and JNK activation. Oncotarget 2018; 8:30438-30454. [PMID: 28389629 PMCID: PMC5444754 DOI: 10.18632/oncotarget.16737] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
mTOR activation suppresses autophagy by phosphorylating ULK1 at S757 and suppressing its enzymatic activity. Here we report that feedback activation of mTOR in the PI-3 kinase pathway by two p70 S6 kinase (S6K1) inhibitors (PF-4708671 and A77 1726, the active metabolite of an immunosuppressive drug leflunomide) or by S6K1 knockdown did not suppress but rather induced autophagy. Suppression of S6K1 activity led to the phosphorylation and activation of AMPK, which then phosphorylated ULK1 at S555. While mTOR feedback activation led to increased phosphorylation of ULK1 at S757, this modification did not the disrupt ULK1-AMPK interaction nor dampen ULK1 S555 phosphorylation and the induction of autophagy. In addition, inhibition of S6K1 activity led to JNK activation, which also contributed to autophagy. 5Z-7-oxozeaenol, a specific inhibitor of TAK1, or TAK1 siRNA blocked A77 1726-induced activation of AMPK and JNK, and LC3 lipidation. Taken together, our study establishes S6K1 as a key player in the PI-3 kinase pathway to suppress autophagy through inhibiting AMPK and JNK in a TAK1-dependent manner.
Collapse
Affiliation(s)
- Xiulong Xu
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P. R. China.,College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P. R. China.,Department of Anatomy and Cell Biology Rush University Medical Center, Chicago, IL 60612, USA.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University Yangzhou 225009, Jiangsu Province, China
| | - Jing Sun
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P. R. China.,College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P. R. China
| | - Ruilong Song
- Core Facility, Yangzhou University, Yangzhou 225009, Jiangsu Province, P. R. China
| | - Michelle E Doscas
- Department of Anatomy and Cell Biology Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Jingsong Zhou
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA
| | - Jun Sun
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University Yangzhou 225009, Jiangsu Province, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Xiufan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, China.,Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
Shah SZA, Zhao D, Hussain T, Yang L. Role of the AMPK pathway in promoting autophagic flux via modulating mitochondrial dynamics in neurodegenerative diseases: Insight into prion diseases. Ageing Res Rev 2017; 40:51-63. [PMID: 28903070 DOI: 10.1016/j.arr.2017.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
Abstract
Neurons are highly energy demanding cells dependent on the mitochondrial oxidative phosphorylation system. Mitochondria generate energy via respiratory complexes that constitute the electron transport chain. Adenosine triphosphate depletion or glucose starvation act as a trigger for the activation of adenosine monophosphate-activated protein kinase (AMPK). AMPK is an evolutionarily conserved protein that plays an important role in cell survival and organismal longevity through modulation of energy homeostasis and autophagy. Several studies suggest that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. Mild mitochondrial dysfunction leads to activated AMPK signaling, but severe endoplasmic reticulum stress and mitochondrial dysfunction may lead to a shift from autophagy towards apoptosis and perturbed AMPK signaling. Hence, controlling mitochondrial dynamics and autophagic flux via AMPK activation might be a useful therapeutic strategy in neurodegenerative diseases to reinstate energy homeostasis and degrade misfolded proteins. In this review article, we discuss briefly the role of AMPK signaling in energy homeostasis, the structure of AMPK, activation mechanisms of AMPK, regulation of AMPK, the role of AMPK in autophagy, the role of AMPK in neurodegenerative diseases, and finally the role of autophagic flux in prion diseases.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Kim HS, Moon S, Kim S, Lee MJ, Suk MH, Park DH, Shin DW, Park CS, Kang JH. Chronological changes in the expression of phosphorylated tau and 5-AMP-activated protein kinase in the brain of senescence-accelerated P8 mice. Mol Med Rep 2017; 15:3301-3309. [DOI: 10.3892/mmr.2017.6361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 02/10/2017] [Indexed: 11/06/2022] Open
|
23
|
Cameron RB, Beeson CC, Schnellmann RG. Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases. J Med Chem 2016; 59:10411-10434. [PMID: 27560192 DOI: 10.1021/acs.jmedchem.6b00669] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria have various roles in cellular metabolism and homeostasis. Because mitochondrial dysfunction is associated with many acute and chronic degenerative diseases, mitochondrial biogenesis (MB) is a therapeutic target for treating such diseases. Here, we review the role of mitochondrial dysfunction in acute and chronic degenerative diseases and the cellular signaling pathways by which MB is induced. We then review existing work describing the development and application of drugs that induce MB in vitro and in vivo. In particular, we discuss natural products and modulators of transcription factors, kinases, cyclic nucleotides, and G protein-coupled receptors.
Collapse
Affiliation(s)
- Robert B Cameron
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| |
Collapse
|
24
|
Jiang B, Le L, Liu H, Xu L, He C, Hu K, Peng Y, Xiao P. Marein protects against methylglyoxal-induced apoptosis by activating the AMPK pathway in PC12 cells. Free Radic Res 2016; 50:1173-1187. [DOI: 10.1080/10715762.2016.1222374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Baoping Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Liang Le
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haibo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Keping Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yong Peng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
25
|
Xue H, Ji Y, Wei S, Yu Y, Yan X, Liu S, Zhang M, Yao F, Lan X, Chen L. HGSD attenuates neuronal apoptosis through enhancing neuronal autophagy in the brain of diabetic mice: The role of AMP-activated protein kinase. Life Sci 2016; 153:23-34. [DOI: 10.1016/j.lfs.2016.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/25/2016] [Accepted: 04/03/2016] [Indexed: 10/22/2022]
|
26
|
Diaz B, Fuentes-Mera L, Tovar A, Montiel T, Massieu L, Martínez-Rodríguez H, Camacho A. Saturated lipids decrease mitofusin 2 leading to endoplasmic reticulum stress activation and insulin resistance in hypothalamic cells. Brain Res 2015; 1627:80-9. [DOI: 10.1016/j.brainres.2015.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/23/2015] [Accepted: 09/10/2015] [Indexed: 02/07/2023]
|
27
|
Mulchandani N, Yang WL, Khan MM, Zhang F, Marambaud P, Nicastro J, Coppa GF, Wang P. Stimulation of Brain AMP-Activated Protein Kinase Attenuates Inflammation and Acute Lung Injury in Sepsis. Mol Med 2015; 21:637-44. [PMID: 26252187 DOI: 10.2119/molmed.2015.00179] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 07/30/2015] [Indexed: 12/25/2022] Open
Abstract
Sepsis and septic shock are enormous public health problems with astronomical financial repercussions on health systems worldwide. The central nervous system (CNS) is closely intertwined in the septic process but the underlying mechanism is still obscure. AMP-activated protein kinase (AMPK) is a ubiquitous energy sensor enzyme and plays a key role in regulation of energy homeostasis and cell survival. In this study, we hypothesized that activation of AMPK in the brain would attenuate inflammatory responses in sepsis, particularly in the lungs. Adult C57BL/6 male mice were treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR, 20 ng), an AMPK activator, or vehicle (normal saline) by intracerebroventricular (ICV) injection, followed by cecal ligation and puncture (CLP) at 30 min post-ICV. The septic mice treated with AICAR exhibited elevated phosphorylation of AMPKα in the brain along with reduced serum levels of aspartate aminotransferase, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), compared with the vehicle. Similarly, the expressions of TNF-α, IL-1β, keratinocyte-derived chemokine and macrophage inflammatory protein-2 as well as myeloperoxidase activity in the lungs of AICAR-treated mice were significantly reduced. Moreover, histological findings in the lungs showed improvement of morphologic features and reduction of apoptosis with AICAR treatment. We further found that the beneficial effects of AICAR on septic mice were diminished in AMPKα2 deficient mice, showing that AMPK mediates these effects. In conclusion, our findings reveal a new functional role of activating AMPK in the CNS to attenuate inflammatory responses and acute lung injury in sepsis.
Collapse
Affiliation(s)
- Nikhil Mulchandani
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, United States of America
| | - Weng-Lang Yang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, United States of America.,Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Mohammad Moshahid Khan
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Fangming Zhang
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jeffrey Nicastro
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, United States of America
| | - Gene F Coppa
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, United States of America
| | - Ping Wang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, United States of America.,Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
28
|
Leyton L, Hott M, Acuña F, Caroca J, Nuñez M, Martin C, Zambrano A, Concha MI, Otth C. Nutraceutical activators of AMPK/Sirt1 axis inhibit viral production and protect neurons from neurodegenerative events triggered during HSV-1 infection. Virus Res 2015; 205:63-72. [DOI: 10.1016/j.virusres.2015.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 11/29/2022]
|
29
|
Kim HS, Moon S, Paik JH, Shin DW, Kim LS, Park CS, Ha J, Kang JH. Activation of the 5′-AMP-Activated Protein Kinase in the Cerebral Cortex of Young Senescence-Accelerated P8 Mice and Association with GSK3β- and PP2A-Dependent Inhibition of p-tau396 Expression. J Alzheimers Dis 2015; 46:249-59. [DOI: 10.3233/jad-150035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hak-Su Kim
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University, Incheon, Republic of Korea
- Hypoxia-related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University, Incheon, Republic of Korea
- Hypoxia-related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Jin-Hwe Paik
- Department of Emergency Medicine, Inha University Hospital, Incheon, Republic of Korea
| | - Dong Wun Shin
- Department of Emergency Medicine, Inje University Ilsan Paik Hospital, Gyeonggi-Do, Republic of Korea
| | - Lindsay S. Kim
- College of Arts and Science, Boston College, Boston, MA, USA
| | - Chang-Shin Park
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University, Incheon, Republic of Korea
- Hypoxia-related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University, Incheon, Republic of Korea
- Hypoxia-related Diseases Research Center, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
30
|
Yang WM, Lee W. CTRP5 ameliorates palmitate-induced apoptosis and insulin resistance through activation of AMPK and fatty acid oxidation. Biochem Biophys Res Commun 2014; 452:715-21. [PMID: 25195818 DOI: 10.1016/j.bbrc.2014.08.145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/29/2022]
Abstract
Lipotoxicity resulting from a high concentration of saturated fatty acids is closely linked to development of insulin resistance, as well as apoptosis in skeletal muscle. CTRP5, an adiponectin paralog, is known to activate AMPK and fatty acid oxidation; however, the effects of CTRP5 on palmitate-induced lipotoxicity in myocytes have not been investigated. We found that globular domain of CTRP5 (gCTRP5) prevented palmitate-induced apoptosis and insulin resistance in myocytes by inhibiting the activation of caspase-3, reactive oxygen species accumulation, and IRS-1 reduction. These beneficial effects of gCTRP5 are mainly attributed to an increase in fatty acid oxidation through phosphorylation of AMPK. These results provide a novel function of CTRP5, which may have preventive and therapeutic potential in management of obesity, insulin resistance, and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Won-Mo Yang
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju 780-714, Republic of Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju 780-714, Republic of Korea; Endocrine Channelopathy, Channelopathy Research Center, Dongguk University College of Medicine, Goyang 410-773, Republic of Korea.
| |
Collapse
|
31
|
Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 2014; 14:581-97. [PMID: 25145482 DOI: 10.1038/nrc3800] [Citation(s) in RCA: 776] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is an essential organelle in eukaryotic cells for the storage and regulated release of calcium and as the entrance to the secretory pathway. Protein misfolding in the ER causes accumulation of misfolded proteins (ER stress) and activation of the unfolded protein response (UPR), which has evolved to maintain a productive ER protein-folding environment. Both ER stress and UPR activation are documented in many different human cancers. In this Review, we summarize the impact of ER stress and UPR activation on every aspect of cancer and discuss outstanding questions for which answers will pave the way for therapeutics.
Collapse
Affiliation(s)
- Miao Wang
- Degenerative Diseases Program, Center for Cancer Research, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Cancer Research, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, California 92037, USA
| |
Collapse
|
32
|
Rana S, Blowers EC, Natarajan A. Small molecule adenosine 5'-monophosphate activated protein kinase (AMPK) modulators and human diseases. J Med Chem 2014; 58:2-29. [PMID: 25122135 DOI: 10.1021/jm401994c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adenosine 5'-monophosphate activated protein kinase (AMPK) is a master sensor of cellular energy status that plays a key role in the regulation of whole-body energy homeostasis. AMPK is a serine/threonine kinase that is activated by upstream kinases LKB1, CaMKKβ, and Tak1, among others. AMPK exists as αβγ trimeric complexes that are allosterically regulated by AMP, ADP, and ATP. Dysregulation of AMPK has been implicated in a number of metabolic diseases including type 2 diabetes mellitus and obesity. Recent studies have associated roles of AMPK with the development of cancer and neurological disorders, making it a potential therapeutic target to treat human diseases. This review focuses on the structure and function of AMPK, its role in human diseases, and its direct substrates and provides a brief synopsis of key AMPK modulators and their relevance in human diseases.
Collapse
Affiliation(s)
- Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, Nebraska 68198-6805, United States
| | | | | |
Collapse
|
33
|
Abstract
Recent discoveries of AMPK activators point to the large number of therapeutic candidates that can be transformed to successful designs of novel drugs. AMPK is a universal energy sensor and influences almost all physiological processes in the cells. Thus, regulation of the cellular energy metabolism can be achieved in selective tissues via the artificial activation of AMPK by small molecules. Recently, special attention has been given to direct activators of AMPK that are regulated by several nonspecific upstream factors. The direct activation of AMPK, by definition, should lead to more specific biological activities and as a result minimize possible side effects.
Collapse
|
34
|
Abstract
When energy supply is low, organisms respond by slowing aging and increasing resistance to diverse age-related pathologies. Targeting the mechanisms underpinning this response may therefore treat multiple disorders through a single intervention. Here, we discuss AMP-activated protein kinase (AMPK) as an integrator and mediator of several pathways and processes linking energetics to longevity. Activated by low energy, AMPK is both prolongevity and druggable, but its role in some pathologies may not be beneficial. As such, activating AMPK may modulate multiple longevity pathways to promote healthy aging, but unlocking its full potential may require selective targeting toward substrates involved in longevity assurance.
Collapse
Affiliation(s)
| | - Yue Zhang
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - William B Mair
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Niu X, Chen J, Wang P, Zhou H, Li S, Zhang M. The Effects of Hispidulin on Bupivacaine-Induced Neurotoxicity: Role of AMPK Signaling Pathway. Cell Biochem Biophys 2014; 70:241-9. [DOI: 10.1007/s12013-014-9888-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
CHANG FEI, ZHANG LINHONG, XU WUPING, JING PING, ZHAN PEIYAN. microRNA-9 attenuates amyloidβ-induced synaptotoxicity by targeting calcium/calmodulin-dependent protein kinase kinase 2. Mol Med Rep 2014; 9:1917-22. [DOI: 10.3892/mmr.2014.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 02/18/2014] [Indexed: 11/05/2022] Open
|
37
|
Activation of AMP-activated protein kinase alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells. Neurochem Res 2013; 38:1561-71. [PMID: 23624826 DOI: 10.1007/s11064-013-1057-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/11/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
Mammalian AMP-activated protein kinase (AMPK) acts as a metabolite-sensing protein kinase in multiple tissues. Recent studies have shown that AMPK activation also regulates intracellular signaling pathways involved in cellular survival and apoptosis. Previously, we have reported that AMPK activation alleviates the endoplasmic reticulum (ER) stress-mediated neurotoxicity and tau hyperphosphorylation caused by palmitate. Therefore, we investigated whether AMPK activation alleviates ER stress-mediated neurotoxicity in SH-SY5Y human neuroblastoma cells incubated with homocysteine. Regulation of AMPK activity by isoflavone was also determined to investigate the underlying mechanism of its neuroprotective effect. Treatment of SH-SY5Y human neuroblastoma cells with N (1)-(β-D-ribofuranosyl)-5-aminoimidazole-4-carboxamide (AICAR), a pharmacological activator of AMPK, significantly protected cells against cytotoxicity imposed by tunicamycin and homocysteine. Homocysteine significantly suppressed AMPK activation, which was alleviated by AICAR. We observed a significant inhibition of the unfolded protein response by AICAR in cells incubated with homocysteine, suggesting a protective role of AMPK activation against ER stress-mediated neurotoxicity. AICAR also significantly reduced tau hyperphosphorylation by inactivating glycogen synthase kinase-3β and c-Jun N-terminal kinase in cells incubated with homocysteine. Furthermore, treatment of cells with soy isoflavone, genistein and daidzein significantly activated AMPK, which was repressed by tunicamycin and homocysteine. Therefore, our results suggest that AMPK activation by isoflavone as well as AICAR alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells.
Collapse
|
38
|
Lu J, Wang Q, Huang L, Dong H, Lin L, Lin N, Zheng F, Tan J. Palmitate causes endoplasmic reticulum stress and apoptosis in human mesenchymal stem cells: prevention by AMPK activator. Endocrinology 2012; 153:5275-84. [PMID: 22968644 DOI: 10.1210/en.2012-1418] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elevated circulating saturated fatty acids concentration is commonly associated with poorly controlled diabetes. The highly prevalent free fatty acid palmitate could induce apoptosis in various cell types, but little is known about its effects on human mesenchymal stem cells (MSCs). Here, we report that prolonged exposure to palmitate induces human bone marrow-derived MSC (hBM-MSC) and human umbilical cord-derived MSC apoptosis. We investigated the role of endoplasmic reticulum (ER) stress, which is known to promote cell apoptosis. Palmitate activated XBP1 splicing, elF2α (eukaryotic translation initiation factor 2α) phosphorylation, and CHOP, ATF4, BiP, and GRP94 transcription in hBM-MSCs. ERK1/2 and p38 MAPK phosphorylation were also induced by palmitate in hBM-MSCs. A selective p38 inhibitor inhibited palmitate activation of the ER stress, whereas the ERK1/2 inhibitors had no effect. The AMP-activated protein kinase activator aminoimidazole carboxamide ribonucleotide blocked palmitate-induced ER stress and apoptosis. These findings suggest that palmitate induces ER stress and ERK1/2 and p38 activation in hBM-MSCs, and AMP-activated protein kinase activator prevents the deleterious effects of palmitate by inhibiting ER stress and apoptosis.
Collapse
Affiliation(s)
- Jun Lu
- FuJian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, China.
| | | | | | | | | | | | | | | |
Collapse
|