1
|
Meschia JF, Worrall BB, Elahi FM, Ross OA, Wang MM, Goldstein ED, Rost NS, Majersik JJ, Gutierrez J. Management of Inherited CNS Small Vessel Diseases: The CADASIL Example: A Scientific Statement From the American Heart Association. Stroke 2023; 54:e452-e464. [PMID: 37602377 DOI: 10.1161/str.0000000000000444] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Lacunar infarcts and vascular dementia are important phenotypic characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, the most common inherited cerebral small vessel disease. Individuals with the disease show variability in the nature and onset of symptoms and rates of progression, which are only partially explained by differences in pathogenic mutations in the NOTCH3 gene. Recognizing the disease early in its course and securing a molecular diagnosis are important clinical goals, despite the lack of proven disease-modifying treatments. The purposes of this scientific statement are to review the clinical, genetic, and imaging aspects of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, contrasting it with other inherited small vessel diseases, and to provide key prevention, management, and therapeutic considerations with the intent of reducing practice variability and encouraging production of high-quality evidence to support future treatment recommendations.
Collapse
|
2
|
Lee SJ, Kondepudi A, Young KZ, Zhang X, Cartee NMP, Chen J, Jang KY, Xu G, Borjigin J, Wang MM. Concentration of non-myocyte proteins in arterial media of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. PLoS One 2023; 18:e0281094. [PMID: 36753487 PMCID: PMC9907840 DOI: 10.1371/journal.pone.0281094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
The most common inherited cause of vascular dementia and stroke, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), is caused by mutations in NOTCH3. Post-translationally altered NOTCH3 accumulates in the vascular media of CADASIL arteries in areas of the vessels that exhibit profound cellular degeneration. The identification of molecules that concentrate in the same location as pathological NOTCH3 may shed light on processes that drive cytopathology in CADASIL. We performed a two phase immunohistochemical screen of markers identified in the Human Protein Atlas to identify new proteins that accumulate in the vascular media in a pattern similar to pathological NOTCH3. In phase one, none of 16 smooth muscle cell (SMC) localized antigens exhibited NOTCH3-like patterns of expression; however, several exhibited disease-dependent patterns of expression, with antibodies directed against FAM124A, GZMM, MTFR1, and ST6GAL demonstrating higher expression in controls than CADASIL. In contrast, in phase two of the study that included 56 non-SMC markers, two proteins, CD63 and CTSH, localized to the same regions as pathological NOTCH3, which was verified by VesSeg, a customized algorithm that assigns relative location of antigens within the layers of the vessel. Proximity ligation assays support complex formation between NOTCH3 fragments and CD63 in degenerating CADASIL media. Interestingly, in normal mouse brain, the two novel CADASIL markers, CD63 and CTSH, are expressed in non-SMC vascular cells. The identification of new proteins that concentrate in CADASIL vascular media demonstrates the utility of querying publicly available protein databases in specific neurological diseases and uncovers unexpected, non-SMC origins of pathological antigens in small vessel disease.
Collapse
Affiliation(s)
- Soo Jung Lee
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI, United States of America
| | - Akhil Kondepudi
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI, United States of America
| | - Kelly Z. Young
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI, United States of America
| | - Xiaojie Zhang
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI, United States of America
| | - Naw May Pearl Cartee
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI, United States of America
| | - Jijun Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI, United States of America
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Krystal Yujin Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Gang Xu
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jimo Borjigin
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Michael M. Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
- Neurology Service, VA Ann Arbor Healthcare System, Department of Veterans Affairs, Ann Arbor, MI, United States of America
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
3
|
A midposition NOTCH3 truncation in inherited cerebral small vessel disease may affect the protein interactome. J Biol Chem 2022; 299:102772. [PMID: 36470429 PMCID: PMC9808000 DOI: 10.1016/j.jbc.2022.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/07/2022] Open
Abstract
Mutations in NOTCH3 underlie cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common inherited cerebral small vessel disease. Two cleavages of NOTCH3 protein, at Asp80 and Asp121, were previously described in CADASIL pathological samples. Using monoclonal antibodies developed against a NOTCH3 neoepitope, we identified a third cleavage at Asp964 between an Asp-Pro sequence. We characterized the structural requirements for proteolysis at Asp964 and the vascular distribution of the cleavage event. A proteome-wide analysis was performed to find proteins that interact with the cleavage product. Finally, we investigated the biochemical determinants of this third cleavage event. Cleavage at Asp964 was critically dependent on the proline adjacent to the aspartate residue. In addition, the cleavage product was highly enriched in CADASIL brain tissue and localized to the media of degenerating arteries, where it deposited with the two additional NOTCH3 cleavage products. Recombinant NOTCH3 terminating at Asp964 was used to probe protein microarrays. We identified multiple molecules that bound to the cleaved NOTCH3 more than to uncleaved protein, suggesting that cleavage may alter the local protein interactome within disease-affected blood vessels. The cleavage of purified NOTCH3 protein at Asp964 in vitro was activated by reducing agents and NOTCH3 protein; cleavage was inhibited by specific dicarboxylic acids, as seen with cleavage at Asp80 and Asp121. Overall, we propose homologous redox-driven Asp-Pro cleavages and alterations in protein interactions as potential mechanisms in inherited small vessel disease; similarities in protein cleavage characteristics may indicate common biochemical modulators of pathological NOTCH3 processing.
Collapse
|
4
|
Kumar AA, Yeo N, Whittaker M, Attra P, Barrick TR, Bridges LR, Dickson DW, Esiri MM, Farris CW, Graham D, Lin WL, Meijles DN, Pereira AC, Perry G, Rosene DL, Shtaya AB, Van Agtmael T, Zamboni G, Hainsworth AH. Vascular Collagen Type-IV in Hypertension and Cerebral Small Vessel Disease. Stroke 2022; 53:3696-3705. [PMID: 36205142 PMCID: PMC9698121 DOI: 10.1161/strokeaha.122.037761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cerebral small vessel disease (SVD) is common in older people and causes lacunar stroke and vascular cognitive impairment. Risk factors include old age, hypertension and variants in the genes COL4A1/COL4A2 encoding collagen alpha-1(IV) and alpha-2(IV), here termed collagen-IV, which are core components of the basement membrane. We tested the hypothesis that increased vascular collagen-IV associates with clinical hypertension and with SVD in older persons and with chronic hypertension in young and aged primates and genetically hypertensive rats. METHODS We quantified vascular collagen-IV immunolabeling in small arteries in a cohort of older persons with minimal Alzheimer pathology (N=52; 21F/31M, age 82.8±6.95 years). We also studied archive tissue from young (age range 6.2-8.3 years) and older (17.0-22.7 years) primates (M mulatta) and compared chronically hypertensive animals (18 months aortic stenosis) with normotensives. We also compared genetically hypertensive and normotensive rats (aged 10-12 months). RESULTS Collagen-IV immunolabeling in cerebral small arteries of older persons was negatively associated with radiological SVD severity (ρ: -0.427, P=0.005) but was not related to history of hypertension. General linear models confirmed the negative association of lower collagen-IV with radiological SVD (P<0.017), including age as a covariate and either clinical hypertension (P<0.030) or neuropathological SVD diagnosis (P<0.022) as fixed factors. Reduced vascular collagen-IV was accompanied by accumulation of fibrillar collagens (types I and III) as indicated by immunogold electron microscopy. In young and aged primates, brain collagen-IV was elevated in older normotensive relative to young normotensive animals (P=0.029) but was not associated with hypertension. Genetically hypertensive rats did not differ from normotensive rats in terms of arterial collagen-IV. CONCLUSIONS Our cross-species data provide novel insight into sporadic SVD pathogenesis, supporting insufficient (rather than excessive) arterial collagen-IV in SVD, accompanied by matrix remodeling with elevated fibrillar collagen deposition. They also indicate that hypertension, a major risk factor for SVD, does not act by causing accumulation of brain vascular collagen-IV.
Collapse
Affiliation(s)
- Apoorva A. Kumar
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
- Neurology (A.A.K., A.C.P., A.H.H.), St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Natalie Yeo
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
| | - Max Whittaker
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
| | - Priya Attra
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
| | - Thomas R. Barrick
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
| | - Leslie R. Bridges
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
- Cellular Pathology (L.R.B.), St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL (D.W.D., W.L.L.)
| | - Margaret M. Esiri
- Nuffield Department of Clinical Neurosciences, Oxford University, United Kingdom (M.M.E., G.Z.)
| | - Chad W. Farris
- Department of Anatomy and Neurobiology, Boston University School of Medicine, MA (C.W.F., D.L.R.)
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (D.G., T.V.A.)
| | - Wen Lang Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL (D.W.D., W.L.L.)
| | - Daniel N. Meijles
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
| | - Anthony C. Pereira
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
- Neurology (A.A.K., A.C.P., A.H.H.), St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Gregory Perry
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
| | - Douglas L. Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, MA (C.W.F., D.L.R.)
| | - Anan B. Shtaya
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (D.G., T.V.A.)
| | - Giovanna Zamboni
- Nuffield Department of Clinical Neurosciences, Oxford University, United Kingdom (M.M.E., G.Z.)
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Italy (G.Z.)
| | - Atticus H. Hainsworth
- Molecular and Clinical Sciences Research Institute, St George’s University of London, United Kingdom (A.A.K., N.Y., M.W., P.A., T.R.B., L.R.B., D.N.M., A.C.P., G.P., A.B.S., A.H.H.)
- Neurology (A.A.K., A.C.P., A.H.H.), St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
5
|
Young KZ, Rojas Ramírez C, Keep SG, Gatti JR, Lee SJ, Zhang X, Ivanova MI, Ruotolo BT, Wang MM. Oligomerization, trans-reduction, and instability of mutant NOTCH3 in inherited vascular dementia. Commun Biol 2022; 5:331. [PMID: 35393494 PMCID: PMC8991201 DOI: 10.1038/s42003-022-03259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/11/2022] [Indexed: 11/11/2022] Open
Abstract
Cerebral small vessel disease (SVD) is a prevalent disease of aging and a major contributor to stroke and dementia. The most commonly inherited SVD, CADASIL, is caused by dominantly acting cysteine-altering mutations in NOTCH3. These mutations change the number of cysteines from an even to an odd number, but the impact of these alterations on NOTCH3 protein structure remain unclear. Here, we prepared wildtype and four mutant recombinant NOTCH3 protein fragments to analyze the impact of CADASIL mutations on oligomerization, thiol status, and protein stability. Using gel electrophoresis, tandem MS/MS, and collision-induced unfolding, we find that NOTCH3 mutant proteins feature increased amounts of inappropriate disulfide bridges, reduced cysteines, and structural instability. Presence of a second protein factor, an N-terminal fragment of NOTCH3 (NTF), is capable of further altering disulfide statuses of both wildtype and mutant proteins, leading to increased numbers of reduced cysteines and further destabilization of NOTCH3 structure. In sum, these studies identify specific cysteine residues alterations and quaternary structure induced by CADASIL mutations in NOTCH3; further, we validate that reductive factors alter the structure and stability of this small vessel disease protein.
Collapse
Affiliation(s)
- Kelly Z Young
- Departments of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | | | - Simon G Keep
- Departments of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - John R Gatti
- The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Soo Jung Lee
- Departments of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Xiaojie Zhang
- Departments of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Magdalena I Ivanova
- Departments of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael M Wang
- Departments of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA.
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109-5622, USA.
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
6
|
Cartee NMP, Lee SJ, Young KZ, Zhang X, Wang MM. Trans-Reduction of Cerebral Small Vessel Disease Proteins by Notch-Derived EGF-like Sequences. Int J Mol Sci 2022; 23:ijms23073671. [PMID: 35409031 PMCID: PMC9115637 DOI: 10.3390/ijms23073671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Cysteine oxidation states of extracellular proteins participate in functional regulation and in disease pathophysiology. In the most common inherited dementia, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), mutations in NOTCH3 that alter extracellular cysteine number have implicated NOTCH3 cysteine states as potential triggers of cerebral vascular smooth muscle cytopathology. In this report, we describe a novel property of the second EGF-like domain of NOTCH3: its capacity to alter the cysteine redox state of the NOTCH3 ectodomain. Synthetic peptides corresponding to this sequence (NOTCH3 N-terminal fragment 2, NTF2) readily reduce NOTCH3 N-terminal ectodomain polypeptides in a dose- and time-dependent fashion. Furthermore, NTF2 preferentially reduces regional domains of NOTCH3 with the highest intensity against EGF-like domains 12–15. This process requires cysteine residues of NTF2 and is also capable of targeting selected extracellular proteins that include TSP2 and CTSH. CADASIL mutations in NOTCH3 increase susceptibility to NTF2-facilitated reduction and to trans-reduction by NOTCH3 produced in cells. Moreover, NTF2 forms complexes with the NOTCH3 ectodomain, and cleaved NOTCH3 co-localizes with the NOTCH3 ectodomain in cerebral arteries of CADASIL patients. The potential for NTF2 to reduce vascular proteins and the enhanced preference for it to trans-reduce mutant NOTCH3 implicate a role for protein trans-reduction in cerebrovascular pathological states such as CADASIL.
Collapse
Affiliation(s)
- Naw May Pearl Cartee
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (N.M.P.C.); (S.J.L.); (K.Z.Y.); (X.Z.)
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Soo Jung Lee
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (N.M.P.C.); (S.J.L.); (K.Z.Y.); (X.Z.)
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Kelly Z. Young
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (N.M.P.C.); (S.J.L.); (K.Z.Y.); (X.Z.)
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaojie Zhang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (N.M.P.C.); (S.J.L.); (K.Z.Y.); (X.Z.)
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Michael M. Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (N.M.P.C.); (S.J.L.); (K.Z.Y.); (X.Z.)
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-936-9075; Fax: +1-734-936-8813
| |
Collapse
|
7
|
Zhang X, Lee SJ, Wang MM. Hydrolysis of a second Asp-Pro site at the N-terminus of NOTCH3 in inherited vascular dementia. Sci Rep 2021; 11:17246. [PMID: 34446744 PMCID: PMC8390697 DOI: 10.1038/s41598-021-96679-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/17/2021] [Indexed: 12/02/2022] Open
Abstract
Cerebrovascular pathology at the biochemical level has been informed by the study of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a vascular disorder caused by NOTCH3 mutations. Previous work in CADASIL described N-terminal proteolysis of NOTCH3 generated by specific non-enzymatic cleavage of the first Asp-Pro sequence of the protein. Here, we investigated whether the second Asp-Pro peptide bond (residues 121–122) of NOTCH3 is cleaved in CADASIL. Monospecific antibodies were generated that recognize the neo-epitope predicted to be generated by cleavage after Asp121. These antibodies were used to localize cleavage events at Asp121 in post-mortem CADASIL and control brain tissue and to investigate factors that regulate cleavage at Asp121. We report that cleavage at Asp121 occurs at a high level in the arterial media of CADASIL cerebral arteries. Leptomeningeal arteries demonstrated substantially more cleavage product than penetrating arteries in the white matter, and control vessels harbored only a small amount of cleaved NOTCH3. Proteolysis at Asp121 occurred in purified preparations of NOTCH3 ectodomain, was increased by acidic pH and reductive conditions, and required native protein conformation for cleavage. Increasing the concentration of NOTCH3 EGF-like domain protein elevated the level of proteolysis. On the other hand, several polyanionic chemicals potently blocked cleavage at Asp121. These studies demonstrate that the NOTCH3 protein in CADASIL is cleaved in multiple locations at labile Asp-Pro peptide bonds. As such, chronic brain vascular disease, like other neurodegenerative conditions, features proteolysis of pathological proteins at multiple sites which may generate small pathological peptides.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Neurology, University of Michigan, 7725 Medical Science Building II Box 5622, 1137 Catherine St., Ann Arbor, MI, 48109-5622, USA.,Neurology Service, Department of Veterans Affairs, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA
| | - Soo Jung Lee
- Department of Neurology, University of Michigan, 7725 Medical Science Building II Box 5622, 1137 Catherine St., Ann Arbor, MI, 48109-5622, USA.,Neurology Service, Department of Veterans Affairs, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA
| | - Michael M Wang
- Department of Neurology, University of Michigan, 7725 Medical Science Building II Box 5622, 1137 Catherine St., Ann Arbor, MI, 48109-5622, USA. .,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA. .,Neurology Service, Department of Veterans Affairs, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
8
|
Neves KB, Morris HE, Alves-Lopes R, Muir KW, Moreton F, Delles C, Montezano AC, Touyz RM. Peripheral arteriopathy caused by Notch3 gain-of-function mutation involves ER and oxidative stress and blunting of NO/sGC/cGMP pathway. Clin Sci (Lond) 2021; 135:753-773. [PMID: 33681964 DOI: 10.1042/cs20201412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
Notch3 mutations cause Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), which predisposes to stroke and dementia. CADASIL is characterised by vascular dysfunction and granular osmiophilic material (GOM) accumulation in cerebral small vessels. Systemic vessels may also be impacted by Notch3 mutations. However vascular characteristics and pathophysiological processes remain elusive. We investigated mechanisms underlying the peripheral vasculopathy mediated by CADASIL-causing Notch3 gain-of-function mutation. We studied: (i) small arteries and vascular smooth muscle cells (VSMCs) from TgNotch3R169C mice (CADASIL model), (ii) VSMCs from peripheral arteries from CADASIL patients, and (iii) post-mortem brains from CADASIL individuals. TgNotch3R169C vessels exhibited GOM deposits, increased vasoreactivity and impaired vasorelaxation. Hypercontractile responses were normalised by fasudil (Rho kinase inhibitor) and 4-phenylbutyrate (4-PBA; endoplasmic-reticulum (ER) stress inhibitor). Ca2+ transients and Ca2+ channel expression were increased in CADASIL VSMCs, with increased expression of Rho guanine nucleotide-exchange factors (GEFs) and ER stress proteins. Vasorelaxation mechanisms were impaired in CADASIL, evidenced by decreased endothelial nitric oxide synthase (eNOS) phosphorylation and reduced cyclic guanosine 3',5'-monophosphate (cGMP) levels, with associated increased soluble guanylate cyclase (sGC) oxidation, decreased sGC activity and reduced levels of the vasodilator hydrogen peroxide (H2O2). In VSMCs from CADASIL patients, sGC oxidation was increased and cGMP levels decreased, effects normalised by fasudil and 4-PBA. Cerebral vessels in CADASIL patients exhibited significant oxidative damage. In conclusion, peripheral vascular dysfunction in CADASIL is associated with altered Ca2+ homoeostasis, oxidative stress and blunted eNOS/sGC/cGMP signaling, processes involving Rho kinase and ER stress. We identify novel pathways underlying the peripheral arteriopathy induced by Notch3 gain-of-function mutation, phenomena that may also be important in cerebral vessels.
Collapse
Affiliation(s)
- Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Hannah E Morris
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Keith W Muir
- Institute of Neuroscience and Psychology, University of Glasgow and Queen Elizabeth University Hospital, Glasgow, U.K
| | - Fiona Moreton
- Institute of Neuroscience and Psychology, University of Glasgow and Queen Elizabeth University Hospital, Glasgow, U.K
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
9
|
Young KZ, Xu G, Keep SG, Borjigin J, Wang MM. Overlapping Protein Accumulation Profiles of CADASIL and CAA: Is There a Common Mechanism Driving Cerebral Small-Vessel Disease? THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:1871-1887. [PMID: 33387456 DOI: 10.1016/j.ajpath.2020.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and cerebral amyloid angiopathy (CAA) are two distinct vascular angiopathies that share several similarities in clinical presentation and vascular pathology. Given the clinical and pathologic overlap, the molecular overlap between CADASIL and CAA was explored. CADASIL and CAA protein profiles from recently published proteomics-based and immuno-based studies were compared to investigate the potential for shared disease mechanisms. A comparison of affected proteins in each disease highlighted 19 proteins that are regulated in both CADASIL and CAA. Functional analysis of the shared proteins predicts significant interaction between them and suggests that most enriched proteins play roles in extracellular matrix structure and remodeling. Proposed models to explain the observed enrichment of extracellular matrix proteins include both increased protein secretion and decreased protein turnover by sequestration of chaperones and proteases or formation of stable protein complexes. Single-cell RNA sequencing of vascular cells in mice suggested that the vast majority of the genes accounting for the overlapped proteins between CADASIL and CAA are expressed by fibroblasts. Thus, our current understanding of the molecular profiles of CADASIL and CAA appears to support potential for common mechanisms underlying the two disorders.
Collapse
Affiliation(s)
- Kelly Z Young
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Gang Xu
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Simon G Keep
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Jimo Borjigin
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Michael M Wang
- Departments of Neurology, University of Michigan, Ann Arbor, Michigan; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan.
| |
Collapse
|
10
|
Lin C, Huang Z, Zhou R, Zhou Y, Shentu Y, Yu K, Zhang Y. Notch3 and its CADASIL mutants differentially regulate cellular phenotypes. Exp Ther Med 2020; 21:117. [PMID: 33335580 PMCID: PMC7739825 DOI: 10.3892/etm.2020.9549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/21/2020] [Indexed: 11/05/2022] Open
Abstract
Notch3 is a member of the Notch family and its mutations are known to cause a hereditary human disorder called cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, the specific function and signaling cascade initiated by CADASIL mutants remain unknown. To gain further insight into mechanism of action of CADASIL mutants, the present study conducted several experiments on the effects of Notch3 mutants in multiple cell lines. The protein levels of Notch3, fibronectin, collagen, inducible nitric oxide synthase and DNA (cytosine-5)-methyltransferase 1 (DNMT1) were determined by western blotting. The mRNA levels of IL-1β and TNF-α were measured by reverse transcription semi-quantitative PCR and DNMT1 mRNA levels were determined by quantitative PCR. Trypan blue staining was used for proliferation analysis and wound healing assays were performed to determine cell migration capability. The present study reported that R90C and R169C Notch3 mutants, and wild-type Notch3 had different effects on several cell lines. In T/GHA-VSMC cells, following the transfection of the two mutants, collagen and fibronectin expression increased, whereas expression decreased in IMR-90 cells. In BV2 cells, the two mutants resulted in decreased nitric oxide and iNOS production. In HeLa cells, proliferation and migration increased significantly following the transfection of the two mutants, whereas in the MCF-7 and HCC1937 cell lines, cell proliferation and migration decreased. In addition, the two mutants suppressed the expression of DNMT1 in HeLa and IMR-90 cells. Overall, the present study provided novel insights that further explored the underlying mechanisms of CADASIL.
Collapse
Affiliation(s)
- Chunjing Lin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ziyang Huang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Riyong Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
11
|
Young KZ, Cartee NMP, Ivanova MI, Wang MM. Thiol-mediated and catecholamine-enhanced multimerization of a cerebrovascular disease enriched fragment of NOTCH3. Exp Neurol 2020; 328:113261. [PMID: 32119934 DOI: 10.1016/j.expneurol.2020.113261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/13/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Cerebral small vessel disease is a common condition linked to dementia and stroke. As an age-dependent brain pathology, cerebral SVD may share molecular processes with core neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Many neurodegenerative diseases feature abnormal protein accumulation and aberrant protein folding, resulting in multimerization of specific proteins. We investigated if a small NOTCH3 N-terminal fragment (NTF) that co-registers with pathologically affected cells in the inherited SVD, CADASIL, is capable of multimerization. We also characterized endogenous small molecule vascular enhancers and inhibitors of multimerization. NTF multimerizes spontaneously and also forms conjugates with vascular catecholamines, including dopamine and norepinephrine, which avidly promote multimerization of the protein. Inhibition of catecholamine-dependent multimerization by vitamin C and reversal by reducing agents implicate an essential role of oxidation in NTF multimerization. Antibodies that react with degenerating arteries in CADASIL tissue preferentially bind to multimerized forms of NTF. These studies suggest that multimerization of proteins in the aging brain is not restricted to neuronal molecules and may participate in age-dependent vascular pathology.
Collapse
Affiliation(s)
- Kelly Z Young
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA; Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | - Naw May P Cartee
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | - Magdalena I Ivanova
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | - Michael M Wang
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA; Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.
| |
Collapse
|
12
|
Young KZ, Lee SJ, Zhang X, Cartee NMP, Torres M, Keep SG, Gabbireddy SR, Fontana JL, Qi L, Wang MM. NOTCH3 is non-enzymatically fragmented in inherited cerebral small-vessel disease. J Biol Chem 2020; 295:1960-1972. [PMID: 31901894 DOI: 10.1074/jbc.ra119.007724] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
The small-vessel disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) arises from mutations in the human gene encoding NOTCH3 and results in vascular smooth muscle cell degeneration, stroke, and dementia. However, the structural changes in NOTCH3 involved in CADASIL etiology are unclear. Here, we discovered site-specific fragmentation of NOTCH3 protein in pathologically affected vessels of human CADASIL-affected brains. EM-based experiments to pinpoint NOTCH3 localization in these brains indicated accumulation of NOTCH3 fragmentation products in the basement membrane, collagen fibers, and granular osmiophilic material within the cerebrovasculature. Using antibodies generated against a disease-linked neo-epitope found in degenerating vascular medium of CADASIL brains, we mapped the site of fragmentation to the NOTCH3 N terminus at the peptide bond joining Asp80 and Pro81 Cleavage at this site was predicted to separate the first epidermal growth factor (EGF)-like domain from the remainder of the protein. We found that the cleavage product from this fragmentation event is released into the conditioned medium of cells expressing recombinant NOTCH3 fragments. Mutagenesis of Pro81 abolished the fragmentation, and low pH and reducing conditions enhanced NOTCH3 proteolysis. Furthermore, substitution of multiple cysteine residues of the NOTCH3 N terminus activated proteolytic release of the first EGF-like repeat, suggesting that the elimination of multiple disulfide bonds in NOTCH3 accelerates its fragmentation. These characteristics link the signature molecular genetic alterations present in individuals with CADASIL to a post-translational protein alteration in degenerating brain arteries. The cellular consequences of these pathological NOTCH3 fragments are an important area for future investigation.
Collapse
Affiliation(s)
- Kelly Z Young
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Soo Jung Lee
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Xiaojie Zhang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | | | - Mauricio Torres
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Simon G Keep
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | | | - Julia L Fontana
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Michael M Wang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-5622; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622; Neurology Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan 48105.
| |
Collapse
|
13
|
Ling C, Liu Z, Song M, Zhang W, Wang S, Liu X, Ma S, Sun S, Fu L, Chu Q, Belmonte JCI, Wang Z, Qu J, Yuan Y, Liu GH. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein Cell 2019; 10:249-271. [PMID: 30778920 PMCID: PMC6418078 DOI: 10.1007/s13238-019-0608-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.
Collapse
Affiliation(s)
- Chen Ling
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Fu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
14
|
Expression of periaxin (PRX) specifically in the human cerebrovascular system: PDZ domain-mediated strengthening of endothelial barrier function. Sci Rep 2018; 8:10042. [PMID: 29968755 PMCID: PMC6030167 DOI: 10.1038/s41598-018-28190-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/13/2018] [Indexed: 01/01/2023] Open
Abstract
Regulation of cerebral endothelial cell function plays an essential role in changes in blood-brain barrier permeability. Proteins that are important for establishment of endothelial tight junctions have emerged as critical molecules, and PDZ domain containing-molecules are among the most important. We have discovered that the PDZ-domain containing protein periaxin (PRX) is expressed in human cerebral endothelial cells. Surprisingly, PRX protein is not detected in brain endothelium in other mammalian species, suggesting that it could confer human-specific vascular properties. In endothelial cells, PRX is predominantly localized to the nucleus and not tight junctions. Transcriptome analysis shows that PRX expression suppresses, by at least 50%, a panel of inflammatory markers, of which 70% are Type I interferon response genes; only four genes were significantly activated by PRX expression. When expressed in mouse endothelial cells, PRX strengthens barrier function, significantly increases transendothelial electrical resistance (~35%; p < 0.05), and reduces the permeability of a wide range of molecules. The PDZ domain of PRX is necessary and sufficient for its barrier enhancing properties, since a splice variant (S-PRX) that contains only the PDZ domain, also increases barrier function. PRX also attenuates the permeability enhancing effects of lipopolysaccharide. Collectively, these studies suggest that PRX could potentially regulate endothelial homeostasis in human cerebral endothelial cells by modulating inflammatory gene programs.
Collapse
|
15
|
Gatti JR, Zhang X, Korcari E, Lee SJ, Greenstone N, Dean JG, Maripudi S, Wang MM. Redistribution of Mature Smooth Muscle Markers in Brain Arteries in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. Transl Stroke Res 2018; 10:10.1007/s12975-018-0643-x. [PMID: 29931596 PMCID: PMC6309602 DOI: 10.1007/s12975-018-0643-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/12/2018] [Indexed: 01/05/2023]
Abstract
Vascular smooth muscle cells (SMCs) undergo a series of dramatic changes in CADASIL, the most common inherited cause of vascular dementia and stroke. NOTCH3 protein accumulates and aggregates early in CADASIL, followed by loss of mature SMCs from the media of brain arteries and marked intimal proliferation. Similar intimal thickening is seen in peripheral arterial disease, which features pathological intimal cells including proliferative, dedifferentiated, smooth muscle-like cells deficient in SMC markers. Limited studies have been performed to investigate the differentiation state and location of SMCs in brain vascular disorders. Thus, we investigated the distribution of cells expressing SMC markers in a group of genetically characterized, North American CADASIL brains. We quantified brain RNA abundance of these markers in nine genetically verified cases of CADASIL and found that mRNA expression for several mature SMC markers was increased in CADASIL brain compared to age-matched control. Immunohistochemical studies and in situ hybridization localization of mRNA demonstrated loss of SMCs from the arterial media, and SMC marker-expressing cells were instead redistributed into the intima of diseased arteries and around balloon cells of the degenerating media. We conclude that, despite loss of medial smooth muscle cells in diseased arteries, smooth muscle markers are not lost from CADASIL brain, but rather, the localization of cells expressing mature SMC markers changes dramatically.
Collapse
Affiliation(s)
- John R Gatti
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Xiaojie Zhang
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Ejona Korcari
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Soo Jung Lee
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Nya Greenstone
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Jon G Dean
- Department Molecular & Integrative Physiology, University of Michigan, 7625 Medical Science Building II Box 5622, 1137 Catherine St., Ann Arbor, MI, 48109-5622, USA
| | - Snehaa Maripudi
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA
| | - Michael M Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109-5622, USA.
- Department Molecular & Integrative Physiology, University of Michigan, 7625 Medical Science Building II Box 5622, 1137 Catherine St., Ann Arbor, MI, 48109-5622, USA.
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
16
|
Notch3 protein expression in skin fibroblasts from CADASIL patients. J Neurol Sci 2018; 390:121-128. [PMID: 29801872 DOI: 10.1016/j.jns.2018.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/06/2018] [Accepted: 04/17/2018] [Indexed: 11/22/2022]
Abstract
AIM CADASIL is an inherited cerebrovascular disease caused by mutations in the NOTCH3 gene. Notch signaling is involved in a broad spectrum of function, from the cell proliferation to apoptosis. Thus far, because the molecular mechanism underlying the pathological alterations remains unclear and taking into account that fibroblasts contribute to the integrity of the vasculature, our aims was to establish whether fibroblasts, in subjects carrying different NOTCH3 mutations, show abnormalities in the protein expression. METHODS We performed the investigation on skin fibroblasts in culture obtained from three CADASIL patients and normal subjects. The patients were genetically characterized, and carried a p.R61W, a p.C174T, and p.R103X, mutation respectively. Notch3 expression was first evaluated on fibroblasts by immunofluorescence analysis, then western blot on cellular extract was utilized to validate the immunofluorescence results. RESULTS The Notch3 immunoreactivity was clearly detected along the cellular body and in the cellular nuclei of the control fibroblasts. We observed a marked, statistically significant, reduction of the fluorescence immunoreactivity in the fibroblasts from patient with the classical C174T cysteine mutation and a less pronounced reduction in the other two subject's samples with respect to the normal controls. These data were confirmed by the immunoblot analysis. CONCLUSIONS Our results show that the investigated three NOTCH3 mutations are associated with a reduction of the levels of Notch3 expression in vitro. Because the smooth muscle cells appear to be predominantly involved in this cerebrovascular disease, our result, despite the limitation of the sample size examinated, clearly suggest that also fibroblasts, directly involved in making the vascular basal lamina and in maintaining the vascular integrity, may play an important role in the mechanism responsible for the disease.
Collapse
|
17
|
Abstract
Cerebral small-vessel disease is a prevalent condition that is strongly associated with ischemic stroke and dementia. The most prevalent inherited cause of cerebral small-vessel disease is CADASIL, cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy, a disorder linked to mutations in NOTCH3. The most common symptoms of CADASIL are small ischemic strokes and/or transient ischemic attacks and cognitive impairment, appearing in middle age, that may progress to frank vascular dementia. However, it is increasingly recognized that individual symptom types, onset, and disease severity span a wide spectrum, even among individuals in the same family. Magnetic resonance imaging in CADASIL reveals severe white-matter hyperintensities, evidence of prior subcortical strokes, and, in some cases, microhemorrhages. Several hundred mutations in NOTCH3 have been described worldwide in CADASIL, and virtually all of these mutations alter the cysteine content of the extracellular NOTCH3 gene product. This molecular genetic signature of CADASIL has led to the hypothesis that structural abnormalities in the vascular smooth-muscle protein NOTCH3 trigger arterial degeneration, vascular protein accumulation, and cerebrovascular failure.
Collapse
|
18
|
Nagatoshi A, Ueda M, Ueda A, Tasaki M, Inoue Y, Ma Y, Masuda T, Mizukami M, Matsumoto S, Kosaka T, Kawano T, Ito T, Ando Y. Serum amyloid P component: A novel potential player in vessel degeneration in CADASIL. J Neurol Sci 2017; 379:69-76. [PMID: 28716282 DOI: 10.1016/j.jns.2017.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/24/2017] [Accepted: 05/16/2017] [Indexed: 11/19/2022]
Abstract
In cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), granular osmiophilic material (GOM) may play some roles in inducing cerebrovascular events. To elucidate the pathogenesis of CADASIL, we used laser microdissection and liquid chromatography-tandem mass spectrometry to analyze cerebrovascular lesions of patients with CADASIL for GOM. The analyses detected serum amyloid P component (SAP), annexin A2, and periostin as the proteins with the largest increase in the samples, which also demonstrated NOTCH3. For the three proteins, anti-human SAP antibody had the strongest reaction in the lesions where the anti-human NOTCH3 antibody showed positive staining. Moreover, immunofluorescence staining with the two antibodies clearly showed co-localization of SAP and NOTCH3. mRNA analyses indicated no positive SAP expression in the brain materials, which suggested that the source of SAP found in the GOM was only the liver. A solid phase enzyme-linked immunosorbent assay confirmed the binding of SAP with NOTCH3. Serum SAP concentrations were neither up-regulated nor down-regulated in CADASIL patients, when compared with those in control subjects. SAP may play an important role in GOM formation although precise mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Akihito Nagatoshi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Akihiko Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Masayoshi Tasaki
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan; Department of Morphological and Physiological Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto 862-0976, Japan
| | - Yasuteru Inoue
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Teruaki Masuda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mayumi Mizukami
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Sayaka Matsumoto
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takayuki Kosaka
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takayuki Kawano
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takaaki Ito
- Department of Pathology and Experimental Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
19
|
Pippucci T, Maresca A, Magini P, Cenacchi G, Donadio V, Palombo F, Papa V, Incensi A, Gasparre G, Valentino ML, Preziuso C, Pisano A, Ragno M, Liguori R, Giordano C, Tonon C, Lodi R, Parmeggiani A, Carelli V, Seri M. Homozygous NOTCH3 null mutation and impaired NOTCH3 signaling in recessive early-onset arteriopathy and cavitating leukoencephalopathy. EMBO Mol Med 2016; 7:848-58. [PMID: 25870235 PMCID: PMC4459822 DOI: 10.15252/emmm.201404399] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Notch signaling is essential for vascular physiology. Neomorphic heterozygous mutations in NOTCH3, one of the four human NOTCH receptors, cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Hypomorphic heterozygous alleles have been occasionally described in association with a spectrum of cerebrovascular phenotypes overlapping CADASIL, but their pathogenic potential is unclear. We describe a patient with childhood-onset arteriopathy, cavitating leukoencephalopathy with cerebral white matter abnormalities presented as diffuse cavitations, multiple lacunar infarctions and disseminated microbleeds. We identified a novel homozygous c.C2898A (p.C966*) null mutation in NOTCH3 abolishing NOTCH3 expression and causing NOTCH3 signaling impairment. NOTCH3 targets acting in the regulation of arterial tone (KCNA5) or expressed in the vasculature (CDH6) were downregulated. Patient's vessels were characterized by smooth muscle degeneration as in CADASIL, but without deposition of granular osmiophilic material (GOM), the CADASIL hallmark. The heterozygous parents displayed similar but less dramatic trends in decrease in the expression of NOTCH3 and its targets, as well as in vessel degeneration. This study suggests a functional link between NOTCH3 deficiency and pathogenesis of vascular leukoencephalopathies.
Collapse
Affiliation(s)
- Tommaso Pippucci
- U.O. Genetica Medica, Policlinico Sant'Orsola-Malpighi, Bologna, Italy Dipartimento di Scienze Mediche Chirurgiche (DIMEC), University of Bologna, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy Unita' di Neurologia, Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy
| | - Pamela Magini
- Dipartimento di Scienze Mediche Chirurgiche (DIMEC), University of Bologna, Bologna, Italy
| | - Giovanna Cenacchi
- Unita' di Neurologia, Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy
| | - Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Flavia Palombo
- Dipartimento di Scienze Mediche Chirurgiche (DIMEC), University of Bologna, Bologna, Italy
| | - Valentina Papa
- Unita' di Neurologia, Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy
| | - Alex Incensi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Gasparre
- Dipartimento di Scienze Mediche Chirurgiche (DIMEC), University of Bologna, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy Unita' di Neurologia, Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy
| | - Carmela Preziuso
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomopatologiche, Sapienza, University of Rome, Rome, Italy
| | - Annalinda Pisano
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomopatologiche, Sapienza, University of Rome, Rome, Italy
| | - Michele Ragno
- Divisione di Neurologia, Ospedale Mazzoni, Azienda Sanitaria Unica Regionale, Ascoli Piceno, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy Unita' di Neurologia, Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy
| | - Carla Giordano
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomopatologiche, Sapienza, University of Rome, Rome, Italy
| | - Caterina Tonon
- Unita' di Neurologia, Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy Unità Risonanza Magnetica Funzionale, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Raffaele Lodi
- Unita' di Neurologia, Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy Unità Risonanza Magnetica Funzionale, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Antonia Parmeggiani
- Dipartimento di Scienze Mediche Chirurgiche (DIMEC), University of Bologna, Bologna, Italy U.O. Neuropsichiatria Infantile, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy Unita' di Neurologia, Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), University of Bologna, Bologna, Italy
| | - Marco Seri
- U.O. Genetica Medica, Policlinico Sant'Orsola-Malpighi, Bologna, Italy Dipartimento di Scienze Mediche Chirurgiche (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
The small leucine-rich proteoglycan BGN accumulates in CADASIL and binds to NOTCH3. Transl Stroke Res 2015; 6:148-55. [PMID: 25578324 DOI: 10.1007/s12975-014-0379-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/09/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited form of cerebral small vessel disease caused by mutations in conserved residues of NOTCH3. Affected arteries of CADASIL feature fibrosis and accumulation of NOTCH3. A variety of collagen subtypes (types I, III, IV, and VI) have been identified in fibrotic CADASIL vessels. Biglycan (BGN) and decorin (DCN) are class I members of the small leucine-rich proteoglycan (SLRP) family that regulate collagen fibril size. Because DCN has been shown to deposit in arteries in cerebral small vessel disease, we tested whether BGN accumulates in arteries of CADASIL brains. BGN was strongly expressed in both small penetrating and leptomeningeal arteries of CADASIL brain. BGN protein was localized to all three layers of arteries (intima, media, and adventitia). Substantially, more immunoreactivity was observed in CADASIL brains compared to controls. Immunoblotting of brain lysates showed a fourfold increase in CADASIL brains (compared to controls). Messenger RNA encoding BGN was also increased in CADASIL and was localized by in situ hybridization to all three vascular layers in CADASIL. Human cerebrovascular smooth muscle cells exposed to purified NOTCH3 ectodomain upregulated BGN, DCN, and COL4A1 through mechanisms that are sensitive to rapamycin, a potent mTOR inhibitor. In addition, BGN protein interacted directly with NOTCH3 protein in cell culture and in direct protein interaction assays. In conclusion, BGN is a CADASIL-enriched protein that potentially accumulates in vessels by mTOR-mediated transcriptional activation and/or post-translational accumulation via protein interactions with NOTCH3 and collagen.
Collapse
|
21
|
Abstract
Small penetrating brain artery thickening is a major feature of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Although affected fibrotic arteries of CADASIL have been shown to accumulate collagen, other components that compose pathological arterial walls remain incompletely characterized. We investigated the expression of decorin (DCN), the first collagen-binding small leucine-rich proteoglycan identified, in CADASIL. DCN was markedly upregulated in pathologically affected leptomeningeal and small penetrating arteries in CADASIL and was notably weaker in normal arteries from control brains. DCN protein was localized principally to the media and adventitia and only occasionally expressed in the intima. Immunoblotting of brain lysates showed a three-fold increase of DCN in CADASIL brains (compared with controls). Messenger RNA encoding DCN was five-fold increased in CADASIL. We conclude that DCN is the first identified proteoglycan to be identified in CADASIL arteries and may accumulate through transcriptional mechanisms. Additional studies are warranted to determine whether DCN localizes broadly to pathological small vessels in other cerebrovascular disorders.
Collapse
Affiliation(s)
- Soo Jung Lee
- Departments of aNeurology bMolecular & Integrative Physiology, University of Michigan cNeurology Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
22
|
Tikka S, Baumann M, Siitonen M, Pasanen P, Pöyhönen M, Myllykangas L, Viitanen M, Fukutake T, Cognat E, Joutel A, Kalimo H. CADASIL and CARASIL. Brain Pathol 2014; 24:525-44. [PMID: 25323668 PMCID: PMC8029192 DOI: 10.1111/bpa.12181] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 12/31/2022] Open
Abstract
CADASIL and CARASIL are hereditary small vessel diseases leading to vascular dementia. CADASIL commonly begins with migraine followed by minor strokes in mid-adulthood. Dominantly inherited CADASIL is caused by mutations (n > 230) in NOTCH3 gene, which encodes Notch3 receptor expressed in vascular smooth muscle cells (VSMC). Notch3 extracellular domain (N3ECD) accumulates in arterial walls followed by VSMC degeneration and subsequent fibrosis and stenosis of arterioles, predominantly in cerebral white matter, where characteristic ischemic MRI changes and lacunar infarcts emerge. The likely pathogenesis of CADASIL is toxic gain of function related to mutation-induced unpaired cysteine in N3ECD. Definite diagnosis is made by molecular genetics but is also possible by electron microscopic demonstration of pathognomonic granular osmiophilic material at VSMCs or by positive immunohistochemistry for N3ECD in dermal arteries. In rare, recessively inherited CARASIL the clinical picture and white matter changes are similar as in CADASIL, but cognitive decline begins earlier. In addition, gait disturbance, low back pain and alopecia are characteristic features. CARASIL is caused by mutations (presently n = 10) in high-temperature requirement. A serine peptidase 1 (HTRA1) gene, which result in reduced function of HTRA1 as repressor of transforming growth factor-β (TGF β) -signaling. Cerebral arteries show loss of VSMCs and marked hyalinosis, but not stenosis.
Collapse
Affiliation(s)
- Saara Tikka
- Protein Chemistry Unit, Institute of Biomedicine/AnatomyUniversity of HelsinkiHelsinkiFinland
| | - Marc Baumann
- Protein Chemistry Unit, Institute of Biomedicine/AnatomyUniversity of HelsinkiHelsinkiFinland
| | - Maija Siitonen
- Department of Medical Biochemistry and Genetics, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Petra Pasanen
- Department of Medical Biochemistry and Genetics, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Minna Pöyhönen
- Department of Clinical GeneticsHelsinki University Hospital, HUSLABHelsinkiFinland
| | - Liisa Myllykangas
- Department of PathologyHaartman InstituteUniversity of HelsinkiHelsinkiFinland
| | - Matti Viitanen
- Turku City HospitalTurkuFinland
- Division of Clinical GeriatricsDepartment of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Toshio Fukutake
- Department of NeurologyKameda Medical CenterKamogawaChibaJapan
| | - Emmanuel Cognat
- INSERMU1161ParisFrance
- Université Paris DiderotSorbonne Paris CitéUMRS 1161ParisFrance
| | - Anne Joutel
- INSERMU1161ParisFrance
- Université Paris DiderotSorbonne Paris CitéUMRS 1161ParisFrance
| | - Hannu Kalimo
- Department of PathologyHaartman InstituteUniversity of HelsinkiHelsinkiFinland
- Institute of BiomedicineDepartment of Forensic MedicineUniversity of TurkuTurkuFinland
| |
Collapse
|
23
|
Kast J, Hanecker P, Beaufort N, Giese A, Joutel A, Dichgans M, Opherk C, Haffner C. Sequestration of latent TGF-β binding protein 1 into CADASIL-related Notch3-ECD deposits. Acta Neuropathol Commun 2014; 2:96. [PMID: 25190493 PMCID: PMC4243959 DOI: 10.1186/s40478-014-0096-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/04/2014] [Indexed: 12/20/2022] Open
Abstract
Introduction Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) represents the most common hereditary form of cerebral small vessel disease characterized by early-onset stroke and premature dementia. It is caused by mutations in the transmembrane receptor Notch3, which promote the aggregation and accumulation of the Notch3 extracellular domain (Notch3-ECD) within blood vessel walls. This process is believed to mediate the abnormal recruitment and dysregulation of additional factors including extracellular matrix (ECM) proteins resulting in brain vessel dysfunction. Based on recent evidence indicating a role for the transforming growth factor-β (TGF-β) pathway in sporadic and familial small vessel disease we studied fibronectin, fibrillin-1 and latent TGF-β binding protein 1 (LTBP-1), three ECM constituents involved in the regulation of TGF-β bioavailability, in post-mortem brain tissue from CADASIL patients and control subjects. Results Fibronectin and fibrillin-1 were found to be enriched in CADASIL vessels without co-localizing with Notch3-ECD deposits, likely as a result of fibrotic processes secondary to aggregate formation. In contrast, LTBP-1 showed both an accumulation and a striking co-localization with Notch3-ECD deposits suggesting specific recruitment into aggregates. We also detected increased levels of the TGF-β prodomain (also known as latency-associated peptide, LAP) indicating dysregulation of the TGF-β pathway in CADASIL development. In vitro analyses revealed a direct interaction between LTBP-1 and Notch3-ECD and demonstrated a specific co-aggregation of LTBP-1 with mutant Notch3. Conclusion We propose LTBP-1 as a novel component of Notch3-ECD deposits and suggest its involvement in pathological processes triggered by Notch3-ECD aggregation. Electronic supplementary material The online version of this article (doi:10.1186/s40478-014-0096-8) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Snorradottir AO, Isaksson HJ, Kaeser SA, Skodras AA, Olafsson E, Palsdottir A, Bragason BT. Deposition of collagen IV and aggrecan in leptomeningeal arteries of hereditary brain haemorrhage with amyloidosis. Brain Res 2013; 1535:106-14. [PMID: 23973860 DOI: 10.1016/j.brainres.2013.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/28/2013] [Accepted: 08/15/2013] [Indexed: 12/18/2022]
Abstract
Hereditary Cystatin C Amyloid Angiopathy (HCCAA) is a rare genetic disease in Icelandic families caused by a mutation in the cystatin C gene, CST3. HCCAA is classified as a cerebral amyloid angiopathy and mutant cystatin C forms amyloid deposits in cerebral arteries resulting in fatal haemorrhagic strokes in young adults. The aetiology of HCCAA pathology is not clear and there is, at present, no animal model of the disease. The aim of this study was to increase understanding of the cerebral vascular pathology of HCCAA patients with an emphasis on structural changes within the arterial wall of affected leptomeningeal arteries. Examination of post-mortem samples revealed extensive changes in the walls of affected arteries characterised by deposition of extracellular matrix constituents, notably collagen IV and the proteoglycan aggrecan. Other structural abnormalities were thickening of the laminin distribution, intimal thickening concomitant with a frayed elastic layer, and variable reduction in the integrity of endothelia. Our results show that excess deposition of extracellular matrix proteins in cerebral arteries of HCCAA is a prominent feature of the disease and may play an important role in its pathogenesis.
Collapse
|
25
|
Zhang X, Meng H, Wang MM. Collagen represses canonical Notch signaling and binds to Notch ectodomain. Int J Biochem Cell Biol 2013; 45:1274-80. [PMID: 23579095 PMCID: PMC3683383 DOI: 10.1016/j.biocel.2013.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/16/2013] [Accepted: 03/29/2013] [Indexed: 12/27/2022]
Abstract
The Notch signaling system features a growing number of modulators that include extracellular proteins that bind to the Notch ectodomain. Collagens are a complex, heterogeneous family of secreted proteins that serve both structural and signaling functions, most prominently through binding to integrins and DDR. The shared widespread tissue distribution of Notch and collagen prompted us to investigate the effects of collagen on Notch signaling. In a cell co-culture signaling assay, we found that type IV collagen inhibited Notch signaling in H460 and A7R5 cell lines. Moreover, Notch-stimulated expression of mature smooth muscle genes SMA, MHC, SM22, and calponin, which define the physiologic phenotype of normal vascular smooth muscle, was inhibited by type IV collagen in A7R5 cells. Cloned promoters of three of these genes were also inhibited by exposure to collagen. Collagen-dependent repression of Notch signaling required an RBP-jK site within the SM22 promoter. Moreover, repression by collagen required extracellular stimulation of the Notch signaling pathway. Type IV collagen bound to both Notch3 and Jagged1 proteins in purified protein binding assays. In addition, type I collagen also inhibited Notch signaling and bound to Notch and Jagged. We conclude that type IV and type I collagen repress canonical Notch signaling to alter expression of Notch target genes.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | | | | |
Collapse
|
26
|
Abstract
Cerebral endothelial cells participate in the blood-brain barrier and regulate activity-dependent changes in brain blood flow. It has been assumed that all cerebral endothelial cells are similar, but genetic studies in mice suggest that there are heterogeneous populations of endothelial cells in rodent brain. In this study, we tested for molecular heterogeneity of endothelial cells in the human brain. Human brains (five A and five O blood type patients) from autopsies were analyzed by immunohistochemistry and immunofluorescence using antibodies against von Willebrand factor (vWF) and A and H blood group antigens. vWF and ABO antigens were confined to the endothelium. Although all endothelial cells expressed vWF, capillary endothelial cells from A blood type brains showed a heterogeneous expression of A and H antigens, with individual cells expressing either one or both antigens. There were no differences between the gray and the white matter in the percentage of A-reactive or H-reactive capillaries. We conclude that ABO antigen expression in the human brain is modulated at the level of the individual endothelial cell. Future studies are warranted to determine whether differences in capillary permeability and cerebral autoregulation vary over short distances within the brain.
Collapse
|
27
|
Monet-Leprêtre M, Haddad I, Baron-Menguy C, Fouillot-Panchal M, Riani M, Domenga-Denier V, Dussaule C, Cognat E, Vinh J, Joutel A. Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. ACTA ACUST UNITED AC 2013; 136:1830-45. [PMID: 23649698 DOI: 10.1093/brain/awt092] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, or CADASIL, one of the most common inherited small vessel diseases of the brain, is characterized by a progressive loss of vascular smooth muscle cells and extracellular matrix accumulation. The disease is caused by highly stereotyped mutations within the extracellular domain of the NOTCH3 receptor (Notch3(ECD)) that result in an odd number of cysteine residues. While CADASIL-associated NOTCH3 mutations differentially affect NOTCH3 receptor function and activity, they all are associated with early accumulation of Notch3(ECD)-containing aggregates in small vessels. We still lack mechanistic explanation to link NOTCH3 mutations with small vessel pathology. Herein, we hypothesized that excess Notch3(ECD) could recruit and sequester functionally important proteins within small vessels of the brain. We performed biochemical, nano-liquid chromatography-tandem mass spectrometry and immunohistochemical analyses, using cerebral and arterial tissue derived from patients with CADASIL and mouse models of CADASIL that exhibit vascular lesions in the end- and early-stage of the disease, respectively. Biochemical fractionation of brain and artery samples demonstrated that mutant Notch3(ECD) accumulates in disulphide cross-linked detergent-insoluble aggregates in mice and patients with CADASIL. Further proteomic and immunohistochemical analyses identified two functionally important extracellular matrix proteins, tissue inhibitor of metalloproteinases 3 (TIMP3) and vitronectin (VTN) that are sequestered into Notch3(ECD)-containing aggregates. Using cultured cells, we show that increased levels or aggregation of Notch3 enhances the formation of Notch3(ECD)-TIMP3 complex, promoting TIMP3 recruitment and accumulation. In turn, TIMP3 promotes complex formation including NOTCH3 and VTN. In vivo, brain vessels from mice and patients with CADASIL exhibit elevated levels of both insoluble cross-linked and soluble TIMP3 species. Moreover, reverse zymography assays show a significant elevation of TIMP3 activity in the brain vessels from mice and patients with CADASIL. Collectively, our findings lend support to a Notch3(ECD) cascade hypothesis in CADASIL disease pathology, which posits that aggregation/accumulation of Notch3(ECD) in the brain vessels is a central event, promoting the abnormal recruitment of functionally important extracellular matrix proteins that may ultimately cause multifactorial toxicity. Specifically, our results suggest a dysregulation of TIMP3 activity, which could contribute to mutant Notch3(ECD) toxicity by impairing extracellular matrix homeostasis in small vessels.
Collapse
|