1
|
Ouyang W, Lu W, Zhang Y, Liu Y, Kim JU, Shen H, Wu Y, Luan H, Kilner K, Lee SP, Lu Y, Yang Y, Wang J, Yu Y, Wegener AJ, Moreno JA, Xie Z, Wu Y, Won SM, Kwon K, Wu C, Bai W, Guo H, Liu TL, Bai H, Monti G, Zhu J, Madhvapathy SR, Trueb J, Stanslaski M, Higbee-Dempsey EM, Stepien I, Ghoreishi-Haack N, Haney CR, Kim TI, Huang Y, Ghaffari R, Banks AR, Jhou TC, Good CH, Rogers JA. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat Biomed Eng 2023; 7:1252-1269. [PMID: 37106153 DOI: 10.1038/s41551-023-01029-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
Fully implantable wireless systems for the recording and modulation of neural circuits that do not require physical tethers or batteries allow for studies that demand the use of unconstrained and freely behaving animals in isolation or in social groups. Moreover, feedback-control algorithms that can be executed within such devices without the need for remote computing eliminate virtual tethers and any associated latencies. Here we report a wireless and battery-less technology of this type, implanted subdermally along the back of freely moving small animals, for the autonomous recording of electroencephalograms, electromyograms and body temperature, and for closed-loop neuromodulation via optogenetics and pharmacology. The device incorporates a system-on-a-chip with Bluetooth Low Energy for data transmission and a compressed deep-learning module for autonomous operation, that offers neurorecording capabilities matching those of gold-standard wired systems. We also show the use of the implant in studies of sleep-wake regulation and for the programmable closed-loop pharmacological suppression of epileptic seizures via feedback from electroencephalography. The technology can support a broader range of applications in neuroscience and in biomedical research with small animals.
Collapse
Affiliation(s)
- Wei Ouyang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Wei Lu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yamin Zhang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yiming Liu
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Jong Uk Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Haixu Shen
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Yunyun Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | | | - Stephen P Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Neurolux Inc., Northfield, IL, USA
| | - Yinsheng Lu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Jin Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | | | - Amy J Wegener
- US Army Research Laboratory, Aberdeen Proving Ground, MD, USA
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Justin A Moreno
- US Army Research Laboratory, Aberdeen Proving Ground, MD, USA
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
- SURVICE Engineering, Belcamp, MD, USA
| | - Zhaoqian Xie
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyeongha Kwon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Wubin Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hexia Guo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Tzu-Li Liu
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Hedan Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Giuditta Monti
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Jason Zhu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Surabhi R Madhvapathy
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Jacob Trueb
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | | | | | - Iwona Stepien
- Developmental Therapeutics Core, Northwestern University, Evanston, IL, USA
| | | | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, USA
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Neurolux Inc., Northfield, IL, USA
| | - Anthony R Banks
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Neurolux Inc., Northfield, IL, USA
| | - Thomas C Jhou
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Cameron H Good
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Neurolux Inc., Northfield, IL, USA.
- US Army Research Laboratory, Aberdeen Proving Ground, MD, USA.
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA.
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
7
|
Qi R, Li M, Ma Y, Chen N. State-dependent changes in auditory sensory gating in different cortical areas in rats. PLoS One 2015; 10:e0126684. [PMID: 25928147 PMCID: PMC4415925 DOI: 10.1371/journal.pone.0126684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/07/2015] [Indexed: 11/18/2022] Open
Abstract
Sensory gating is a process in which the brain’s response to a repetitive stimulus is attenuated; it is thought to contribute to information processing by enabling organisms to filter extraneous sensory inputs from the environment. To date, sensory gating has typically been used to determine whether brain function is impaired, such as in individuals with schizophrenia or addiction. In healthy subjects, sensory gating is sensitive to a subject’s behavioral state, such as acute stress and attention. The cortical response to sensory stimulation significantly decreases during sleep; however, information processing continues throughout sleep, and an auditory evoked potential (AEP) can be elicited by sound. It is not known whether sensory gating changes during sleep. Sleep is a non-uniform process in the whole brain with regional differences in neural activities. Thus, another question arises concerning whether sensory gating changes are uniform in different brain areas from waking to sleep. To address these questions, we used the sound stimuli of a Conditioning-testing paradigm to examine sensory gating during waking, rapid eye movement (REM) sleep and Non-REM (NREM) sleep in different cortical areas in rats. We demonstrated the following: 1. Auditory sensory gating was affected by vigilant states in the frontal and parietal areas but not in the occipital areas. 2. Auditory sensory gating decreased in NREM sleep but not REM sleep from waking in the frontal and parietal areas. 3. The decreased sensory gating in the frontal and parietal areas during NREM sleep was the result of a significant increase in the test sound amplitude.
Collapse
Affiliation(s)
- Renli Qi
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
- State Key Laboratory of Brain and Cognitive Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
| | - Minghong Li
- State Key Laboratory of Brain and Cognitive Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
- Yunnan University of Traditional Chinese Medicine, Kunming, P. R. China
| | - Yuanye Ma
- State Key Laboratory of Brain and Cognitive Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, P.R. China
- * E-mail: (NC); (YM)
| | - Nanhui Chen
- State Key Laboratory of Brain and Cognitive Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, P. R. China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, P.R. China
- * E-mail: (NC); (YM)
| |
Collapse
|