1
|
Haimson B, Mizrahi A. Plasticity in auditory cortex during parenthood. Hear Res 2023; 431:108738. [PMID: 36931020 DOI: 10.1016/j.heares.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Most animals display robust parental behaviors that support the survival and well-being of their offspring. The manifestation of parental behaviors is accompanied by physiological and hormonal changes, which affect both the body and the brain for better care giving. Rodents exhibit a behavior called pup retrieval - a stereotyped sequence of perception and action - used to identify and retrieve their newborn pups back to the nest. Pup retrieval consists of a significant auditory component, which depends on plasticity in the auditory cortex (ACx). We review the evidence of neural changes taking place in the ACx of rodents during the transition to parenthood. We discuss how the plastic changes both in and out of the ACx support the encoding of pup vocalizations. Key players in the mechanism of this plasticity are hormones and experience, both of which have a clear dynamic signature during the transition to parenthood. Mothers, co caring females, and fathers have been used as models to understand parental plasticity at disparate levels of organization. Yet, common principles of cortical plasticity and the biological mechanisms underlying its involvement in parental behavior are just beginning to be unpacked.
Collapse
Affiliation(s)
- Baruch Haimson
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, and 2Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
2
|
Gilfarb RA, Leuner B. GABA System Modifications During Periods of Hormonal Flux Across the Female Lifespan. Front Behav Neurosci 2022; 16:802530. [PMID: 35783228 PMCID: PMC9245048 DOI: 10.3389/fnbeh.2022.802530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
The female lifespan is marked by periods of dramatic hormonal fluctuation. Changes in the ovarian hormones estradiol and progesterone, in addition to the progesterone metabolite allopregnanolone, are among the most significant and have been shown to have widespread effects on the brain. This review summarizes current understanding of alterations that occur within the GABA system during the major hormonal transition periods of puberty, the ovarian cycle, pregnancy and the postpartum period, as well as reproductive aging. The functional impacts of altered inhibitory activity during these times are also discussed. Lastly, avenues for future research are identified, which, if pursued, can broaden understanding of the GABA system in the female brain and potentially lead to better treatments for women experiencing changes in brain function at each of these hormonal transition periods.
Collapse
Affiliation(s)
- Rachel A. Gilfarb
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
- *Correspondence: Benedetta Leuner,
| |
Collapse
|
3
|
Ragan CM, Ahmed EI, Vitale EM, Linning-Duffy K, Miller-Smith SM, Maguire J, Lonstein JS. Postpartum State, but Not Maternal Caregiving or Level of Anxiety, Increases Medial Prefrontal Cortex GAD65 and vGAT in Female Rats. Front Glob Womens Health 2022; 2:746518. [PMID: 35211693 PMCID: PMC8861351 DOI: 10.3389/fgwh.2021.746518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Upregulation of the inhibitory neurotransmitter, GABA, is involved in many of the behavioral differences between postpartum and nulliparous female rodents. This is evidenced by studies showing that pharmacological blockade of GABAergic activity impairs maternal caregiving and postpartum affective behaviors. However, the influence of motherhood on the capacity for GABA synthesis or release in the medial prefrontal cortex (mPFC; brain region involved in many social and affective behaviors) is not well-understood. Western blotting was used to compare postpartum and nulliparous rats in protein levels of the 65-kD isoform of glutamic acid decarboxylase (GAD65; synthesizes most GABA released from terminals) and vesicular GABA transporter (vGAT; accumulates GABA into synaptic vesicles for release) in the mPFC. We found that postpartum mothers had higher GAD65 and vGAT compared to virgins, but such differences were not found between maternally sensitized and non-sensitized virgins, indicating that reproduction rather than just the display of maternal caregiving is required. To test whether GAD65 and vGAT levels in the mPFC were more specifically related to anxiety-related behavior within postpartum mothers, we selected 8 low-anxiety and 8 high-anxiety dams based on their time spent in the open arms of an elevated plus maze on postpartum day 7. There were no significant differences between the anxiety groups in either GAD65 or vGAT levels. These data further indicate that frontal cortical GABA is affected by female reproduction and more likely contributes to differences in the display of socioemotional behaviors across, but not within, female reproductive state.
Collapse
Affiliation(s)
- Christina M. Ragan
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- School of Biology and Undergraduate Neuroscience Program, Georgia Institute of Technology, Atlanta, GA, United States
| | - Eman I. Ahmed
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Erika M. Vitale
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, East Lansing, MI, United States
| | | | - Stephanie M. Miller-Smith
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, East Lansing, MI, United States
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Joseph S. Lonstein
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Joseph S. Lonstein
| |
Collapse
|
4
|
Zhang B, Vogelzang A, Miyajima M, Sugiura Y, Wu Y, Chamoto K, Nakano R, Hatae R, Menzies RJ, Sonomura K, Hojo N, Ogawa T, Kobayashi W, Tsutsui Y, Yamamoto S, Maruya M, Narushima S, Suzuki K, Sugiya H, Murakami K, Hashimoto M, Ueno H, Kobayashi T, Ito K, Hirano T, Shiroguchi K, Matsuda F, Suematsu M, Honjo T, Fagarasan S. B cell-derived GABA elicits IL-10 + macrophages to limit anti-tumour immunity. Nature 2021; 599:471-476. [PMID: 34732892 PMCID: PMC8599023 DOI: 10.1038/s41586-021-04082-1] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/28/2021] [Indexed: 01/16/2023]
Abstract
Small, soluble metabolites not only are essential intermediates in intracellular biochemical processes, but can also influence neighbouring cells when released into the extracellular milieu1-3. Here we identify the metabolite and neurotransmitter GABA as a candidate signalling molecule synthesized and secreted by activated B cells and plasma cells. We show that B cell-derived GABA promotes monocyte differentiation into anti-inflammatory macrophages that secrete interleukin-10 and inhibit CD8+ T cell killer function. In mice, B cell deficiency or B cell-specific inactivation of the GABA-generating enzyme GAD67 enhances anti-tumour responses. Our study reveals that, in addition to cytokines and membrane proteins, small metabolites derived from B-lineage cells have immunoregulatory functions, which may be pharmaceutical targets allowing fine-tuning of immune responses.
Collapse
Affiliation(s)
- Baihao Zhang
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Alexis Vogelzang
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Michio Miyajima
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Yuki Sugiura
- grid.26091.3c0000 0004 1936 9959Department of Biochemistry and Integrative Biology, Keio University, Tokyo, Japan
| | - Yibo Wu
- grid.7597.c0000000094465255YCI Laboratory for Next-Generation Proteomics, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Kenji Chamoto
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rei Nakano
- grid.260969.20000 0001 2149 8846Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Ryusuke Hatae
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rosemary J. Menzies
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Sonomura
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nozomi Hojo
- grid.508743.dLaboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Taisaku Ogawa
- grid.508743.dLaboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Wakana Kobayashi
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Yumi Tsutsui
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Sachiko Yamamoto
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Mikako Maruya
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Seiko Narushima
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Keiichiro Suzuki
- grid.7597.c0000000094465255Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Hiroshi Sugiya
- grid.260969.20000 0001 2149 8846Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Nihon University College of Bioresource Sciences, Fujisawa, Japan
| | - Kosaku Murakami
- grid.258799.80000 0004 0372 2033Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motomu Hashimoto
- grid.258799.80000 0004 0372 2033Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Ueno
- grid.258799.80000 0004 0372 2033Department of Immunology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kobayashi
- grid.258799.80000 0004 0372 2033Department of Urology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsuhiro Ito
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Department of Urology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Hirano
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsuyuki Shiroguchi
- grid.508743.dLaboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka, Japan
| | - Fumihiko Matsuda
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Suematsu
- grid.26091.3c0000 0004 1936 9959Department of Biochemistry and Integrative Biology, Keio University, Tokyo, Japan
| | - Tasuku Honjo
- grid.258799.80000 0004 0372 2033Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan. .,Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Zhao C, Chang L, Auger AP, Gammie SC, Riters LV. Mu opioid receptors in the medial preoptic area govern social play behavior in adolescent male rats. GENES BRAIN AND BEHAVIOR 2020; 19:e12662. [PMID: 32388931 DOI: 10.1111/gbb.12662] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
Neural systems underlying important behaviors are usually highly conserved across species. The medial preoptic area (MPOA) has been demonstrated to play a crucial role in reward associated with affiliative, nonsexual, social communication in songbirds. However, the role of MPOA in affiliative, rewarding social behaviors (eg, social play behavior) in mammals remains largely unknown. Here we applied our insights from songbirds to rats to determine whether opioids in the MPOA govern social play behavior in rats. Using an immediate early gene (ie, Egr1, early growth response 1) expression approach, we identified increased numbers of Egr1-labeled cells in the MPOA after social play in adolescent male rats. We also demonstrated that cells expressing mu opioid receptors (MORs, gene name Oprm1) in the MPOA displayed increased Egr1 expression when adolescent rats were engaged in social play using double immunofluorescence labeling of MOR and Egr1. Furthermore, using short hairpin RNA-mediated gene silencing we revealed that knockdown of Oprm1 in the MPOA reduced the number of total play bouts and the frequency of pouncing. Last, RNA sequencing differential gene expression analysis identified genes involved in neuronal signaling with altered expression after Oprm1 knockdown, and identified Egr1 as potentially a key modulator for Oprm1 in the regulation of social play behavior. Altogether, these results show that the MPOA is involved in social play behavior in adolescent male rats and support the hypothesis that the MPOA is part of a conserved neural circuit across vertebrates in which opioids act to govern affiliative, intrinsically rewarded social behaviors.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Liza Chang
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anthony P Auger
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Driessen TM, Zhao C, Saenz M, Stevenson SA, Owada Y, Gammie SC. Down-regulation of fatty acid binding protein 7 (Fabp7) is a hallmark of the postpartum brain. J Chem Neuroanat 2018; 92:92-101. [PMID: 30076883 PMCID: PMC6103884 DOI: 10.1016/j.jchemneu.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022]
Abstract
Fatty acid binding protein 7 (Fabp7) is a versatile protein that is linked to glial differentiation and proliferation, neurogenesis, and multiple mental health disorders. Recent microarray studies identified a robust decrease in Fabp7 expression in key brain regions of the postpartum rodents. Given its diverse functions, Fabp7 could play a critical role in sculpting the maternal brain and promoting the maternal phenotype. The present study aimed at investigating the expression profile of Fabp7 across the postpartum CNS. Quantitative real-time PCR (qPCR) analysis showed that Fabp7 mRNA was consistently down-regulated across the postpartum brain. Of the 9 maternal care-related regions tested, seven exhibited significant decreases in Fabp7 in postpartum (relative to virgin) females, including medial prefrontal cortex (mPFC), nucleus accumbens (NA), lateral septum (LS), bed nucleus of stria terminalis dorsal (BnSTd), paraventricular nucleus (PVN), lateral hypothalamus (LH), and basolateral and central amygdala (BLA/CeA). For both ventral tegmental area (VTA) and medial preoptic area (MPOA) levels of Fabp7 were lower in mothers, but levels of changes did not reach significance. Confocal microscopy revealed that protein expression of Fabp7 in the LS paralleled mRNA findings. Specifically, the caudal LS exhibited a significant reduction in Fabp7 immunoreactivity, while decreases in medial LS were just above significance. Double fluorescent immunolabeling confirmed the astrocytic phenotype of Fabp7-expressing cells. Collectively, this research demonstrates a broad and marked reduction in Fabp7 expression in the postpartum brain, suggesting that down-regulation of Fabp7 may serve as a hallmark of the postpartum brain and contribute to the maternal phenotype.
Collapse
Affiliation(s)
- Terri M Driessen
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Marissa Saenz
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Sharon A Stevenson
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Zhao C, Gammie SC. The circadian gene Nr1d1 in the mouse nucleus accumbens modulates sociability and anxiety-related behaviour. Eur J Neurosci 2018; 48:1924-1943. [PMID: 30028550 DOI: 10.1111/ejn.14066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/11/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Nuclear receptor subfamily 1, group D, member 1 (Nr1d1) (also known as Rev-erb alpha) has been linked to circadian rhythm regulation, mood-related behaviour and disorders associated with social deficits. Recent work from our laboratory found striking decreases in Nr1d1 in the nucleus accumbens (NAc) in the maternal condition and indirect evidence that Nr1d1 was interacting with numerous addiction and reward-related genes to modulate social reward. In this study, we applied our insights from the maternal state to nonparental adult mice to determine whether decreases in Nr1d1 expression in the NAc via adeno-associated viral (AAV) vectors and short hairpin RNA (shRNA)-mediated gene knockdown were sufficient to modulate social behaviours and mood-related behaviours. Knockdown of Nr1d1 in the NAc enhanced sociability and reduced anxiety, but did not affect depressive-like traits in female mice. In male mice, Nr1d1 knockdown had no significant behavioural effects. Microarray analysis of Nr1d1 knockdown in females identified changes in circadian rhythm and histone deacetylase genes and suggested possible drugs, including histone deacetylase inhibitors, that could mimic actions of Nr1d1 knockdown. Quantitative real-time PCR (qPCR) analysis confirmed expression upregulation of gene period circadian clock 1 (Per1) and period circadian clock 2 (Per2) with Nr1d1 knockdown. The evidence for roles for opioid-related genes opioid receptor, delta 1 (Oprd1) and preproenkephalin (Penk) was also found. Together, these results suggest that Nr1d1 in the NAc modulates sociability and anxiety-related behaviour in a sex-specific manner, and circadian, histone deacetylase and opioid-related genes may be involved in the expression of these behavioural phenotypes.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
8
|
Zilkha N, Scott N, Kimchi T. Sexual Dimorphism of Parental Care: From Genes to Behavior. Annu Rev Neurosci 2017; 40:273-305. [DOI: 10.1146/annurev-neuro-072116-031447] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niv Scott
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
9
|
Jarvie BC, King CM, Hughes AR, Dicken MS, Dennison CS, Hentges ST. Caloric restriction selectively reduces the GABAergic phenotype of mouse hypothalamic proopiomelanocortin neurons. J Physiol 2016; 595:571-582. [PMID: 27531218 DOI: 10.1113/jp273020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Hypothalamic proopiomelanocortin (POMC) neurons release peptide products that potently inhibit food intake and reduce body weight. These neurons also release the amino acid transmitter GABA, which can inhibit downstream neurons. Although the release of peptide transmitters from POMC neurons is regulated by energy state, whether similar regulation of GABA release might occur had not been examined. The present results show that the GABAergic phenotype of POMC neurons is decreased selectively by caloric deficit and not altered by high-fat diet or stress. The fact the GABAergic phenotype of POMC neurons is sensitive to energy state suggests a dynamic physiological role for this transmitter and highlights the importance of determining the functional consequence of GABA released from POMC neurons in terms of the regulation of normal energy balance. ABSTRACT In addition to peptide transmitters, hypothalamic neurons, including proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons, also release amino acid transmitters that can alter energy balance regulation. While recent studies show that the GABAergic nature of AgRP neurons is increased by caloric restriction, whether the GABAergic phenotype of POMC neurons is also regulated in an energy-state-dependent manner has not been previously examined. The present studies used fluorescence in situ hybridization to detect Gad1 and Gad2 mRNA in POMC neurons, as these encode the glutamate decarboxylase enzymes GAD67 and GAD65, respectively. The results show that both short-term fasting and chronic caloric restriction significantly reduce the percentage of POMC neurons expressing Gad1 mRNA in both male and female mice, with less of an effect on Gad2 expression. Neither acute nor chronic intermittent restraint stress altered Gad1 expression in POMC neurons. Maintenance on a high-fat diet also did not affect the portion POMC neurons expressing Gad1, suggesting that the GABAergic phenotype of POMC neurons is particularly sensitive to energy deficit. Because changes in Gad1 expression have been previously shown to correlate with altered terminal GABA release, fasting is likely to cause a decrease in GABA release from POMC neurons. Altogether, the present results show that the GABAergic nature of POMC neurons can be dynamically regulated by energy state in a manner opposite to that in AgRP neurons and suggest the importance of considering the functional role of GABA release in addition to the peptide transmitters from POMC neurons.
Collapse
Affiliation(s)
- Brooke C Jarvie
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Connie M King
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80253, USA
| | - Alexander R Hughes
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80253, USA
| | - Matthew S Dicken
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80253, USA
| | - Christina S Dennison
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80253, USA
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80253, USA
| |
Collapse
|
10
|
Gammie SC, Driessen TM, Zhao C, Saul MC, Eisinger BE. Genetic and neuroendocrine regulation of the postpartum brain. Front Neuroendocrinol 2016; 42:1-17. [PMID: 27184829 PMCID: PMC5030130 DOI: 10.1016/j.yfrne.2016.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/11/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
Abstract
Changes in expression of hundreds of genes occur during the production and function of the maternal brain that support a wide range of processes. In this review, we synthesize findings from four microarray studies of different maternal brain regions and identify a core group of 700 maternal genes that show significant expression changes across multiple regions. With those maternal genes, we provide new insights into reward-related pathways (maternal bonding), postpartum depression, social behaviors, mental health disorders, and nervous system plasticity/developmental events. We also integrate the new genes into well-studied maternal signaling pathways, including those for prolactin, oxytocin/vasopressin, endogenous opioids, and steroid receptors (estradiol, progesterone, cortisol). A newer transcriptional regulation model for the maternal brain is provided that incorporates recent work on maternal microRNAs. We also compare the top 700 genes with other maternal gene expression studies. Together, we highlight new genes and new directions for studies on the postpartum brain.
Collapse
Affiliation(s)
- Stephen C Gammie
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| | - Terri M Driessen
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael C Saul
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian E Eisinger
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study. Anat Sci Int 2015; 91:398-406. [PMID: 26643381 DOI: 10.1007/s12565-015-0316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
Abstract
The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.
Collapse
|
12
|
Saul MC, Zhao C, Driessen TM, Eisinger BE, Gammie SC. MicroRNA expression is altered in lateral septum across reproductive stages. Neuroscience 2015; 312:130-40. [PMID: 26592715 DOI: 10.1016/j.neuroscience.2015.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) inhibit RNA targets and may contribute to postpartum central nervous system (CNS) gene expression changes, although this has never been tested. In the present study, we directly evaluated miRNA levels using RNA sequencing during reproduction in female mice in the lateral septum (LS). We found the reliable and robust changes of miRNAs away from the virgin stage at the three other stages, namely pregnant, day 1 postpartum, and day 8 postpartum. For a given miRNA that was significantly different from the virgin condition in more than one group, the direction of change was always the same. Overall, we identified 32 upregulated miRNAs and 25 downregulated miRNAs that were consistently different from the virgin state. 'Arm switching' occurs for miR-433-3 and miR-7b. Unexpectedly, a third of upregulated miRNAs (relative to virgin) were highly localized within the 12qF1 region of chromosome 12 that includes the Dlk1-Dio3 gene cluster implicated in stem cell and neuronal differentiation. Over 1500 genes were targeted by multiple upregulated miRNAs with about 100 genes targeted by five or more miRNAs. Over 1000 genes were targeted by multiple downregulated miRNAs with about 50 genes targeted by five or more miRNAs. Half of the target genes were regulated by up and downregulated miRNAs, indicating homeostatic regulation. Transcriptional regulation was the most enriched pathway for genes linked to up or down regulated miRNAs. Other enriched pathways included protein kinase activity (e.g., MAP kinase), CNS development, axon guidance, neurotrophin signaling, neuron development/differentiation, and neurogenesis. Previously published postpartum LS gene expression changes were enrichment for LS miRNA targets, as expected. Surprisingly, postpartum gene expression changes from other regions were also enriched against LS miRNA targets, suggesting a core group of miRNAs may act across the CNS during reproduction. Together, we directly examine miRNAs and find significant alterations in the postpartum brain.
Collapse
Affiliation(s)
- M C Saul
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - C Zhao
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - T M Driessen
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - B E Eisinger
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA
| | - S C Gammie
- Department of Zoology, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Borkowska P, Fila-Danilow A, Paul-Samojedny M, Kowalczyk M, Hart J, Ryszawy J, Kowalski J. Differentiation of adult rat mesenchymal stem cells to GABAergic, dopaminergic and cholinergic neurons. Pharmacol Rep 2015; 67:179-86. [DOI: 10.1016/j.pharep.2014.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 01/31/2023]
|
14
|
Zhao C, Gammie SC. Metabotropic glutamate receptor 3 is downregulated and its expression is shifted from neurons to astrocytes in the mouse lateral septum during the postpartum period. J Histochem Cytochem 2015; 63:417-26. [PMID: 25739438 DOI: 10.1369/0022155415578283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/27/2015] [Indexed: 12/11/2022] Open
Abstract
The inhibitory metabotropic glutamate receptor 3 (mGluR3) plays diverse and complex roles in brain function, including synaptic plasticity and neurotransmission. We recently found that mGluR3 is downregulated in the lateral septum (LS) of postpartum females using microarray and qPCR analysis. In this study, we used double fluorescence immunohistochemical approaches to characterize mGluR3 changes in LS of the postpartum brain. The number of mGluR3-immunoractive cells was significantly reduced in the dorsal (LSD) and intermediate (LSI) but not ventral (LSV) parts of the LS in postpartum versus virgin females. mGluR3 immunoreactivity in the LS was found predominantly in neurons (~70%), with a smaller portion (~20%-30%) in astrocytes. Colocalization analysis revealed a reduced mGluR3 expression in neurons but an increased astrocytic localization in postpartum LSI. This change in the pattern of expression suggests that mGluR3 expression is shifted from neurons to astrocytes in postpartum LS, and the decrease in mGluR3 is neuron-specific. Because mGluR3 is inhibitory and negatively regulates glutamate and GABA release, decreases in neuronal expression would increase glutamate and GABA signaling. Given our recent finding that ~90% of LS neurons are GABAergic, the present data suggest that decreases in mGluR3 are a mechanism for elevated GABA in LS in the postpartum state.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin (CZ, SCG)
| | - Stephen C Gammie
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin (CZ, SCG),Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin (SCG)
| |
Collapse
|
15
|
Zhao C, Eisinger BE, Driessen TM, Gammie SC. Addiction and reward-related genes show altered expression in the postpartum nucleus accumbens. Front Behav Neurosci 2014; 8:388. [PMID: 25414651 PMCID: PMC4220701 DOI: 10.3389/fnbeh.2014.00388] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/17/2014] [Indexed: 11/13/2022] Open
Abstract
Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC) is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET) indicated that postpartum (relative to virgin) NAC gene expression profile was significantly enriched for genes related to addiction and reward in five of five independently curated databases (e.g., Malacards, Phenopedia). Over 100 addiction/reward related genes were identified and these included: Per1, Per2, Arc, Homer2, Creb1, Grm3, Fosb, Gabrb3, Adra2a, Ntrk2, Cry1, Penk, Cartpt, Adcy1, Npy1r, Htr1a, Drd1a, Gria1, and Pdyn. ToppCluster analysis found maternal NAC expression profile to be significantly enriched for genes related to the drug action of nicotine, ketamine, and dronabinol. Pathway analysis indicated postpartum NAC as enriched for RNA processing, CNS development/differentiation, and transcriptional regulation. Weighted Gene Coexpression Network Analysis (WGCNA) identified possible networks for transcription factors, including Nr1d1, Per2, Fosb, Egr1, and Nr4a1. The postpartum state involves increased risk for mental health disorders and MSET analysis indicated postpartum NAC to be enriched for genes related to depression, bipolar disorder (BPD), and schizophrenia. Mental health related genes included: Fabp7, Grm3, Penk, and Nr1d1. We confirmed via quantitative PCR Nr1d1, Per2, Grm3, Penk, Drd1a, and Pdyn. This study indicates for the first time that postpartum NAC involves large scale gene expression alterations linked to addiction and reward. Because the postpartum state also involves decreased response to drugs, the findings could provide insights into how to mitigate addictions.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Zoology, University of Wisconsin-MadisonMadison, WI, USA
| | | | - Terri M. Driessen
- Department of Zoology, University of Wisconsin-MadisonMadison, WI, USA
| | - Stephen C. Gammie
- Department of Zoology, University of Wisconsin-MadisonMadison, WI, USA
- Neuroscience Training Program, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
16
|
Glutamate, GABA, and glutamine are synchronously upregulated in the mouse lateral septum during the postpartum period. Brain Res 2014; 1591:53-62. [PMID: 25451092 DOI: 10.1016/j.brainres.2014.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/26/2014] [Accepted: 10/13/2014] [Indexed: 01/12/2023]
Abstract
Dramatic structural and functional remodeling occurs in the postpartum brain for the establishment of maternal care, which is essential for the growth and development of young offspring. Glutamate and GABA signaling are critically important in modulating multiple behavioral performances. Large scale signaling changes occur in the postpartum brain, but it is still not clear to what extent the neurotransmitters glutamate and GABA change and whether the ratio of glutamate/GABA remains balanced. In this study, we examined the glutamate/GABA-glutamine cycle in the lateral septum (LS) of postpartum female mice. In postpartum females (relative to virgins), tissue levels of glutamate and GABA were elevated in LS and increased mRNA was found for the respective enzymes producing glutamate and GABA, glutaminase (Gls) and glutamate decarboxylase 1 and 2 (Gad1 and Gad2). The common precursor, glutamine, was elevated as was the enzyme that produces it, glutamate-ammonia ligase (Glul). Additionally, glutamate, GABA, and glutamine were positively correlated and the glutamate/GABA ratio was almost identical in the postpartum and virgin females. Collectively, these findings indicate that glutamate and GABA signaling are increased and that the ratio of glutamate/GABA is well balanced in the maternal LS. The postpartum brain may provide a useful model system for understanding how glutamate and GABA are linked despite large signaling changes. Given that some mental health disorders, including depression and schizophrenia display dysregulated glutamate/GABA ratio, and there is increased vulnerability to mental disorders in mothers, it is possible that these postpartum disorders emerge when glutamate and GABA changes are not properly coordinated.
Collapse
|
17
|
Lonstein JS, Maguire J, Meinlschmidt G, Neumann ID. Emotion and mood adaptations in the peripartum female:complementary contributions of GABA and oxytocin. J Neuroendocrinol 2014; 26:649-64. [PMID: 25074620 PMCID: PMC5487494 DOI: 10.1111/jne.12188] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 01/23/2023]
Abstract
Peripartum hormones and sensory cues from young modify the maternal brain in ways that can render females either at risk for, or resilient to, elevated anxiety and depression. The neurochemical systems underlying these aspects of maternal emotional and mood states include the inhibitory neurotransmitter GABA and the neuropeptide oxytocin (OXT). Data from laboratory rodents indicate that increased activity at the GABA(A) receptor contributes to the postpartum suppression of anxiety-related behaviour that is mediated by physical contact with offspring, whereas dysregulation in GABAergic signalling results in deficits in maternal care, as well as anxiety- and depression-like behaviours during the postpartum period. Similarly, activation of the brain OXT system accompanied by increased OXT release within numerous brain sites in response to reproductive stimuli also reduces postpartum anxiety- and depression-like behaviours. Studies of peripartum women are consistent with these findings in rodents. Given the similar consequences of elevated central GABA and OXT activity on maternal anxiety and depression, balanced and partly reciprocal interactions between these two systems may be essential for their effects on maternal emotional and mood states, in addition to other aspects of postpartum behaviour and physiology.
Collapse
Affiliation(s)
- J S Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | | | | | | |
Collapse
|
18
|
Wirbisky SE, Weber GJ, Lee JW, Cannon JR, Freeman JL. Novel dose-dependent alterations in excitatory GABA during embryonic development associated with lead (Pb) neurotoxicity. Toxicol Lett 2014; 229:1-8. [PMID: 24875535 DOI: 10.1016/j.toxlet.2014.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 01/22/2023]
Abstract
Lead (Pb) is a heavy metal that is toxic to numerous physiological processes. Its use in industrial applications is widespread and results in an increased risk of human environmental exposure. The central nervous system (CNS) is most sensitive to Pb exposure during early development due to rapid cell proliferation and migration, axonal growth, and synaptogenesis. One of the key components of CNS development is the Gamma-aminobutyric acid (GABA)-ergic system. GABA is the primary inhibitory neurotransmitter in the adult brain. However, during development GABA acts as an excitatory neurotrophic factor which contributes to these cellular processes. Multiple studies report effects of Pb on GABA in the mature brain; however, little is known regarding the adverse effects of Pb exposure on the GABAergic system during embryonic development. To characterize the effects of Pb on the GABAergic system during development, zebrafish embryos were exposed to 10, 50, or 100 ppb Pb or a control treatment. Tissue up-take, gross morphological alterations, gene expression, and neurotransmitter levels were analyzed. Analysis revealed that alterations in gene expression throughout the GABAergic system and GABA levels were dose and developmental time point specific. These data provide a framework for further analysis of the effects of Pb on the GABAergic system during the excitatory phase and as GABA transitions to an inhibitory neurotransmitter during development.
Collapse
Affiliation(s)
- Sara E Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Gregory J Weber
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jang-Won Lee
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
19
|
Driessen TM, Zhao C, Whittlinger A, Williams H, Gammie SC. Endogenous CNS expression of neurotensin and neurotensin receptors is altered during the postpartum period in outbred mice. PLoS One 2014; 9:e83098. [PMID: 24416154 PMCID: PMC3885409 DOI: 10.1371/journal.pone.0083098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 11/05/2013] [Indexed: 12/26/2022] Open
Abstract
Neurotensin (NT) is a neuropeptide identical in mice and humans that is produced and released in many CNS regions associated with maternal behavior. NT has been linked to aspects of maternal care and previous studies have indirectly suggested that endogenous NT signaling is altered in the postpartum period. In the present study, we directly examine whether NT and its receptors exhibit altered gene expression in maternal relative to virgin outbred mice using real time quantitative PCR (qPCR) across multiple brain regions. We also examine NT protein levels using anti-NT antibodies and immunohistochemistry in specific brain regions. In the medial preoptic area (MPOA), which is critical for maternal behaviors, mRNA of NT and NT receptor 3 (Sort1) were significantly up-regulated in postpartum mice compared to virgins. NT mRNA was also elevated in postpartum females in the bed nucleus of the stria terminalis dorsal. However, in the lateral septum, NT mRNA was down-regulated in postpartum females. In the paraventricular nucleus of the hypothalamus (PVN), Ntsr1 expression was down-regulated in postpartum females. Neurotensin receptor 2 (Ntsr2) expression was not altered in any brain region tested. In terms of protein expression, NT immunohistochemistry results indicated that NT labeling was elevated in the postpartum brain in the MPOA, lateral hypothalamus, and two subregions of PVN. Together, these findings indicate that endogenous changes occur in NT and its receptors across multiple brain regions, and these likely support the emergence of some maternal behaviors.
Collapse
Affiliation(s)
- Terri M. Driessen
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anna Whittlinger
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Horecia Williams
- Department of Animal Science, Fort Valley State University, Fort Valley, Georgia, United States of America
| | - Stephen C. Gammie
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
20
|
Zhao C, Eisinger B, Gammie SC. Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification. PLoS One 2013; 8:e73750. [PMID: 23967349 PMCID: PMC3742568 DOI: 10.1371/journal.pone.0073750] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/26/2013] [Indexed: 01/02/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) neurotransmission in the lateral septum (LS) is implicated in modulating various behavioral processes, including emotional reactivity and maternal behavior. However, identifying the phenotype of GABAergic neurons in the CNS has been hampered by the longstanding inability to reliably detect somal immunoreactivity for GABA or glutamic acid decarboxylase (GAD), the enzyme that produces GABA. In this study, we designed unique probes for both GAD65 (GAD2) and GAD67 (GAD1), and used fluorescence in Situ hybridization (FISH) with tyramide signal amplification (TSA) to achieve unequivocal detection of cell bodies of GABAergic neurons by GAD mRNAs. We quantitatively characterized the expression and chemical phenotype of GABAergic neurons across each subdivision of LS and in cingulate cortex (Cg) and medial preoptic area (MPOA) in female mice. Across LS, almost all GAD65 mRNA-expressing neurons were found to contain GAD67 mRNA (approximately 95-98%), while a small proportion of GAD67 mRNA-containing neurons did not express GAD65 mRNA (5-14%). Using the neuronal marker NeuN, almost every neuron in LS (> 90%) was also found to be GABA-positive. Interneuron markers using calcium-binding proteins showed that LS GABAergic neurons displayed immunoreactivity for calbindin (CB) or calretinin (CR), but not parvalbumin (PV); almost all CB- or CR-immunoreactive neurons (98-100%) were GABAergic. The proportion of GABAergic neurons immunoreactive for CB or CR varied depending on the subdivisions examined, with the highest percentage of colocalization in the caudal intermediate LS (LSI) (approximately 58% for CB and 35% for CR). These findings suggest that the vast majority of GABAergic neurons within the LS have the potential for synthesizing GABA via the dual enzyme systems GAD65 and GAD67, and each subtype of GABAergic neurons identified by distinct calcium-binding proteins may exert unique roles in the physiological function and neuronal circuitry of the LS.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | |
Collapse
|
21
|
Eisinger BE, Zhao C, Driessen TM, Saul MC, Gammie SC. Large scale expression changes of genes related to neuronal signaling and developmental processes found in lateral septum of postpartum outbred mice. PLoS One 2013; 8:e63824. [PMID: 23717492 PMCID: PMC3661729 DOI: 10.1371/journal.pone.0063824] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/05/2013] [Indexed: 01/14/2023] Open
Abstract
Coordinated gene expression changes across the CNS are required to produce the mammalian maternal phenotype. Lateral septum (LS) is a brain region critically involved with aspects of maternal care, and we recently examined gene expression of whole septum (LS and medial septum) in selectively bred maternal mice. Here, we expand on the prior study by 1) conducting microarray analysis solely on LS in virgin and postpartum mice, 2) using outbred mice, and 3) evaluating the role of sensory input on gene expression changes. Large scale changes in genes related to neuronal signaling were identified, including four GABAA receptor subunits. Subunits α4 and δ were downregulated in maternal LS, likely reflecting a reduction in the extrasynaptic, neurosteroid-sensitive α4/δ containing receptor subtype. Conversely, subunits ε and θ were increased in maternal LS. Fifteen K+ channel related genes showed altered expression, as did dopamine receptors Drd1a and Drd2 (both downregulated), hypocretin receptor 1 (Hcrtr1), kappa opioid receptor 1 (Oprk1), and transient receptor potential channel 4 (Trpc4). Expression of a large number of genes linked to developmental processes or cell differentiation were also altered in postpartum LS, including chemokine (C-X-C) motif ligand 12 (Cxcl12), fatty acid binding protein 7 (Fabp7), plasma membrane proteolipid (Pllp), and suppressor of cytokine signaling 2 (Socs2). Additional genes that are linked to anxiety, such as glutathione reductase (Gsr), exhibited altered expression. Pathway analysis also identified changes in genes related to cyclic nucleotide metabolism, chromatin structure, and the Ras gene family. The sensory presence of pups was found to contribute to the altered expression of a subset of genes across all categories. This study suggests that both large changes in neuronal signaling and the possible terminal differentiation of neuronal and/or glial cells play important roles in producing the maternal state.
Collapse
Affiliation(s)
- Brian E Eisinger
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | | | | | |
Collapse
|