1
|
Ramessar N, Borad A, Schlesinger N. The impact of curcumin supplementation on systemic lupus erythematosus and lupus nephritis: A systematic review. Lupus 2023; 32:644-657. [PMID: 36867423 DOI: 10.1177/09612033231161961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
OBJECTIVE Curcumin is the active ingredient in the curry spice turmeric. It has anti-inflammatory properties due to the inhibition of transcription factors and inflammatory mediators such as nuclear factor-κβ (NF-κβ), cyclooxygenase-2 (COX2), lipoxygenase (LOX), tumor necrosis factoralpha (TNF-alpha), and interleukin-1 (IL-1) and 6 (IL-6). This review examines the literature regarding the efficacy of curcumin on systemic lupus erythematosus disease activity. METHODS A search was conducted following guidelines in the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) using the PubMed, Google Scholar, Scopus, and MEDLINE electronic databases to retrieve relevant studies assessing the impact of curcumin supplementation on SLE. RESULTS The initial search yielded three double-blind, placebo-controlled, randomized clinical trials, three human in vitro studies, and seven mouse-model studies. In human trials, curcumin decreased 24-h and spot proteinuria, but the trials were small, ranging from 14 to 39 patients, with varied curcumin doses and different study durations ranging from 4 to 12 weeks. There was no change in C3, dsDNA, or the Systemic Lupus Erythematosus Disease Activity (SLEDAI) scores even in the longer trials. The mouse-model trials yielded more data. NF-κβ activation was suppressed along with inducible nitric oxide synthase (NOS) species expression when 1 mg/kg/day of curcumin was administered for 14 weeks, leading to significant decreases in dsDNA, proteinuria, renal inflammation, and IgG subclasses. Another study suggested that curcumin reduced B cell-activating factor (BAFF) when used for up to 8 weeks at 50 mg/kg/day. A reduction in pro-inflammatory Th1 and Th17 percentages, IL-6 and anti-nuclear antibody (ANA) levels were reported. The doses used in the murine models were much higher than those used in human trials, with 12.5 mg-200 mg/kg/day used for over 16 weeks; highlighting that the optimal time for an immunological effect to be observed may require 12-16 weeks of curcumin use. CONCLUSION Despite the wide use of curcumin in everyday life, its molecular and anti-inflammatory use has only been partially explored. Current data show a potential benefit on disease activity. Still, no uniform dose can be advised because long-duration, large-scale randomized trials using defined dosing are needed in different subsets of SLE, including lupus nephritis patients.
Collapse
Affiliation(s)
- Nina Ramessar
- 12250Indiana University, School of Medicine, Fort Wayne, IN, USA
| | - Abhilasha Borad
- 43982Rutgers University, Robert Wood Johnson Medical School (RWJMS), New Brunswick, NJ, USA
| | - Naomi Schlesinger
- 14434University of Utah, School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Zeng L, Yang T, Yang K, Yu G, Li J, Xiang W, Chen H. Curcumin and Curcuma longa Extract in the Treatment of 10 Types of Autoimmune Diseases: A Systematic Review and Meta-Analysis of 31 Randomized Controlled Trials. Front Immunol 2022; 13:896476. [PMID: 35979355 PMCID: PMC9376628 DOI: 10.3389/fimmu.2022.896476] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 01/30/2023] Open
Abstract
Objective To evaluate the randomized controlled trials (RCTs) of Curcumin and Curcuma longa Extract in the treatment of autoimmune diseases. Methods Databases such as Embase, Web of Science, PubMed and The Cochrane Library were searched from the database establishment to February 2022 to collect RCTs of Curcumin and Curcuma longa Extract in the treatment of autoimmune diseases. Then the literature was screened and the data were extracted. Meta-analysis was performed using RevMan 5.3 software. Results A total of 34 records were included, involving 31 RCTs and 10 types of autoimmune disease. Among them, ankylosing spondylitis (AS) involves one RCT, Behcet ‘s disease (BD) involves one RCT, Crohn ‘s disease involves two RCTs, multiple sclerosis (MS) involves two RCTs, oral lichen planus involves six RCTs, psoriasis involves two RCTs, rheumatoid arthritis (RA) involves five RCTs, systemic lupus erythematosus (SLE) involves two RCTs, arteritis involves one RCT, ulcerative colitis (UC) involves nine RCTs. Among them, most of the RCTs of ulcerative colitis (UC), oral lichen planus, RA showed that curcumin and curcumin extracts improved clinical or laboratory results. Crohn ‘ s disease, MS, SLE, psoriasis included two RCTs; they all showed improvements (at least one RCT reported improvements in clinical outcomes). AS, BD and arteritis included only one RCT, and the clinical results showed improvement. However, due to the small number of RCTs and the small number of patients involved in each disease, there is still a need for more high-quality RCTs. Conclusion Curcumin and Curcuma longa Extract had good clinical efficacy in the treatment of Psoriasis, UC and RA, so Curcumin and Curcuma longa Extract could be used in the treatment of the above diseases in the future. The results of Meta-analysis showed that Curcumin and Curcuma longa Extract did not show efficacy in the treatment of oral lichen planus, while Takayasu arteritis, SLE, MS, AS, BD and CD did not report sufficient clinical data for meta-analysis. Therefore, large-sample, multi-center clinical trials are still needed for revision or validation.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Hua Chen, ; Liuting Zeng, ; Tiejun Yang, ; Kailin Yang,
| | - Tiejun Yang
- Department of Orthopedics, People’s Hospital of Ningxiang City, Ningxiang, Hunan, China
- *Correspondence: Hua Chen, ; Liuting Zeng, ; Tiejun Yang, ; Kailin Yang,
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Hua Chen, ; Liuting Zeng, ; Tiejun Yang, ; Kailin Yang,
| | - Ganpeng Yu
- Department of Orthopedics, People’s Hospital of Ningxiang City, Ningxiang, Hunan, China
| | - Jun Li
- Department of Orthopedics, People’s Hospital of Ningxiang City, Ningxiang, Hunan, China
| | - Wang Xiang
- Department of Rheumatology, The First people’s Hospital Changde City, Changde, Hunan, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Hua Chen, ; Liuting Zeng, ; Tiejun Yang, ; Kailin Yang,
| |
Collapse
|
3
|
Joshi P, Bisht A, Joshi S, Semwal D, Nema NK, Dwivedi J, Sharma S. Ameliorating potential of curcumin and its analogue in central nervous system disorders and related conditions: A review of molecular pathways. Phytother Res 2022; 36:3143-3180. [PMID: 35790042 DOI: 10.1002/ptr.7522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Curcumin, isolated from turmeric (Curcuma longa L.) is one of the broadly studied phytomolecule owing to its strong antioxidant and anti-inflammatory potential and has been considered a promising therapeutic candidate in a wide range of disorders. Considering, its low bioavailability, different curcumin analogs have been developed to afford desired pharmacokinetic profile and therapeutic outcome in varied pathological states. Several preclinical and clinical studies have indicated that curcumin ameliorates mitochondrial dysfunction, inflammation, oxidative stress apoptosis-mediated neural cell degeneration and could effectively be utilized in the treatment of different neurodegenerative diseases. Hence, in this review, we have summarized key findings of experimental and clinical studies conducted on curcumin and its analogues with special emphasis on molecular pathways, viz. NF-kB, Nrf2-ARE, glial activation, apoptosis, angiogenesis, SOCS/JAK/STAT, PI3K/Akt, ERK1/2 /MyD88 /p38 MAPK, JNK, iNOS/NO, and MMP pathways involved in imparting ameliorative effects in the therapy of neurodegenerative disorders and associated conditions.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.,R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sushil Joshi
- R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Deepak Semwal
- Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Neelesh Kumar Nema
- Paramount Kumkum Private Limited, Prestige Meridian-1, Bangalore, Karnataka, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
4
|
A Network Pharmacology and Molecular Docking Strategy to Explore Potential Targets and Mechanisms Underlying the Effect of Curcumin on Osteonecrosis of the Femoral Head in Systemic Lupus Erythematosus. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5538643. [PMID: 34557547 PMCID: PMC8455200 DOI: 10.1155/2021/5538643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022]
Abstract
Background Systemic lupus erythematosus (SLE) is a refractory immune disease, which is often complicated with osteonecrosis of the femoral head (ONFH). Curcumin, the most active ingredient of Curcuma longa with a variety of biological activities, has wide effects on the body system. The study is aimed at exploring the potential therapeutic targets underlying the effect of curcumin on SLE-ONFH by utilizing a network pharmacology approach and molecular docking strategy. Methods Curcumin and its drug targets were identified using network analysis. First, the Swiss target prediction, GeneCards, and OMIM databases were mined for information relevant to the prediction of curcumin targets and SLE-ONFH-related targets. Second, the curcumin target gene, SLE-ONFH shared gene, and curcumin-SLE-ONFH target gene networks were created in Cytoscape software followed by collecting the candidate targets of each component by R software. Third, the targets and enriched pathways were examined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Eventually, a gene-pathway network was constructed and visualized by Cytoscape software; key potential central targets were verified and checked by molecular docking and literature review. Results 201 potential targets of curcumin and 170 related targets involved in SLE-ONFH were subjected to network analysis, and the 36 intersection targets indicated the potential targets of curcumin for the treatment of SLE-ONFH. Additionally, for getting more comprehensive and accurate candidate genes, the 36 potential targets were determined to be analyzed by network topology and 285 candidate genes were obtained finally. The top 20 biological processes, cellular components, and molecular functions were identified, when corrected by a P value ≤ 0.05. 20 related signaling pathways were identified by KEGG analysis, when corrected according to a Bonferroni P value ≤ 0.05. Molecular docking showed that the top three genes (TP53, IL6, VEGFA) have good binding force with curcumin; combined with literature review, some other genes such as TNF, CCND1, CASP3, and MMP9 were also identified. Conclusion The present study explored the potential targets and signaling pathways of curcumin against SLE-ONFH, which could provide a better understanding of its effects in terms of regulating cell cycle, angiogenesis, immunosuppression, inflammation, and bone destruction.
Collapse
|
5
|
Mahjoob M, Stochaj U. Curcumin nanoformulations to combat aging-related diseases. Ageing Res Rev 2021; 69:101364. [PMID: 34000462 DOI: 10.1016/j.arr.2021.101364] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Aging increases the susceptibility to a diverse set of diseases and disorders, including neurodegeneration, cancer, diabetes, and arthritis. Natural compounds are currently being explored as alternative or complementary agents to treat or prevent aging-related malfunctions. Curcumin, a phytochemical isolated from the spice turmeric, has garnered great interest in recent years. With anti-oxidant, anti-inflammatory, anti-microbial, and other physiological activities, curcumin has great potential for health applications. However, the benefits of curcumin are restricted by its low bioavailability and stability in biological systems. Curcumin nanoformulations, or nano-curcumin, may overcome these limitations. This review discusses different forms of nano-curcumin that have been evaluated in vitro and in vivo to treat or prevent aging-associated health impairments. We describe current barriers for the routine use of curcumin nanoformulations in the clinic. Our review highlights outstanding questions and future work that is needed to ensure nano-curcumin is efficient and safe to lessen the burden of aging-related health problems.
Collapse
Affiliation(s)
- Maryam Mahjoob
- Department of Physiology & Quantitative Life Sciences Program, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology & Quantitative Life Sciences Program, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
6
|
Diet in Rheumatoid Arthritis versus Systemic Lupus Erythematosus: Any Differences? Nutrients 2021; 13:nu13030772. [PMID: 33673487 PMCID: PMC7997440 DOI: 10.3390/nu13030772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, an increasing interest in the influence of diet in rheumatic and musculoskeletal diseases (RMDs) led to the publication of several articles exploring the role of food/nutrients in both the risk of developing these conditions in normal subjects and the natural history of the disease in patients with established RMDs. Diet may be a possible facilitator of RMDs due to both the direct pro-inflammatory properties of some nutrients and the indirect action on insulin resistance, obesity and associated co-morbidities. A consistent body of research has been conducted in rheumatoid arthritis (RA), while studies in systemic lupus erythematosus (SLE) are scarce and have been conducted mainly on experimental models of the disease. This review article aims to outline similarities and differences between RA and SLE based on the existing literature.
Collapse
|
7
|
Islam MA, Khandker SS, Kotyla PJ, Hassan R. Immunomodulatory Effects of Diet and Nutrients in Systemic Lupus Erythematosus (SLE): A Systematic Review. Front Immunol 2020; 11:1477. [PMID: 32793202 PMCID: PMC7387408 DOI: 10.3389/fimmu.2020.01477] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ involvement, including the skin, joints, kidneys, lungs, central nervous system and the haematopoietic system, with a large number of complications. Despite years of study, the etiology of SLE remains unclear; thus, safe and specifically targeted therapies are lacking. In the last 20 years, researchers have explored the potential of nutritional factors on SLE and have suggested complementary treatment options through diet. This study systematically reviews and evaluates the clinical and preclinical scientific evidence of diet and dietary supplementation that either alleviate or exacerbate the symptoms of SLE. For this review, a systematic literature search was conducted using PubMed, Scopus and Google Scholar databases only for articles written in the English language. Based on the currently published literature, it was observed that a low-calorie and low-protein diet with high contents of fiber, polyunsaturated fatty acids, vitamins, minerals and polyphenols contain sufficient potential macronutrients and micronutrients to regulate the activity of the overall disease by modulating the inflammation and immune functions of SLE.
Collapse
Affiliation(s)
- Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Shahad Saif Khandker
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Przemysław J Kotyla
- Department of Internal Medicine, Rheumatology and Clinical Immunology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
8
|
Cao F, Cheng MH, Hu LQ, Shen HH, Tao JH, Li XM, Pan HF, Gao J. Natural products action on pathogenic cues in autoimmunity: Efficacy in systemic lupus erythematosus and rheumatoid arthritis as compared to classical treatments. Pharmacol Res 2020; 160:105054. [PMID: 32645358 DOI: 10.1016/j.phrs.2020.105054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 01/04/2023]
Abstract
Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), which are characterized by self-perpetuating inflammation and tissue/organ damage, resulting from the failure of lymphocyte auto-tolerance, cause morbidity and mortality worldwide. The current drugs or therapies including conventional non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying anti-rheumatic drugs (DMARDs), as well as several biologic therapies such as B cell-targeted, T cell-targeted, cytokines-targeted and cytokines receptors-targeted therapy, cannot completely cure SLE and RA, and are always accompanied by unexpected side effects. Therefore, more studies have explored new methods for therapy and found that the herbal medicine as well as its natural products (NPs) exhibited promising therapeutic value through exerting effects of immunomodulation, anti-inflammation, anti-oxidation, and anti-apoptosis, etc. via regulating abnormal responses in kidney, innate and adaptive immune systems, intestine, synoviocytes, as well as bone system including chondrocytes, osteoclasts, joints and paw tissues. In the present review, we will elucidate the current mainstream drugs and therapies for SLE and RA, and summarize the efficacy and mechanisms of NPs in the treatment of SLE and RA based on available findings including in vitro and in vivo animal models, as well as clinical studies, and further analyze the existing challenges, in order to provide comprehensive evidence for improvement of SLE and RA therapy by NPs and to promote management of these two autoimmune diseases.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Ming-Han Cheng
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Li-Qin Hu
- The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China
| | - Hui-Hui Shen
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, No.17 Lu Jiang Road, Hefei, Anhui, China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, No.17 Lu Jiang Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| | - Jian Gao
- The Second Affiliated Hospital and School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
9
|
De A, Beligala DH, Birkholz TM, Geusz ME. Anticancer Properties of Curcumin and Interactions With the Circadian Timing System. Integr Cancer Ther 2019. [PMCID: PMC6902383 DOI: 10.1177/1534735419889154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The phytochemical curcumin is a major component of turmeric. It has recognized activity against cancer cells and affects several intracellular signaling pathways. Many molecules targeted by curcumin also regulate the circadian timing system that has effects on carcinogenesis, tumor growth, and metastasis. Although the circadian clock within cells may be suppressed in tumors, cancer cells are subjected to daily hormonal and neural activity that should be considered when timing optimal curcumin treatments. Rapid curcumin degradation in blood and tissues provides a challenge to maintaining sustained levels suitable for inducing cancer cell death, increasing the need to identify when during the circadian cycle rhythmically expressed molecular targets are present. Curcumin is well tolerated by individuals ingesting it for possible cancer prevention or in combination with conventional cancer therapies, and it shows low toxicity toward noncancerous cells at low dosages. In contrast, curcumin is particularly effective against cancer stem cells, which are treatment-resistant, aggressive, and tumor-initiating. Although curcumin has poor bioavailability, more stable curcumin analogs retain the anti-inflammatory, antioxidant, antimitotic, and pro-apoptotic benefits of curcumin. Anticancer properties are also present in congeners of curcumin in turmeric and after curcumin reduction by intestinal microbes. Various commercial curcuminoid products are highly popular dietary supplements, but caution is warranted. Although antioxidant properties of curcumin may prevent carcinogenesis, studies suggest curcumin interferes with certain chemotherapeutic agents. This review delves into the complex network of curcuminoid effects to identify potential anticancer strategies that may work in concert with daily physiological cycles controlled by the circadian timing system.
Collapse
Affiliation(s)
- Arpan De
- Bowling Green State University, Bowling Green, OH, USA
| | | | | | | |
Collapse
|
10
|
Chen D, Wu C, Qiu YB, Chu Q, Sun XQ, Wang X, Chen JL, Lu MD, Chen DZ, Pang QF. Curcumin ameliorates hepatic chronic inflammation induced by bile duct obstruction in mice through the activation of heme oxygenase-1. Int Immunopharmacol 2019; 78:106054. [PMID: 31812069 DOI: 10.1016/j.intimp.2019.106054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/24/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Dan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Chen Wu
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yu-Bao Qiu
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Qing Chu
- 1623 Beijing Road(W), Joint Management Office Shanghai Medical Association, Shanghai 200040, People's Republic of China
| | - Xue-Qian Sun
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Xue Wang
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Jun-Liang Chen
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Mu-Dan Lu
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu Province, People's Republic of China
| | - Dao-Zhen Chen
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, Jiangsu Province, People's Republic of China.
| | - Qing-Feng Pang
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
11
|
Cataldo I, Maggio A, Gena P, de Bari O, Tamma G, Portincasa P, Calamita G. Modulation of Aquaporins by Dietary Patterns and Plant Bioactive Compounds. Curr Med Chem 2019; 26:3457-3470. [PMID: 28545373 DOI: 10.2174/0929867324666170523123010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022]
Abstract
Healthful dietary patterns and bioactive compounds supplementation can be adopted as simple and easy intervention to prevent, attenuate or cure clinical disorders, especially when it comes to degenerative and chronic diseases. In the recent years, a growing body of evidence indicates Aquaporins (AQPs), a family of membrane channel proteins widely expressed in the human body, among the targets underlying the beneficial action played by some food nutrients and phytochemical compounds. Here, we provide an overview of what is known regarding the AQP modulation exerted by healthful dietary patterns and plant polyphenols.
Collapse
Affiliation(s)
- Ilaria Cataldo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Maggio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Ornella de Bari
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
12
|
Curcumin attenuates murine lupus via inhibiting NLRP3 inflammasome. Int Immunopharmacol 2019; 69:213-216. [DOI: 10.1016/j.intimp.2019.01.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
|
13
|
Tesse A, Grossini E, Tamma G, Brenner C, Portincasa P, Marinelli RA, Calamita G. Aquaporins as Targets of Dietary Bioactive Phytocompounds. Front Mol Biosci 2018; 5:30. [PMID: 29721498 PMCID: PMC5915544 DOI: 10.3389/fmolb.2018.00030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Plant-derived bioactive compounds have protective role for plants but may also modulate several physiological processes of plant consumers. In the last years, a wide spectrum of phytochemicals have been found to be beneficial to health interacting with molecular signaling pathways underlying critical functions such as cell growth and differentiation, apoptosis, autophagy, inflammation, redox balance, cell volume regulation, metabolic homeostasis, and energy balance. Hence, a large number of biologically active phytocompounds of foods have been isolated, characterized, and eventually modified representing a natural source of novel molecules to prevent, delay or cure several human diseases. Aquaporins (AQPs), a family of membrane channel proteins involved in many body functions, are emerging among the targets of bioactive phytochemicals in imparting their beneficial actions. Here, we provide a comprehensive review of this fast growing topic focusing especially on what it is known on the modulatory effects played by several edible plant and herbal compounds on AQPs, both in health and disease. Phytochemical modulation of AQP expression may provide new medical treatment options to improve the prognosis of several diseases.
Collapse
Affiliation(s)
- Angela Tesse
- Centre National de La Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du Thorax, Universitè de Nantes, Nantes, France
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University East Piedmont, Novara, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotecnhologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Catherine Brenner
- Institut National de la Santé et de la Recherche Médicale UMR-S 1180-LabEx LERMIT, Université Paris-Sud, Université Paris-Saclay, Châtenay Malabry, France
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Bari, Italy
| | - Raul A Marinelli
- Instituto de Fisiología Experimental, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Giuseppe Calamita
- Department of Biosciences, Biotecnhologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
14
|
Abstract
Curcumin is a polyphenol natural product isolated from turmeric, interacting with different cellular and molecular targets and, consequently, showing a wide range of pharmacological effects. Recent preclinical and clinical trials have revealed immunomodulatory properties of curcumin that arise from its effects on immune cells and mediators involved in the immune response, such as various T-lymphocyte subsets and dendritic cells, as well as different inflammatory cytokines. Systemic lupus erythematosus (SLE) is an inflammatory, chronic autoimmune-mediated disease characterized by the presence of autoantibodies, deposition of immune complexes in various organs, recruitment of autoreactive and inflammatory T cells, and excessive levels of plasma proinflammatory cytokines. The function and numbers of dendritic cells and T cell subsets, such as T helper 1 (Th1), Th17, and regulatory T cells have been found to be significantly altered in SLE. In the present report, we reviewed the results of in vitro, experimental (pre-clinical), and clinical studies pertaining to the modulatory effects that curcumin produces on the function and numbers of dendritic cells and T cell subsets, as well as relevant cytokines that participate in SLE.
Collapse
|
15
|
Abstract
AbstractSystemic lupus erythematosus (SLE) is a chronic inflammatory and autoimmune disease characterised by multiple organ involvement and a large number of complications. SLE management remains complicated owing to the biological heterogeneity between patients and the lack of safe and specific targeted therapies. There is evidence that dietary factors can contribute to the geoepidemiology of autoimmune diseases such as SLE. Thus, diet therapy could be a promising approach in SLE owing to both its potential prophylactic effects, without the side effects of classical pharmacology, and its contribution to reducing co-morbidities and improving quality of life in patients with SLE. However, the question arises as to whether nutrients could ameliorate or exacerbate SLE and how they could modulate inflammation and immune function at a molecular level. The present review summarises preclinical and clinical experiences to provide the reader with an update of the positive and negative aspects of macro- and micronutrients and other nutritional factors, including dietary phenols, on SLE, focusing on the mechanisms of action involved.
Collapse
|
16
|
Maalouly G, Ward C, Smayra V, Saliba Y, Aftimos G, Haddad F, Farès N. Fish oil attenuates neurologic severity of antiphospholipid syndrome in a mice experimental model. Nutr Neurosci 2016; 20:563-570. [PMID: 27426873 DOI: 10.1080/1028415x.2016.1206165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Murine experimental models of antiphospholipid syndrome (eAPLS) showed neurologic dysfunction and therapeutic effect of the anticoagulant enoxaparin is well established. Omega-3 fatty acids and curcumin, tested in neuroinflammation and auto-immunity diseases, might be interesting therapeutic candidates. The aim of this study was to evaluate the effects of these candidates on neurologic severity in eAPLS. METHODS One month after immunization of BALB/c mice with beta-2-glycoprotein I, daily treatments were initiated with enoxaparin (1 mg/kg), omega-3 fatty acids (0.5 g/kg), and curcumin (200 mg/kg) for 3 months. RESULTS Mortality was significantly decreased by enoxaparin and omega-3 treatments. Fish oil and curcumin group exhibited the highest mean of swimming behavior in forced swim test in surviving mice. Mice under omega-3 fatty acids or curcumin presented low anxiety-like behavior in the elevated plus-maze test. Cerebral histopathology revealed heavy inflammatory infiltrates in cortical and subcortical regions with vacuolization, swelling, and degeneration of astrocytes in the control group, with aggravation under curcumin; no infiltrate was retrieved in enoxaparin and omega-3 groups. CONCLUSION Our study is the first to demonstrate a potential therapeutic effect of omega-3 fatty acids in eAPLS. Enoxaparin and omega-3 fatty acids combination would be interesting for further investigation.
Collapse
Affiliation(s)
- Georges Maalouly
- a Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine , Université Saint Joseph , Beirut , Lebanon
| | - Céline Ward
- b Faculté de Médecine , Université Saint Joseph , Beirut , Lebanon
| | - Viviane Smayra
- c Faculté de Médecine, service d'anatomopathologie , Université Saint Joseph , Beirut , Lebanon
| | - Youakim Saliba
- a Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine , Université Saint Joseph , Beirut , Lebanon
| | | | - Fadi Haddad
- e Faculté de Médecine, Département de Médecine interne , Université Saint Joseph , Beirut , Lebanon
| | - Nassim Farès
- a Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine , Université Saint Joseph , Beirut , Lebanon
| |
Collapse
|
17
|
Abstract
Rheumatic disease is a large spectrum of heterogeneous conditions affecting the loco-motor system including joints, muscles, connective tissues, and soft tissues around the joints and bones. Many rheumatic diseases have an element of autoimmunity including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Aberrant epigenetic regulation of gene expression is emerging as a major factor within rheumatic disease, and indicates potential new therapeutic avenues of approach to these debilitating conditions. Understanding the precise role of epigenetics in the development and treatment of rheumatic diseases particularly those which have an associated autoimmune element may be important for the long-term management of such conditions.
Collapse
|
18
|
Zhang X, Chen Q, Wang Y, Peng W, Cai H. Effects of curcumin on ion channels and transporters. Front Physiol 2014; 5:94. [PMID: 24653706 PMCID: PMC3949287 DOI: 10.3389/fphys.2014.00094] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/21/2014] [Indexed: 01/04/2023] Open
Abstract
Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione], a polyphenolic compound isolated from the rhizomes of Curcuma longa (turmeric), has been shown to exhibit a wide range of pharmacological activities including anti-inflammatory, anti-cancer, anti-oxidant, anti-atherosclerotic, anti-microbial, and wound healing effects. These activities of curcumin are based on its complex molecular structure and chemical features, as well as its ability to interact with multiple signaling molecules. The ability of curcumin to regulate ion channels and transporters was recognized a decade ago. The cystic fibrosis transmembrane conductance regulator (CFTR) is a well-studied ion channel target of curcumin. During the process of studying its anti-cancer properties, curcumin was found to inhibit ATP-binding cassette (ABC) family members including ABCA1, ABCB1, ABCC1, and ABCG2. Recent studies have revealed that many channels and transporters are modulated by curcumin, such as voltage-gated potassium (Kv) channels, high-voltage-gated Ca(2+) channels (HVGCC), volume-regulated anion channel (VRAC), Ca(2+) release-activated Ca(2+) channel (CRAC), aquaporin-4 (AQP-4), glucose transporters, etc., In this review, we aim to provide an overview of the interactions of curcumin with different types of ion channels and transporters and to help better understand and integrate the underlying molecular mechanisms of the multiple pharmacological activities of curcumin.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China
| | - Qijing Chen
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China
| | - Yunman Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Wen Peng
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Hui Cai
- Renal Division, Department of Medicine, Department of Physiology, Emory University School of Medicine Atlanta, GA, USA ; Section of Nephrology, Atlanta Veterans Administration Medical Center Decatur, GA, USA
| |
Collapse
|