1
|
Xu W, Li L, Cao Z, Ye J, Gu X. Circadian Rhythms and Lung Cancer in the Context of Aging: A Review of Current Evidence. Aging Dis 2025:AD.2024.1188. [PMID: 39812541 DOI: 10.14336/ad.2024.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body. Both aging and the circadian clock are highly interlinked phenomena with a bidirectional relationship. The process of aging leads to circadian disruptions while dysfunctional circadian rhythms promote age-related complications. Both processes involve diverse physiological, molecular, and cellular changes such as modifications in the DNA repair mechanisms, mechanisms, ROS generation, apoptosis, and cell proliferation. This review aims to examine the role of aging and circadian rhythms in the context of lung cancer. This will also review the existing literature on the role of circadian disruptions in the process of aging and vice versa. Various molecular pathways and genes such as BMAL1, SIRT1, HLF, and PER1 and their implications in aging, circadian rhythms, and lung cancer will also be discussed.
Collapse
Affiliation(s)
- Wenhui Xu
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Lei Li
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Zhendong Cao
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Jinghong Ye
- Department of Respiration, The Second Affiliated Hospital of Nanjing University of Traditional Chinese Medicine (Jiangsu Second Hospital of Traditional Chinese Medicine), Nanjing, Jiangsu, China
| | - Xuyu Gu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Semenova EI, Rudenok MM, Rybolovlev IN, Shulskaya MV, Lukashevich MV, Partevian SA, Budko AI, Nesterov MS, Abaimov DA, Slominsky PA, Shadrina MI, Alieva AK. Effects of Age and MPTP-Induced Parkinson's Disease on the Expression of Genes Associated with the Regulation of the Sleep-Wake Cycle in Mice. Int J Mol Sci 2024; 25:7721. [PMID: 39062963 PMCID: PMC11276692 DOI: 10.3390/ijms25147721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is characterized by a long prodromal period, during which patients often have sleep disturbances. The histaminergic system and circadian rhythms play an important role in the regulation of the sleep-wake cycle. Changes in the functioning of these systems may be involved in the pathogenesis of early stages of PD and may be age-dependent. Here, we have analyzed changes in the expression of genes associated with the regulation of the sleep-wake cycle (Hnmt, Hrh1, Hrh3, Per1, Per2, and Chrm3) in the substantia nigra (SN) and striatum of normal male mice of different ages, as well as in young and adult male mice with an MPTP-induced model of the early symptomatic stage (ESS) of PD. Age-dependent expression analysis in normal mouse brain tissue revealed changes in Hrh3, Per1, Per2, and Chrm3 genes in adult mice relative to young mice. When gene expression was examined in mice with the MPTP-induced model of the ESS of PD, changes in the expression of all studied genes were found only in the SN of adult mice with the ESS model of PD. These data suggest that age is a significant factor influencing changes in the expression of genes associated with sleep-wake cycle regulation in the development of PD.
Collapse
Affiliation(s)
- Ekaterina I. Semenova
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Margarita M. Rudenok
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Ivan N. Rybolovlev
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Marina V. Shulskaya
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maria V. Lukashevich
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Suzanna A. Partevian
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Alexander I. Budko
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maxim S. Nesterov
- Scientific Center for Biomedical Technologies of the Federal Biomedical Agency of Russia, 119435 Krasnogorsk, Russia;
| | - Denis A. Abaimov
- Research Center of Neurology, Volokolamskoye Shosse 80, 125367 Moscow, Russia;
| | - Petr A. Slominsky
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maria I. Shadrina
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Anelya Kh. Alieva
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| |
Collapse
|
3
|
Mougin C, Chataigner M, Lucas C, Leyrolle Q, Pallet V, Layé S, Bouvret E, Dinel AL, Joffre C. Dietary Marine Hydrolysate Improves Memory Performance and Social Behavior through Gut Microbiota Remodeling during Aging. Foods 2023; 12:4199. [PMID: 38231613 DOI: 10.3390/foods12234199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 01/19/2024] Open
Abstract
Aging is characterized by a decline in social behavior and cognitive functions leading to a decrease in life quality. In a previous study, we show that a fish hydrolysate supplementation prevents age-related decline in spatial short-term memory and long-term memory and anxiety-like behavior and improves the stress response in aged mice. The aim of this study was to determine the effects of a fish hydrolysate enriched with EPA/DHA or not on the cognitive ability and social interaction during aging and the biological mechanisms involved. We showed for the first time that a fish hydrolysate enriched with EPA/DHA or not improved memory performance and preference for social novelty that were diminished by aging. These changes were associated with the modulation of the gut microbiota, normalization of corticosterone, and modulation of the expression of genes involved in the mitochondrial respiratory chain, circadian clock, neuroprotection, and antioxidant activity. Thus, these changes may contribute to the observed improvements in social behavior and memory and reinforced the innovative character of fish hydrolysate in the prevention of age-related impairments.
Collapse
Affiliation(s)
- Camille Mougin
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
- Abyss Ingredients, 56850 Caudan, France
| | - Mathilde Chataigner
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
- Abyss Ingredients, 56850 Caudan, France
| | - Céline Lucas
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
- NutriBrain Research and Technology Transfer, NutriNeuro, 33076 Bordeaux, France
| | - Quentin Leyrolle
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
| | - Véronique Pallet
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
| | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
| | | | - Anne-Laure Dinel
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
- NutriBrain Research and Technology Transfer, NutriNeuro, 33076 Bordeaux, France
| | - Corinne Joffre
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, UMR 1286, 33076 Bordeaux, France
| |
Collapse
|
4
|
Furtado A, Esgalhado AJ, Duarte AC, Costa AR, Costa-Brito AR, Carro E, Ishikawa H, Schroten H, Schwerk C, Gonçalves I, Arosa FA, Santos CRA, Quintela T. Circadian rhythmicity of amyloid-beta-related molecules is disrupted in the choroid plexus of a female Alzheimer's disease mouse model. J Neurosci Res 2023; 101:524-540. [PMID: 36583371 DOI: 10.1002/jnr.25164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
The choroid plexus (CP) is part of the blood-cerebrospinal fluid barrier (BCSFB) and was recently described as an important component of the circadian clock system. It is the principal source of cerebrospinal fluid (CSF) and responsible for the synthesis and secretion of various neuroprotective peptides including those involved in amyloid-β (Aβ) transport/degradation, contributing to Aβ homeostasis. Inadequate Aβ metabolic clearance and transport across the BCSFB have been associated with circadian dysfunctions in Alzheimer's disease (AD) patients. To investigate whether AD pathology influences Aβ scavengers circadian expression, we collected CP at different time points from an AD mouse model (APP/PS1) (female and male animals, aged 6- and 12-months-old) and analyzed their mRNA expression by Real-time RT-PCR. Only angiotensin-converting enzyme (Ace) expression in 6-month-old female wild-type mice and transthyretin (Ttr) expression in 12-month-old female wild-type mice presented significant rhythmicity. The circadian rhythmicity of Ace and Ttr, prompt us to analyze the involvement of circadian rhythm in Aβ uptake. A human CP papilloma (HIBCPP) cell line was incubated with Aβ-488 and uptake was evaluated at different time points using flow cytometry. Aβ uptake displayed circadian rhythmicity. Our results suggest that AD might affect Aβ scavengers rhythmicity and that Aβ clearance is a rhythmic process possibly regulated by the rhythmic expression of Aβ scavengers.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - André J Esgalhado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Ana R Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Costa-Brito
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Eva Carro
- Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Mannheim Medical Faculty, University of Heidelberg, Childrens Hospital, Mannheim, Germany
| | - Christian Schwerk
- Mannheim Medical Faculty, University of Heidelberg, Childrens Hospital, Mannheim, Germany
| | - Isabel Gonçalves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Fernando A Arosa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal
| |
Collapse
|
5
|
Verma AK, Singh S, Rizvi SI. Aging, circadian disruption and neurodegeneration: Interesting interplay. Exp Gerontol 2023; 172:112076. [PMID: 36574855 DOI: 10.1016/j.exger.2022.112076] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
The circadian system is an intricate molecular network of coordinating circadian clocks that organize the internal synchrony of the organism in response to the environment. These rhythms are maintained by genetically programmed positive and negative auto-regulated transcriptional and translational feedback loops that sustain 24-hour oscillations in mRNA and protein components of the endogenous circadian clock. Since inter and intracellular activity of the central pacemaker appears to reduce with aging, the interaction between the circadian clock and aging continues to elude our understanding. In this review article, we discuss circadian clock components at the molecular level and how aging adversely affects circadian clock functioning in rodents and humans. The natural decline in melatonin levels with aging strongly contributes to circadian dysregulation resulting in the development of neurological anomalies. Additionally, inappropriate environmental conditions such as Artificial Light at Night (ALAN) can cause circadian disruption or chronodisruption (CD) which can result in a variety of pathological diseases, including premature aging. Furthermore, we summarize recent evidence suggesting that CD may also be a predisposing factor for the development of age-related neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), although more investigation is required to prove this link. Finally, certain chrono-enhancement approaches have been offered as intervention strategies to prevent, alleviate, or mitigate the impacts of CD. This review thus aims to bring together recent advancements in the chronobiology of the aging process, as well as its role in NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India; Psychedelics Research Group, Biological Psychiatry Laboratory and Hadassah BrainLabs, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
6
|
Prin M, Pattee J, Douin DJ, Scott BK, Ginde AA, Eckle T. Time-of-day dependent effects of midazolam administration on myocardial injury in non-cardiac surgery. Front Cardiovasc Med 2022; 9:982209. [PMID: 36386382 PMCID: PMC9650651 DOI: 10.3389/fcvm.2022.982209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 01/22/2023] Open
Abstract
Background Animal studies have shown that midazolam can increase vulnerability to cardiac ischemia, potentially via circadian-mediated mechanisms. We hypothesized that perioperative midazolam administration is associated with an increased incidence of myocardial injury in patients undergoing non-cardiac surgery (MINS) and that circadian biology may underlie this relationship. Methods We analyzed intraoperative data from the Multicenter Perioperative Outcomes Group for the occurrence of MINS across 50 institutions from 2014 to 2019. The primary outcome was the occurrence of MINS. MINS was defined as having at least one troponin-I lab value ≥0.03 ng/ml from anesthesia start to 72 h after anesthesia end. To account for bias, propensity scores and inverse probability of treatment weighting were applied. Results A total of 1,773,118 cases were available for analysis. Of these subjects, 951,345 (53.7%) received midazolam perioperatively, and 16,404 (0.93%) met criteria for perioperative MINS. There was no association between perioperative midazolam administration and risk of MINS in the study population as a whole (odds ratio (OR) 0.98, confidence interval (CI) [0.94, 1.01]). However, we found a strong association between midazolam administration and risk of MINS when surgery occurred overnight (OR 3.52, CI [3.10, 4.00]) or when surgery occurred in ASA 1 or 2 patients (OR 1.25, CI [1.13, 1.39]). Conclusion Perioperative midazolam administration may not pose a significant risk for MINS occurrence. However, midazolam administration at night and in healthier patients could increase MINS, which warrants further clinical investigation with an emphasis on circadian biology.
Collapse
|
7
|
Loss of thyroid gland circadian PER2 rhythmicity in aged mice and its potential association with thyroid cancer development. Cell Death Dis 2022; 13:898. [PMID: 36284088 PMCID: PMC9596494 DOI: 10.1038/s41419-022-05342-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022]
Abstract
Molecular clocks operate in peripheral tissues, including endocrine glands, and play important regulatory roles in this context. However, potential age-related changes in the expression rhythmicity of clock genes and the effects of these changes on the thyroid gland remain unknown. In the present study, we evaluated the expression rhythmicity of peripheral thyroid clock genes in aged mice using RNA-seq transcriptomic analysis in young (3.5-month) versus aged (20-month) mice. In addition, we determined the cellular effects of silencing of PER2, a major clock gene regulator, in human thyroid cell lines. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that differentially expressed genes (DEGs) in the thyroid glands of aged mice were involved in mitogen-activated protein kinase (MAPK) signaling, chemokine signaling, circadian entrainment, PI3K/AKT signaling, and Apelin signaling. The expression of circadian clock genes Arntl/Bmal1 was significantly downregulated in thyroid glands of aged mice, whereas the expression of genes involved in regulation of cell proliferation, migration, and tumorigenesis was upregulated. Peripheral thyroid clock genes, particularly Per mRNA and PER2 protein, were downregulated in the thyroid glands of aged mice, and circadian oscillation of these genes was declined. Knockdown of the circadian clock gene PER2 in human thyroid follicular cells induced AP-1 activity via JNK MAPK signaling activation, which increased cell proliferation. Furthermore, the aging-related loss of PER2 circadian oscillation activated the AP-1 transcription factor via the JNK MAPK pathway, which could contribute to thyroid hyperplasia, a common age-related condition.
Collapse
|
8
|
Fan R, Peng X, Xie L, Dong K, Ma D, Xu W, Shi X, Zhang S, Chen J, Yu X, Yang Y. Importance of Bmal1 in Alzheimer's disease and associated aging-related diseases: Mechanisms and interventions. Aging Cell 2022; 21:e13704. [PMID: 36056774 PMCID: PMC9577946 DOI: 10.1111/acel.13704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 01/25/2023] Open
Abstract
With the aging world population, the prevalence of aging-related disorders is on the rise. Diseases such as Alzheimer's, type 2 diabetes mellitus (T2DM), Parkinson's, atherosclerosis, hypertension, and osteoarthritis are age-related, and most of these diseases are comorbidities or risk factors for AD; however, our understandings of molecular events that regulate the occurrence of these diseases are still not fully understood. Brain and muscle Arnt-like protein-1 (Bmal1) is an irreplaceable clock gene that governs multiple important physiological processes. Continuous research of Bmal1 in AD and associated aging-related diseases is ongoing, and this review picks relevant studies on a detailed account of its role and mechanisms in these diseases. Oxidative stress and inflammation turned out to be common mechanisms by which Bmal1 deficiency promotes AD and associated aging-related diseases, and other Bmal1-dependent mechanisms remain to be identified. Promising therapeutic strategies involved in the regulation of Bmal1 are provided, including melatonin, natural compounds, metformin, d-Ser2-oxyntomodulin, and other interventions, such as exercise, time-restricted feeding, and adiponectin. The establishment of the signaling pathway network for Bmal1 in aging-related diseases will lead to advances in the comprehension of the molecular and cellular mechanisms, shedding light on novel treatments for aging-related diseases and promoting aging-associated brain health.
Collapse
Affiliation(s)
- Rongping Fan
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Lei Xie
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Delin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Juan Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Branch of National Clinical Research Center for Metabolic DiseasesWuhanChina
| |
Collapse
|
9
|
Zhang W, Xiong Y, Tao R, Panayi AC, Mi B, Liu G. Emerging Insight Into the Role of Circadian Clock Gene BMAL1 in Cellular Senescence. Front Endocrinol (Lausanne) 2022; 13:915139. [PMID: 35733785 PMCID: PMC9207346 DOI: 10.3389/fendo.2022.915139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Cell senescence is a crucial process in cell fate determination and is involved in an extensive array of aging-associated diseases. General perceptions and experimental evidence point out that the decline of physical function as well as aging-associated diseases are often initiated by cell senescence and organ ageing. Therefore, regulation of cell senescence process can be a promising way to handle aging-associated diseases such as osteoporosis. The circadian clock regulates a wide range of cellular and physiological activities, and many age-linked degenerative disorders are associated with the dysregulation of clock genes. BMAL1 is a core circadian transcription factor and governs downstream genes by binding to the E-box elements in their promoters. Compelling evidence has proposed the role of BMAL1 in cellular senescence and aging-associated diseases. In this review, we summarize the linkage between BMAL1 and factors of cell senescence including oxidative stress, metabolism, and the genotoxic stress response. Dysregulated and dampened BMAL1 may serve as a potential therapeutic target against aging- associated diseases.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
10
|
Furukawa M, Tada H, Wang J, Yamada M, Kurosawa M, Satoh A, Ogiso N, Shikama Y, Matsushita K. Molar loss induces hypothalamic and hippocampal astrogliosis in aged mice. Sci Rep 2022; 12:6409. [PMID: 35437315 PMCID: PMC9016068 DOI: 10.1038/s41598-022-10321-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
Age-related tooth loss impedes mastication. Epidemiological and physiological studies have reported that poor oral hygiene and occlusion are associated with cognitive decline. In the present study, we analyzed the mechanism by which decreased occlusal support following bilateral extraction of the maxillary first molars affects cognitive functions in young and aged mice and examined the expression of brain-function-related genes in the hippocampus and hypothalamus. We observed decreased working memory, enhanced restlessness, and increased nocturnal activity in aged mice with molar extraction compared with that in mice with intact molars. Furthermore, in the hypothalamus and hippocampus of molar-extracted aged mice, the transcript-level expression of Bdnf, Rbfox3, and Fos decreased, while that of Cdkn2a and Aif1 increased. Thus, decreased occlusal support after maxillary first molar extraction may affect cognitive function and activity in mice by influencing aging, neural activity, and neuroinflammation in the hippocampus and hypothalamus.
Collapse
Affiliation(s)
- Masae Furukawa
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan.
| | - Hirobumi Tada
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu, Japan.,Department of Inflammation and Immunosenescence, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Jingshu Wang
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Mitsuyoshi Yamada
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Mie Kurosawa
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Integrative Physiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Noboru Ogiso
- Department of Laboratory of Experimental Animals, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yosuke Shikama
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu, Japan.
| |
Collapse
|
11
|
Zhang C, Tait C, Minacapelli CD, Bhurwal A, Gupta K, Amin R, Rustgi VK. The Role of Race, Sex, and Age in Circadian Disruption and Metabolic Disorders. GASTRO HEP ADVANCES 2022; 1:471-479. [PMID: 39131676 PMCID: PMC11307930 DOI: 10.1016/j.gastha.2022.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 08/13/2024]
Abstract
Circadian rhythms are 24-hour internal biological cycles that play an important role in metabolism, and their disruption has been implicated in the development of diseases such as diabetes mellitus type 2, obesity, coronary artery disease, hypertension, and metabolic syndrome. This phenomenon is illustrated by increased rates of risk factors for cardiovascular disease in night shift workers. Race, sex, and age are factors that play a role in circadian rhythms and metabolic disorders. The focus of this review article is to assess the link between circadian rhythm physiology and metabolic disorders from a race, sex, and age perspective. Black Americans were noted to have shorter free-running circadian periods, or tau, increased cortisol levels, and poorer sleep habits compared to white Americans, possibly contributing to increased rates of obesity, hypertension, and hyperlipidemia. Women were also noted to have shorter tau, increased levels of proinflammatory gut bacteria, and reduced sleep quality compared to men, possibly leading to higher rates of obesity, metabolic syndrome, hypertension (in postmenopausal women), and nonalcoholic fatty liver disease. Older people were noted to have decreased expression of anti-inflammatory clock genes compared to younger people, possibly leading to increased rates of obesity, diabetes, hyperlipidemia, and hypertension. Groups that are at a higher risk for metabolic disorders such as black Americans, women, and the elderly may have internal time keeping systems that place them at a higher risk for developing abnormal hormonal and/or inflammatory pathways.
Collapse
Affiliation(s)
- Clark Zhang
- Department of Internal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Christopher Tait
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Carlos D. Minacapelli
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Abhishek Bhurwal
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Kapil Gupta
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Rajan Amin
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| | - Vinod K. Rustgi
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, New Jersey
| |
Collapse
|
12
|
Liška K, Sládek M, Houdek P, Shrestha N, Lužná V, Ralph MR, Sumová A. High Sensitivity of the Circadian Clock in the Hippocampal Dentate Gyrus to Glucocorticoid- and GSK3-Beta-Dependent Signals. Neuroendocrinology 2022; 112:384-398. [PMID: 34111876 DOI: 10.1159/000517689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022]
Abstract
AIMS Circadian clocks in the hippocampus (HPC) align memory processing with appropriate time of day. Our study was aimed at ascertaining the specificity of glycogen synthase kinase 3-beta (GSK3β)- and glucocorticoid (GC)-dependent pathways in the entrainment of clocks in individual HPC regions, CA1-3, and dentate gyrus (DG). METHODS The role of GCs was addressed in vivo by comparing the effects of adrenalectomy (ADX) and subsequent dexamethasone (DEX) supplementation on clock gene expression profiles (Per1, Per2, Nr1d1, and Bmal1). In vitro the effects of DEX and the GSK3β inhibitor, CHIR-99021, were assessed from recordings of bioluminescence rhythms in HPC organotypic explants of mPER2Luc mice. RESULTS Circadian rhythms of clock gene expression in all HPC regions were abolished by ADX, and DEX injections to the rats rescued those rhythms in DG. The DEX treatment of the HPC explants significantly lengthened periods of the bioluminescence rhythms in all HPC regions with the most significant effect in DG. In contrast to DEX, CHIR-99021 significantly shortened the period of bioluminescence rhythm. Again, the effect was most significant in DG which lacks the endogenously inactivated (phosphorylated) form of GSK3β. Co-treatment of the explants with CHIR-99021 and DEX produced the CHIR-99021 response. Therefore, the GSK3β-mediated pathway had dominant effect on the clocks. CONCLUSION GSK3β- and GC-dependent pathways entrain the clock in individual HPC regions by modulating their periods in an opposite manner. The results provide novel insights into the mechanisms connecting the arousal state-relevant signals with temporal control of HPC-dependent memory and cognitive functions.
Collapse
Affiliation(s)
- Karolína Liška
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Sládek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pavel Houdek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Norzin Shrestha
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vendula Lužná
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin R Ralph
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Alena Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
13
|
Alavi P, Rathod AM, Jahroudi N. Age-Associated Increase in Thrombogenicity and Its Correlation with von Willebrand Factor. J Clin Med 2021; 10:4190. [PMID: 34575297 PMCID: PMC8472522 DOI: 10.3390/jcm10184190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells that cover the lumen of all blood vessels have the inherent capacity to express both pro and anticoagulant molecules. However, under normal physiological condition, they generally function to maintain a non-thrombogenic surface for unobstructed blood flow. In response to injury, certain stimuli, or as a result of dysfunction, endothelial cells release a highly adhesive procoagulant protein, von Willebrand factor (VWF), which plays a central role in formation of platelet aggregates and thrombus generation. Since VWF expression is highly restricted to endothelial cells, regulation of its levels is among the most important functions of endothelial cells for maintaining hemostasis. However, with aging, there is a significant increase in VWF levels, which is concomitant with a significant rise in thrombotic events. It is not yet clear why and how aging results in increased VWF levels. In this review, we have aimed to discuss the age-related increase in VWF, its potential mechanisms, and associated coagulopathies as probable consequences.
Collapse
Affiliation(s)
| | | | - Nadia Jahroudi
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada; (P.A.); (A.M.R.)
| |
Collapse
|
14
|
Implications of Circadian Rhythm in Stroke Occurrence: Certainties and Possibilities. Brain Sci 2021; 11:brainsci11070865. [PMID: 34209758 PMCID: PMC8301898 DOI: 10.3390/brainsci11070865] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Stroke occurrence is not randomly distributed over time but has circadian rhythmicity with the highest frequency of onset in the morning hours. This specific temporal pattern is valid for all subtypes of cerebral infarction and intracerebral hemorrhage. It also correlates with the circadian variation of some exogenous factors such as orthostatic changes, physical activity, sleep-awake cycle, as well as with endogenous factors including dipping patterns of blood pressure, or morning prothrombotic and hypofibrinolytic states with underlying cyclic changes in the autonomous system and humoral activity. Since the internal clock is responsible for these circadian biological changes, its disruption may increase the risk of stroke occurrence and influence neuronal susceptibility to injury and neurorehabilitation. This review aims to summarize the literature data on the circadian variation of cerebrovascular events according to physiological, cellular, and molecular circadian changes, to survey the available information on the chronotherapy and chronoprophylaxis of stroke and its risk factors, as well as to discuss the less reviewed impact of the circadian rhythm in stroke onset on patient outcome and functional status after stroke.
Collapse
|
15
|
Buijink MR, Michel S. A multi-level assessment of the bidirectional relationship between aging and the circadian clock. J Neurochem 2021; 157:73-94. [PMID: 33370457 PMCID: PMC8048448 DOI: 10.1111/jnc.15286] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
The daily temporal order of physiological processes and behavior contribute to the wellbeing of many organisms including humans. The central circadian clock, which coordinates the timing within our body, is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Like in other parts of the brain, aging impairs the SCN function, which in turn promotes the development and progression of aging-related diseases. We here review the impact of aging on the different levels of the circadian clock machinery-from molecules to organs-with a focus on the role of the SCN. We find that the molecular clock is less effected by aging compared to other cellular components of the clock. Proper rhythmic regulation of intracellular signaling, ion channels and neuronal excitability of SCN neurons are greatly disturbed in aging. This suggests a disconnection between the molecular clock and the electrophysiology of these cells. The neuronal network of the SCN is able to compensate for some of these cellular deficits. However, it still results in a clear reduction in the amplitude of the SCN electrical rhythm, suggesting a weakening of the output timing signal. Consequently, other brain areas and organs not only show aging-related deficits in their own local clocks, but also receive a weaker systemic timing signal. The negative spiral completes with the weakening of positive feedback from the periphery to the SCN. Consequently, chronotherapeutic interventions should aim at strengthening overall synchrony in the circadian system using life-style and/or pharmacological approaches.
Collapse
Affiliation(s)
- M. Renate Buijink
- Department of Cellular and Chemical BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Stephan Michel
- Department of Cellular and Chemical BiologyLaboratory for NeurophysiologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
16
|
Carter B, Justin HS, Gulick D, Gamsby JJ. The Molecular Clock and Neurodegenerative Disease: A Stressful Time. Front Mol Biosci 2021; 8:644747. [PMID: 33889597 PMCID: PMC8056266 DOI: 10.3389/fmolb.2021.644747] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Circadian rhythm dysfunction occurs in both common and rare neurodegenerative diseases. This dysfunction manifests as sleep cycle mistiming, alterations in body temperature rhythms, and an increase in symptomatology during the early evening hours known as Sundown Syndrome. Disruption of circadian rhythm homeostasis has also been implicated in the etiology of neurodegenerative disease. Indeed, individuals exposed to a shifting schedule of sleep and activity, such as health care workers, are at a higher risk. Thus, a bidirectional relationship exists between the circadian system and neurodegeneration. At the heart of this crosstalk is the molecular circadian clock, which functions to regulate circadian rhythm homeostasis. Over the past decade, this connection has become a focal point of investigation as the molecular clock offers an attractive target to combat both neurodegenerative disease pathogenesis and circadian rhythm dysfunction, and a pivotal role for neuroinflammation and stress has been established. This review summarizes the contributions of molecular clock dysfunction to neurodegenerative disease etiology, as well as the mechanisms by which neurodegenerative diseases affect the molecular clock.
Collapse
Affiliation(s)
- Bethany Carter
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States
| | - Hannah S Justin
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States
| | - Danielle Gulick
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Joshua J Gamsby
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
17
|
Cai ZJ. Hypothalamic aging and hormones. VITAMINS AND HORMONES 2021; 115:15-37. [PMID: 33706947 DOI: 10.1016/bs.vh.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
It is the heterogeneous changes of hypothalamic functions that determine the chronological sequence of aging in mammals. Recently, it was hypothesized by Cai the decrease in slow-wave sleep (SWS) resulting from skin aging as responsible for the degeneration of hypothalamic suprachiasmatic nucleus (SCN). It was soon hypothesized by the European people in television that the increase in body fat as responsible for the degeneration of male preoptic sexually dimorphic nucleus (SDN-POA), via the aromatase converting testosterone to estradiol as proposed by Cohen. It is the hypothalamic paraventricular nucleus (PVN) that remains unchanged in neuron number during aging for psychological stress. In this chapter, it is briefly reviewed more manifestations of hypothalamic related mammalian aging processes, including (1) the aging of ovary by lipid, estradiol and hypothalamus; (2) the aging of muscle, stomach, intestine, thymus, and the later aging of brain, regulated by growth hormone/insulin-like growth factor 1(GH/IGF1); (3) the cardiovascular hypertension from PVN activation, the bone and other peripheral aging by psychological stress, and that of kidney by vasopressin. It is classified these aging processes by the primary regulation from one of the three hypothalamic nuclei, although still necessary to investigate and supplement their secondary regulation by the hypothalamic nuclei in future. It is the hypothalamic structural changes that shift the functional balance among these three hypothalamic systems toward aging.
Collapse
Affiliation(s)
- Zi-Jian Cai
- CaiFortune Consulting, Suzhou, Jiangsu, PR China.
| |
Collapse
|
18
|
Abstract
Melanopsin retinal ganglion cells (mRGCs) are the third class of retinal photoreceptors with unique anatomical, electrophysiological, and biological features. There are different mRGC subtypes with differential projections to the brain. These cells contribute to many nonimage-forming functions of the eye, the most relevant being the photoentrainment of circadian rhythms through the projections to the suprachiasmatic nucleus of the hypothalamus. Other relevant biological functions include the regulation of the pupillary light reflex, mood, alertness, and sleep, as well as a possible role in formed vision. The relevance of the mRGC-related pathways in the brain is highlighted by the role that the dysfunction and/or loss of these cells may play in affecting circadian rhythms and sleep in many neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease and in aging. Moreover, the occurrence of circadian dysfunction is a known risk factor for dementia. In this chapter, the anatomy, physiology, and functions of these cells as well as their resistance to neurodegeneration in mitochondrial optic neuropathies or their predilection to be lost in other neurodegenerative disorders will be discussed.
Collapse
|
19
|
Li Y, Li G, Li J, Cai X, Sun Y, Zhang B, Zhao H. Depression-like behavior is associated with lower Per2 mRNA expression in the lateral habenula of rats. GENES BRAIN AND BEHAVIOR 2020; 20:e12702. [PMID: 32964673 DOI: 10.1111/gbb.12702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 12/22/2022]
Abstract
Circadian rhythm dysfunction is primary symptom of depression and is closely related to depression onset. The role of the lateral habenula (LHb) of the thalamus in the pathogenesis of depression has been a research topic of great interest. The neuronal activity of this structure has circadian characteristics, which are related to the regulation of circadian rhythms. However, in depression model of rats, the role of clock genes in the LHb has not been assessed. To address this gap, we used a clomipramine (CLI) injection-induced depression model in rats to assess the daily expression of rhythmic genes in the LHb and depression-like behavior in rats at multiple time points. In determining the role of the Per2 gene in the development of depression-like behavior in the LHb, we found that the expression of this clock gene differed in a circadian manner. Per2 expression was also significantly decreased in CLI-treated rats in late afternoon (17:00) and in the middle of the night (1:00). Furthermore, silencing Per2 in the LHb of normal rats induced depression-like behavior at night, suggesting that Per2 may play an important role in the pathogenesis of depression. Collectively, these results indicate that decreased Per2 expression in the LHb may be related to increased depression-like behavior at night in depression model of rats.
Collapse
Affiliation(s)
- Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Guangjian Li
- Department of Neurology and Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Jicheng Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuewei Cai
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanfei Sun
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Beilin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China.,Department of Neurology and Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Hartsock MJ, Spencer RL. Memory and the circadian system: Identifying candidate mechanisms by which local clocks in the brain may regulate synaptic plasticity. Neurosci Biobehav Rev 2020; 118:134-162. [PMID: 32712278 DOI: 10.1016/j.neubiorev.2020.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
The circadian system is an endogenous biological network responsible for coordinating near-24-h cycles in behavior and physiology with daily timing cues from the external environment. In this review, we explore how the circadian system regulates memory formation, retention, and recall. Circadian rhythms in these memory processes may arise through several endogenous pathways, and recent work highlights the importance of genetic timekeepers found locally within tissues, called local clocks. We evaluate the circadian memory literature for evidence of local clock involvement in memory, identifying potential nodes for direct interactions between local clock components and mechanisms of synaptic plasticity. Our discussion illustrates how local clocks may pervasively modulate neuronal plastic capacity, a phenomenon that we designate here as circadian metaplasticity. We suggest that this function of local clocks supports the temporal optimization of memory processes, illuminating the potential for circadian therapeutic strategies in the prevention and treatment of memory impairment.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| |
Collapse
|
21
|
Kukkemane K, Jagota A. Therapeutic effects of hydro-alcoholic leaf extract of Withania somnifera on age-induced changes in daily rhythms of Sirt1, Nrf2 and Rev-erbα in the SCN of male Wistar rats. Biogerontology 2020; 21:593-607. [PMID: 32249404 DOI: 10.1007/s10522-020-09875-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/30/2020] [Indexed: 12/23/2022]
Abstract
The temporal expression pattern of the circadian clock genes are known to be altered/attenuated with advance in age. Withania somnifera (WS) essentially consists of numerous active constituents including withanolides is known to have antioxidant, anti-inflammatory and adaptogenic properties. We have earlier demonstrated therapeutic effects of hydro-alcoholic leaf extract of WS on the age-induced alterations in the levels and daily rhythms of various clock genes such as rBmal1, rPer1, rPer2 and rCry1. We have now studied effects of hydro-alcoholic leaf extract of WS on the age-induced alterations in the levels and daily rhythms of expression of SIRT1 (an NAD+ dependent histone deacetylase and a modulator of clock) and NRF2 (a clock controlled gene and a master transcription factor regulating various endogenous antioxidant enzymes) in addition to rRev-erbα in SCN of adult [3 months (m)], middle-aged (12 m) and old-aged (24 m) male Wistar rats. The daily rhythms of rNrf2 expression showed 6 h phase delay in middle age and 12 h phase advance in old age. WS restored rSirt1 daily rhythms and phase in old age whereas it restored the phase of rNrf2 in the SCN of both middle and old aged animals. At protein level, SIRT1 expression showed phase advances in 12 m and 24 m whereas NRF2 daily rhythms were abolished in both the age groups. WS restored the phase and daily rhythms of SIRT1 as well as NRF2 in 12 m old rats. However, rRev-erbα expression was found insensitive to WS treatment in all the age groups studied. Pairwise correlation analysis demonstrated significant stoichiometric interactions among rSirt1, rNrf2 and rRev-erbα in 3 m which altered with aging significantly. WS treatment resulted in differential restorations of such interactions.
Collapse
Affiliation(s)
- Kowshik Kukkemane
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Anita Jagota
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
22
|
Ali AAH, Tundo-Lavalle F, Hassan SA, Pfeffer M, Stahr A, von Gall C. Impact of Targeted Deletion of the Circadian Clock Gene Bmal1 in Excitatory Forebrain Neurons on Adult Neurogenesis and Olfactory Function. Int J Mol Sci 2020; 21:E1394. [PMID: 32092990 PMCID: PMC7073072 DOI: 10.3390/ijms21041394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
The circadian system is an endogenous timekeeping system that synchronizes physiology and behavior with the 24 h solar day. Mice with total deletion of the core circadian clock gene Bmal1 show circadian arrhythmicity, cognitive deficits, and accelerated age-dependent decline in adult neurogenesis as a consequence of increased oxidative stress. However, it is not yet known if the impaired adult neurogenesis is due to circadian disruption or to loss of the Bmal1 gene function. Therefore, we investigated oxidative stress and adult neurogenesis of the two principle neurogenic niches, the hippocampal subgranular zone and the subventricular zone in mice with a forebrain specific deletion of Bmal1 (Bmal1 fKO), which show regular circadian rhythmicity. Moreover, we analyzed the morphology of the olfactory bulb, as well as olfactory function in Bmal1 fKO mice. In Bmal1 fKO mice, oxidative stress was increased in subregions of the hippocampus and the olfactory bulb but not in the neurogenic niches. Consistently, adult neurogenesis was not affected in Bmal1 fKO mice. Although Reelin expression in the olfactory bulb was higher in Bmal1 fKO mice as compared to wildtype mice (Bmal1 WT), the olfactory function was not affected. Taken together, the targeted deletion of Bmal1 in mouse forebrain neurons is associated with a regional increase in oxidative stress and increased Reelin expression in the olfactory bulb but does not affect adult neurogenesis or olfactory function.
Collapse
Affiliation(s)
- Amira A. H. Ali
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Merowinger Platz 1a, 40225 Düsseldorf, Germany; (A.A.H.A.); (F.T.-L.); (S.A.H.); (M.P.); (A.S.)
| | - Federica Tundo-Lavalle
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Merowinger Platz 1a, 40225 Düsseldorf, Germany; (A.A.H.A.); (F.T.-L.); (S.A.H.); (M.P.); (A.S.)
| | - Soha A. Hassan
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Merowinger Platz 1a, 40225 Düsseldorf, Germany; (A.A.H.A.); (F.T.-L.); (S.A.H.); (M.P.); (A.S.)
- Zoology Department, Faculty of Science, Suez University, Suez 43111, Egypt
| | - Martina Pfeffer
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Merowinger Platz 1a, 40225 Düsseldorf, Germany; (A.A.H.A.); (F.T.-L.); (S.A.H.); (M.P.); (A.S.)
| | - Anna Stahr
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Merowinger Platz 1a, 40225 Düsseldorf, Germany; (A.A.H.A.); (F.T.-L.); (S.A.H.); (M.P.); (A.S.)
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Merowinger Platz 1a, 40225 Düsseldorf, Germany; (A.A.H.A.); (F.T.-L.); (S.A.H.); (M.P.); (A.S.)
| |
Collapse
|
23
|
De Nobrega AK, Luz KV, Lyons LC. Resetting the Aging Clock: Implications for Managing Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:193-265. [PMID: 32304036 DOI: 10.1007/978-3-030-42667-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, individuals are living longer due to medical and scientific advances, increased availability of medical care and changes in public health policies. Consequently, increasing attention has been focused on managing chronic conditions and age-related diseases to ensure healthy aging. The endogenous circadian system regulates molecular, physiological and behavioral rhythms orchestrating functional coordination and processes across tissues and organs. Circadian disruption or desynchronization of circadian oscillators increases disease risk and appears to accelerate aging. Reciprocally, aging weakens circadian function aggravating age-related diseases and pathologies. In this review, we summarize the molecular composition and structural organization of the circadian system in mammals and humans, and evaluate the technological and societal factors contributing to the increasing incidence of circadian disorders. Furthermore, we discuss the adverse effects of circadian dysfunction on aging and longevity and the bidirectional interactions through which aging affects circadian function using examples from mammalian research models and humans. Additionally, we review promising methods for managing healthy aging through behavioral and pharmacological reinforcement of the circadian system. Understanding age-related changes in the circadian clock and minimizing circadian dysfunction may be crucial components to promote healthy aging.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kristine V Luz
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
24
|
De Nobrega AK, Lyons LC. Aging and the clock: Perspective from flies to humans. Eur J Neurosci 2020; 51:454-481. [PMID: 30269400 PMCID: PMC6441388 DOI: 10.1111/ejn.14176] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
Endogenous circadian oscillators regulate molecular, cellular and physiological rhythms, synchronizing tissues and organ function to coordinate activity and metabolism with environmental cycles. The technological nature of modern society with round-the-clock work schedules and heavy reliance on personal electronics has precipitated a striking increase in the incidence of circadian and sleep disorders. Circadian dysfunction contributes to an increased risk for many diseases and appears to have adverse effects on aging and longevity in animal models. From invertebrate organisms to humans, the function and synchronization of the circadian system weakens with age aggravating the age-related disorders and pathologies. In this review, we highlight the impacts of circadian dysfunction on aging and longevity and the reciprocal effects of aging on circadian function with examples from Drosophila to humans underscoring the highly conserved nature of these interactions. Additionally, we review the potential for using reinforcement of the circadian system to promote healthy aging and mitigate age-related pathologies. Advancements in medicine and public health have significantly increased human life span in the past century. With the demographics of countries worldwide shifting to an older population, there is a critical need to understand the factors that shape healthy aging. Drosophila melanogaster, as a model for aging and circadian interactions, has the capacity to facilitate the rapid advancement of research in this area and provide mechanistic insights for targeted investigations in mammals.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
25
|
Yin W, Borniger JC, Wang X, Maguire SM, Munselle ML, Bezner KS, Tesfamariam HM, Garcia AN, Hofmann HA, Nelson RJ, Gore AC. Estradiol treatment improves biological rhythms in a preclinical rat model of menopause. Neurobiol Aging 2019; 83:1-10. [PMID: 31585360 DOI: 10.1016/j.neurobiolaging.2019.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 01/14/2023]
Abstract
The perimenopausal transition at middle age is often associated with hot flashes and sleep disruptions, metabolic changes, and other symptoms. Whereas the mechanisms for these processes are incompletely understood, both aging (AG) and a loss of ovarian estrogens play contributing roles. Furthermore, the timing of when estradiol (E) treatment should commence and for how long are key clinical questions in the management of symptoms. Using a rat model of surgical menopause, we determined the effects of regimens of E treatment with differing time at onset and duration of treatment on diurnal rhythms of activity and core temperature and on food intake and body weight. Reproductively mature (MAT, ∼4 months) or AG (∼11 months) female rats were ovariectomized, implanted intraperitoneally with a telemetry device, and given either a vehicle (V) or E subcutaneous capsule implantation. Rats were remotely recorded for 10 days per month for 3 (MAT) or 6 (AG) months. To ascertain whether delayed onset of treatment affected rhythms, a subset of AG-V rats had their capsules switched to E at the end of 3 months. Another set of AG-E rats had their capsules removed at 3 months to determine whether beneficial effects of E would persist. Overall, activity and temperature mesor, robustness, and amplitude declined with AG. Compared to V treatment, E-treated rats showed (1) better maintenance of body weight and food intake; (2) higher, more consolidated activity and temperature rhythms; and (3) higher activity and temperature robustness and amplitude. In the AG arm of the study, switching treatment from V to E or E to V quickly reversed these patterns. Thus, the presence of E was the dominant factor in determining stability and amplitude of locomotor activity and temperature rhythms. As a whole, the results show benefits of E treatment, even with a delay, on biological rhythms and physiological functions.
Collapse
Affiliation(s)
- Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Jeremy C Borniger
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Xutong Wang
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sean M Maguire
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Mercedes L Munselle
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Kelsey S Bezner
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Haben M Tesfamariam
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Alexandra N Garcia
- Psychology Department, The University of Texas at Austin, Austin, TX, USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Psychology Department, The University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
26
|
Duncan MJ. Interacting influences of aging and Alzheimer's disease on circadian rhythms. Eur J Neurosci 2019; 51:310-325. [DOI: 10.1111/ejn.14358] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Marilyn J. Duncan
- Department of NeuroscienceUniversity of Kentucky Medical School Lexington Kentucky
| |
Collapse
|
27
|
Therapeutic effects of curcumin on age-induced alterations in daily rhythms of clock genes and Sirt1 expression in the SCN of male Wistar rats. Biogerontology 2019; 20:405-419. [DOI: 10.1007/s10522-018-09794-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
|
28
|
Shimozaki K. Involvement of Nuclear Receptor REV-ERBβ in Formation of Neurites and Proliferation of Cultured Adult Neural Stem Cells. Cell Mol Neurobiol 2018; 38:1051-1065. [PMID: 29397477 PMCID: PMC11481963 DOI: 10.1007/s10571-018-0576-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/27/2018] [Indexed: 01/05/2023]
Abstract
Neural stem cells (NSCs) serve as the source of both neurons and support cells, and neurogenesis is reportedly linked to the circadian clock. This study aimed to clarify the functional role of the circadian rhythm-related nuclear receptor, REV-ERBβ, in neurogenesis of NSCs from adult brain. Accordingly, Rev-erbβ expression and the effect of Rev-erbβ gene-specific knockdown on neurogenesis in vitro was examined in adult rodent NSCs. Initial experiments confirmed REV-ERBβ expression in cultured adult NSCs, while subsequent gene expression and gene ontogeny analyses identified functional genes upregulated or downregulated by REV-ERBβ. In particular, expression levels of factors associated with proliferation, stemness, and neural differentiation were affected. Knockdown of Rev-erbβ showed involvement of REV-ERBβ in regulation of cellular proliferation and self-renewal of cultured adult NSCs. Moreover, Rev-erbβ-knockdown cells formed neurons with a slightly shrunken morphology, fewer new primary neurites, and reduced length and branch formation of neurites. Altogether, this suggests that REV-ERBβ is involved in neurite formation during neuronal differentiation of cultured adult NSCs. In summary, REV-ERBβ is a known circadian regulatory protein that appears to be involved in neurogenesis via regulation of networks for cell proliferation and neural differentiation/maturation in adult NSCs.
Collapse
Affiliation(s)
- Koji Shimozaki
- Division of Functional Genomics, Life Science Support Center, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
29
|
Draijer S, Chaves I, Hoekman MFM. The circadian clock in adult neural stem cell maintenance. Prog Neurobiol 2018; 173:41-53. [PMID: 29886147 DOI: 10.1016/j.pneurobio.2018.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022]
Abstract
Neural stem cells persist in the adult central nervous system as a continuing source of astrocytes, oligodendrocytes and neurons. Various signalling pathways and transcription factors actively maintain this population by regulating cell cycle entry and exit. Similarly, the circadian clock is interconnected with the cell cycle and actively maintains stem cell populations in various tissues. Here, we discuss emerging evidence for an important role of the circadian clock in neural stem cell maintenance. We propose that the NAD+-dependent deacetylase SIRT1 exerts control over the circadian clock in adult neural stem cell function to limit exhaustion of their population. Conversely, disruption of the circadian clock may compromise neural stem cell quiescence resulting in a premature decline of the neural stem cell population. As such, energy metabolism and the circadian clock converge in adult neural stem cell maintenance.
Collapse
Affiliation(s)
- Swip Draijer
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Inês Chaves
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Marco F M Hoekman
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Sun H, Zhang Y, Shi Y, Li Y, Li W, Wang Z. Evolution of the CLOCK and BMAL1 genes in a subterranean rodent species (Lasiopodomys mandarinus). Int J Biol Macromol 2018; 109:932-940. [DOI: 10.1016/j.ijbiomac.2017.11.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 12/01/2022]
|
31
|
Lacoste MG, Ponce IT, Golini RL, Delgado SM, Anzulovich AC. Aging modifies daily variation of antioxidant enzymes and oxidative status in the hippocampus. Exp Gerontol 2016; 88:42-50. [PMID: 27940169 DOI: 10.1016/j.exger.2016.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Aging is a complex and multifactorial biological process that leads to the progressive deterioration of physiological systems, including the circadian system. In addition, oxidative stress has been associated with the aging of the normal brain and the development of late-onset neurodegenerative diseases. Even though, functional weakening of circadian rhythms and antioxidant function has been observed during aging, the mechanisms by which the circadian system signaling and oxidative stress are interrelated have not yet been elucidated. The objectives of this study were to evaluate the consequences of aging on the temporal organization of the antioxidant defense system and oxidative status as well as to analyze the endogenous clock activity, in the hippocampus of aged rats. METHODS Young adults (3-month-old) or older (22-month-old) male Holtzman rats were maintained under constant darkness conditions, during 15days before the sacrifice. Levels of catalase (CAT) and glutathione peroxidase (GPx) mRNA and activity, reduced glutathione (GSH), lipoperoxidation (LPO) and BMAL1 protein were analyzed in hippocampus samples isolated every 4h during a 24-h period. Locomotor activity was recorded during 20days before the experiment. RESULTS Our results show that aging modifies temporal patterns of CAT and GPx expression and activity in the hippocampus in a different way. On the one hand, it abolishes the oscillating CAT expression and specific enzymatic activity while, on the other, it increases the mesor of circadian GPx activity rhythm (p<0.01). Additionally, we observed increased GSH (p<0.05) and reduced LPO (p<0.01) levels in the hippocampus of aged rats. Moreover, the nocturnal locomotor activity was reduced in the older animals in comparison to the young adult rats (p<0.01). Interestingly, the 22month-old animals became arrhythmic and showed a marked fragmentation as well as a significant decline in daily locomotor activity when they were maintained under constant darkness conditions (p<0.05). Aging also abolished circadian rhythms of the core clock BMAL1 protein. CONCLUSION The loss of temporal organization of the antioxidant enzymes activity, the oxidative status and the cellular clock machinery could result in a temporally altered antioxidant defense system in the aging brain. Learning about how aging affects the circadian system and the expression of genes involved in the antioxidant defense system could contribute to the design of new strategies to improve the quality of life of older people and also to promote a healthy aging.
Collapse
Affiliation(s)
- María Gabriela Lacoste
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Science and Technology (CONICET), National University of San Luis (UNSL), Ejército de los Andes 950, D5700HHW San Luis, Argentina.
| | - Ivana Tamara Ponce
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Science and Technology (CONICET), National University of San Luis (UNSL), Ejército de los Andes 950, D5700HHW San Luis, Argentina
| | - Rebeca Laura Golini
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Science and Technology (CONICET), National University of San Luis (UNSL), Ejército de los Andes 950, D5700HHW San Luis, Argentina
| | - Silvia Marcela Delgado
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Science and Technology (CONICET), National University of San Luis (UNSL), Ejército de los Andes 950, D5700HHW San Luis, Argentina; Laboratory of Biology Reproduction, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Ejército de los Andes 950, D5700HHW San Luis, Argentina
| | - Ana Cecilia Anzulovich
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Science and Technology (CONICET), National University of San Luis (UNSL), Ejército de los Andes 950, D5700HHW San Luis, Argentina
| |
Collapse
|
32
|
A hypothetic aging pathway from skin to hypothalamic suprachiasmatic nucleus via slow wave sleep. ACTA ACUST UNITED AC 2016; 9:212-215. [PMID: 28123663 PMCID: PMC5241610 DOI: 10.1016/j.slsci.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/05/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022]
Abstract
Many observations have demonstrated that the hypothalamic neuroendocrine change determines the chronological sequence of aging in mammals. However, it remains uncertain on the mechanism to account for the hypothalamic aging manifestations. In this article, it is pointed out that, as constantly exposed to sunshine and oxygen, the skin would undergo both telomere-shortening and oxidative senescent processes. The senescent alterations of skin, such as attenuation in electrodermal activities, would in turn reduce the emotional responses and memories. Whereas previously I demonstrated that the slow wave sleep just functioned to adjust the emotional balance disrupted by accumulated emotional memories, especially capable of ameliorating the symptoms of depressed patients. Therefore, the reduction in emotional responses and memories from skin senescence would reduce the requirement for slow wave sleep in many senescent observations. The decrement in slow wave sleep would in further cause functional but not chronological degeneration of suprachiasmatic nucleus rather than paraventricular nucleus in hypothalamus. In these respects, from skin senescence to slow wave sleep, there forms a new degenerative aging pathway able to account for the hypothalamic chronological sequence of aging, specifically addressed to the suprachiasmatic nucleus.
Collapse
|
33
|
Fatoorechi V, Rismanchi M, Nasrollahzadeh J. Effects of Persian leek (Allium ampeloprasum) on hepatic lipids and the expression of proinflammatory gene in hamsters fed a high-fat/ high-cholesterol diet. AVICENNA JOURNAL OF PHYTOMEDICINE 2016; 6:418-24. [PMID: 27516982 PMCID: PMC4967837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Persian leek is one of the most widely used herbal foods among Iranians. In this study, effects of oral administration of Persian leek on plasma and liver lipids were examined in hamster. MATERIALS AND METHODS Male Syrian hamsters were randomly divided into three groups: control (standard diet), high fat control (high-fat/high-cholesterol diet), Persian leek (high-fat/high-cholesterol diet + 1% per weight of diet from dried powdered Persian leek) for 14 weeks. RESULTS High fat diet increased plasma and liver lipids as compared to standard diet. Adding Persian leek to the high-fat/high-cholesterol diet resulted in no significant changes in the concentration of the plasma lipids or liver cholesterol. However, liver triglycerides (TG), plasma Alanine aminotransferase and gene expression of tumor necrosis factor- α were decreased in hamsters fed high-fat diet containing Persian leek as compared to high-fat diet only. CONCLUSION Persian leek might be considered as a herbal food that can reduce liver TG accumulation induced by high fat diets.
Collapse
Affiliation(s)
- Vahideh Fatoorechi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Rismanchi
- Faculty of Nutrition Sciences and Food Technology, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - Javad Nasrollahzadeh
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Department of Clinical Nutrition & Dietetics, ShahidBeheshti University of Medical Sciences, Tehran, Iran,Corresponding Author: Tel: 982122357483, Fax: +982122360660,
| |
Collapse
|
34
|
Gubin DG, Weinert D. Temporal order deterioration and circadian disruption with age 1. Central and peripheral mechanisms. ADVANCES IN GERONTOLOGY 2015; 5:209-218. [DOI: 10.1134/s2079057015040086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
35
|
Popa-Wagner A, Buga AM, Dumitrascu DI, Uzoni A, Thome J, Coogan AN. How does healthy aging impact on the circadian clock? J Neural Transm (Vienna) 2015; 124:89-97. [PMID: 26175004 DOI: 10.1007/s00702-015-1424-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022]
Abstract
Circadian rhythms are recurring patterns in a host of physiological and other parameters that recur with periods of near 24 h. These rhythms reflect the temporal organization of an organism's homeostatic control systems and as such are key processes in ensuring optimal physiological performance. Dysfunction of circadian processes is linked with adverse health conditions. In this review we highlight the evidence that normal, healthy aging is associated with changes in the circadian system; we examine the molecular mechanisms through which such changes may arise, discuss whether more robust circadian function is a predictor of longevity and highlight the role of circadian rhythms in age-related diseases. Overall, the literature shows that aging is associated with marked changes in circadian processes, both at the behavioral and molecular levels, and the molecular mechanisms through which such changes arise remain to be elucidated, but may involve inflammatory process, redox homeostasis and epigenetic modifications. Understanding the nature of age-related circadian dysfunction will allow for the design of chronotherapeutic intervention strategies to attenuate circadian dysfunction and thus improve health and quality of life.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Department of Psychiatry, University of Medicine Rostock, Gehlsheimerstr. 20, 18147, Rostock, Germany.
| | - Ana-Maria Buga
- Department of Functional Sciences, Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Dinu Iuliu Dumitrascu
- Department of Anatomy and Embryology, UMF "Iuliu Hatieganu" Cluj, Cluj-Napoca, Romania
| | - Adriana Uzoni
- Department of Psychiatry, University of Medicine Rostock, Gehlsheimerstr. 20, 18147, Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry, University of Medicine Rostock, Gehlsheimerstr. 20, 18147, Rostock, Germany
| | - Andrew N Coogan
- Maynooth University Department of Psychology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
36
|
Ali AAH, Schwarz‐Herzke B, Stahr A, Prozorovski T, Aktas O, von Gall C. Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice. Aging (Albany NY) 2015; 7:435-49. [PMID: 26142744 PMCID: PMC4505169 DOI: 10.18632/aging.100764] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/20/2015] [Indexed: 04/15/2023]
Abstract
Hippocampal neurogenesis undergoes dramatic age-related changes. Mice with targeted deletion of the clock geneBmal1 (Bmal1(-/-)) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1(-/-) mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1(-/-) mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70 kDa and expression of the cell cycle inhibitor p21(Waf1/CIP1) were increased in adult Bmal1(-/-) mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age-dependent decline in adult neurogenesis presumably as a consequence of oxidative stress.
Collapse
Affiliation(s)
- Amira A. H. Ali
- Institute for Anatomy II, Medical Faculty, Heinrich Heine University, D‐40225, Düsseldorf, Germany
| | - Beryl Schwarz‐Herzke
- Institute for Anatomy II, Medical Faculty, Heinrich Heine University, D‐40225, Düsseldorf, Germany
| | - Anna Stahr
- Institute for Anatomy II, Medical Faculty, Heinrich Heine University, D‐40225, Düsseldorf, Germany
| | - Timour Prozorovski
- Department of Neurology, Medical Faculty, Heinrich Heine University, D‐40225 Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University, D‐40225 Düsseldorf, Germany
| | - Charlotte von Gall
- Institute for Anatomy II, Medical Faculty, Heinrich Heine University, D‐40225, Düsseldorf, Germany
| |
Collapse
|
37
|
Abstract
The main Zeitgeber, the day-night cycle, synchronizes the central oscillator which determines behaviors rhythms as sleep-wake behavior, body temperature, the regulation of hormone secretion, and the acquisition and processing of memory. Thus, actions such as acquisition, consolidation, and retrieval performed in the hippocampus are modulated by the circadian system and show a varied dependence on light and dark. To investigate changes in the hippocampus' cellular mechanism invoked by the day and night in a diurnal primate, this study analyzed the expression of PER2 and the calcium binding proteins (CaBPs) calbindin, calretinin and parvalbumin in the hippocampus of Sapajus apella, a diurnal primate, at two different time points, one during the day and one during the dark phase. The PER2 protein expression peaked at night in the antiphase described for the suprachiasmatic nucleus (SCN) of the same primate, indicating that hippocampal cells can present independent rhythmicity. This hippocampal rhythm was similar to that presented by diurnal but not nocturnal rodents. The CaBPs immunoreactivity also showed day/night variations in the cell number and in the cell morphology. Our findings provide evidence for the claim that the circadian regulation in the hippocampus may involve rhythms of PER2 and CaBPs expression that may contribute to the adaptation of this species in events and activities relevant to the respective periods.
Collapse
|
38
|
Martin-Fairey CA, Ramanathan C, Stowie A, Walaszczyk E, Smale L, Nunez AA. Plastic oscillators and fixed rhythms: changes in the phase of clock-gene rhythms in the PVN are not reflected in the phase of the melatonin rhythm of grass rats. Neuroscience 2015; 288:178-86. [PMID: 25575946 PMCID: PMC4323925 DOI: 10.1016/j.neuroscience.2014.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/31/2022]
Abstract
The same clock-genes, including Period (PER) 1 and 2, that show rhythmic expression in the suprachiasmatic nucleus (SCN) are also rhythmically expressed in other brain regions that serve as extra-SCN oscillators. Outside the hypothalamus, the phase of these extra-SCN oscillators appears to be reversed when diurnal and nocturnal mammals are compared. Based on mRNA data, PER1 protein is expected to peak in the late night in the paraventricular nucleus of the hypothalamus (PVN) of nocturnal laboratory rats, but comparable data are not available for a diurnal species. Here we use the diurnal grass rat (Arvicanthis niloticus) to describe rhythms of PER1 and 2 proteins in the PVN of animals that either show the species-typical day-active (DA) profile, or that adopt a night-active (NA) profile when given access to running wheels. For DA animals housed with or without wheels, significant rhythms of PER1 or PER2 protein expression featured peaks in the late morning; NA animals showed patterns similar to those expected from nocturnal laboratory rats. Since the PVN is part of the circuit that controls pineal rhythms, we also measured circulating levels of melatonin during the day and night in DA animals with and without wheels and in NA wheel runners. All three groups showed elevated levels of melatonin at night, with higher levels during both the day and night being associated with the levels of activity displayed by each group. The differential phase of rhythms in the clock-gene protein in the PVN of diurnal and nocturnal animals presents a possible mechanism for explaining species differences in the phase of autonomic rhythms controlled, in part, by the PVN. The present study suggests that the phase of the oscillator of the PVN does not determine that of the melatonin rhythm in diurnal and nocturnal species or in diurnal and nocturnal chronotypes within a species.
Collapse
Affiliation(s)
- C A Martin-Fairey
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - C Ramanathan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - A Stowie
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - E Walaszczyk
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA.
| | - L Smale
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | - A A Nunez
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
39
|
Martin-Fairey CA, Nunez AA. Circadian modulation of memory and plasticity gene products in a diurnal species. Brain Res 2014; 1581:30-9. [PMID: 25063362 PMCID: PMC4157103 DOI: 10.1016/j.brainres.2014.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/30/2023]
Abstract
Cognition is modulated by circadian rhythms, in both nocturnal and diurnal species. Rhythms of clock gene expression occur in brain regions that are outside the master circadian oscillator of the suprachiasmatic nucleus and that control cognitive functions, perhaps by regulating the expression neural-plasticity genes such as brain derived neurotrophic factor (BDNF) and its high affinity receptor, tyrosine kinase B (TrkB). In the diurnal grass rat (Arvicanthis niloticus), the hippocampus shows rhythms of clock genes that are 180° out of phase with those of nocturnal rodents. Here, we examined the hypothesis that this reversal extends to the optimal phase for learning a hippocampal-dependent task and to the phase of hippocampal rhythms in BDNF/TrkB expression. We used the Morris water maze (MWM) to test for time of day differences in reference memory and monitored daily patterns of hippocampal BDNF/TrkB expression in grass rats. Grass rats showed superior long-term retention of the MWM, when the training and testing occurred during the day as compared to the night, at a time when nocturnal laboratory rats show superior retention; acquisition of the MWM was not affected by time of day. BDNF/TrkB expression was rhythmic in the hippocampus of grass rats, and the phase of the rhythms was reversed compared to that of nocturnal rodents. Our findings provide correlational evidence for the claim that the circadian regulation of cognition may involve rhythms of BDNF/TrkB expression in the hippocampus and that their phase may contribute to species differences in the optimal phase for learning.
Collapse
Affiliation(s)
| | - Antonio A Nunez
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
40
|
Smarr BL, Jennings KJ, Driscoll JR, Kriegsfeld LJ. A time to remember: the role of circadian clocks in learning and memory. Behav Neurosci 2014; 128:283-303. [PMID: 24708297 PMCID: PMC4385793 DOI: 10.1037/a0035963] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The circadian system has pronounced influence on learning and memory, manifesting as marked changes in memory acquisition and recall across the day. From a mechanistic perspective, the majority of studies have investigated mammalian hippocampal-dependent learning and memory, as this system is highly tractable. The hippocampus plays a major role in learning and memory, and has the potential to integrate circadian information in many ways, including information from local, independent oscillators, and through circadian modulation of neurogenesis, synaptic remodeling, intracellular cascades, and epigenetic regulation of gene expression. These local processes are combined with input from other oscillatory systems to synergistically augment hippocampal rhythmic function. This overview presents an account of the current state of knowledge on circadian interactions with learning and memory circuitry and provides a framework for those interested in further exploring these interactions.
Collapse
Affiliation(s)
- Benjamin L. Smarr
- Department of Psychology, University of California, Berkeley, CA, 94720 USA
| | | | - Joseph R. Driscoll
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720 USA
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA, 94720 USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720 USA
| |
Collapse
|
41
|
Bonaconsa M, Malpeli G, Montaruli A, Carandente F, Grassi-Zucconi G, Bentivoglio M. Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and heart of aged mice. Exp Gerontol 2014; 55:70-9. [PMID: 24674978 DOI: 10.1016/j.exger.2014.03.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/24/2014] [Accepted: 03/17/2014] [Indexed: 11/30/2022]
Abstract
Studies on the molecular clockwork during aging have been hitherto addressed to core clock genes. These previous investigations indicate that circadian profiles of core clock gene expression at an advanced age are relatively preserved in the master circadian pacemaker and the hypothalamic suprachiasmatic nucleus (SCN), and relatively impaired in peripheral tissues. It remains to be clarified whether the effects of aging are confined to the primary loop of core clock genes, or also involve secondary clock loop components, including Rev-erbα and the clock-controlled genes Dbp and Dec1. Using quantitative real-time RT-PCR, we here report a comparative analysis of the circadian expression of canonical core clock genes (Per1, Per2, Cry1, Cry2, Clock and Bmal1) and non-core clock genes (Rev-erbα, Dbp and Dec1) in the SCN, liver, and heart of 3month-old vs 22month-old mice. The results indicate that circadian clock gene expression is significantly modified in the SCN and peripheral oscillators of aged mice. These changes are not only highly tissue-specific, but also involve different clock gene loops. In particular, we here report changes of secondary clock loop components in the SCN, changes of the primary clock loop in the liver, and minor changes of clock gene expression in the heart of aged mice. The present findings outline a track to further understanding of the role of primary and secondary clock loop components and their crosstalk in the impairment of circadian output which characterizes aging.
Collapse
Affiliation(s)
- Marta Bonaconsa
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy.
| | - Giorgio Malpeli
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Franca Carandente
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Marina Bentivoglio
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
42
|
Mattam U, Jagota A. Differential role of melatonin in restoration of age-induced alterations in daily rhythms of expression of various clock genes in suprachiasmatic nucleus of male Wistar rats. Biogerontology 2014; 15:257-68. [PMID: 24619734 DOI: 10.1007/s10522-014-9495-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/28/2014] [Indexed: 11/24/2022]
Abstract
Aging is associated with changes in several basic parameters of circadian rhythms in mammals leading to circadian dysfunction. The hypothalamic Suprachiasmatic nucleus (SCN) regulates neuronal, endocrine and behavioral rhythms through the expression of various clock genes and release of melatonin from pineal gland. In the present study, we investigated the effect of aging on daily rhythms of various clock genes such as rPer1, rPer2, rCry1, rCry2 and rBmal1 in the SCN of male Wistar rats. The m-RNA expression levels of these genes were studied by using quantitative Polymerase Chain Reaction (qPCR) in 3 age groups [3 (adult), 12 and 24 month (m)] at variable time points (Zeitgeber time (ZT)-0, 6, 12 and 18). The m-RNA expression for all genes studied was rhythmic in SCN of adult rats with maximum for rPer1 at ZT-6, rPer2, rCry1 and rCry2 at ZT-12 and rBmal1 at ZT-18. However in 12 and 24 m, the phases of expression of these genes were significantly altered with abolition of daily rhythms of rCry1, rCry2 and rBmal1 in 24 m. Melatonin, messenger of darkness, an endogenous synchronizer of rhythm, an antioxidant and an antiaging drug, declines with aging. We therefore studied the effects of melatonin administered subcutaneously at 1 h before the onset of darkness (ZT-11) for 11 days on age induced desynchronization in expression of these genes. We report here differential restoration of daily rhythm, phase, levels and stoichiometric interaction of m-RNA expression of these genes in various age groups in rat SCN with melatonin treatment.
Collapse
Affiliation(s)
- Ushodaya Mattam
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Andhra Pradesh, India
| | | |
Collapse
|
43
|
Novel putative mechanisms to link circadian clocks to healthy aging. J Neural Transm (Vienna) 2013; 122 Suppl 1:S75-82. [PMID: 24297467 DOI: 10.1007/s00702-013-1128-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 11/21/2013] [Indexed: 10/26/2022]
Abstract
The circadian clock coordinates the internal physiology to increase the homeostatic capacity thereby providing both a survival advantage to the system and an optimization of energy budgeting. Multiple-oscillator circadian mechanisms are likely to play a role in regulating human health and may contribute to the aging process. Our aim is to give an overview of how the central clock in the hypothalamus and peripheral clocks relate to aging and metabolic disorders, including hyperlipidemia and hyperglycemia. In particular, we unravel novel putative mechanisms to link circadian clocks to healthy aging. This review may lead to the design of large-scale interventions to help people stay healthy as they age by adjusting daily activities, such as feeding behavior, and or adaptation to age-related changes in individual circadian rhythms.
Collapse
|
44
|
Watching the clock and hitting the snooze button: introduction to the special issue on circadian rhythms and sleep in neurological disorders. Exp Neurol 2013; 243:1-3. [PMID: 23399891 DOI: 10.1016/j.expneurol.2013.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|