1
|
Nie L, He J, Wang J, Wang R, Huang L, Jia L, Kim YT, Bhawal UK, Fan X, Zille M, Jiang C, Chen X, Wang J. Environmental Enrichment for Stroke and Traumatic Brain Injury: Mechanisms and Translational Implications. Compr Physiol 2023; 14:5291-5323. [PMID: 38158368 DOI: 10.1002/cphy.c230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Acquired brain injuries, such as ischemic stroke, intracerebral hemorrhage (ICH), and traumatic brain injury (TBI), can cause severe neurologic damage and even death. Unfortunately, currently, there are no effective and safe treatments to reduce the high disability and mortality rates associated with these brain injuries. However, environmental enrichment (EE) is an emerging approach to treating and rehabilitating acquired brain injuries by promoting motor, sensory, and social stimulation. Multiple preclinical studies have shown that EE benefits functional recovery, including improved motor and cognitive function and psychological benefits mediated by complex protective signaling pathways. This article provides an overview of the enriched environment protocols used in animal models of ischemic stroke, ICH, and TBI, as well as relevant clinical studies, with a particular focus on ischemic stroke. Additionally, we explored studies of animals with stroke and TBI exposed to EE alone or in combination with multiple drugs and other rehabilitation modalities. Finally, we discuss the potential clinical applications of EE in future brain rehabilitation therapy and the molecular and cellular changes caused by EE in rodents with stroke or TBI. This article aims to advance preclinical and clinical research on EE rehabilitation therapy for acquired brain injury. © 2024 American Physiological Society. Compr Physiol 14:5291-5323, 2024.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxin He
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory for Brain Science Research and Transformation in the Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ruike Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lin Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Republic of Korea
| | - Ujjal K Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
2
|
Pre-ischaemic Treatment with Enriched Environment Alleviates Acute Neuronal Injury by Inhibiting Endoplasmic Reticulum Stress-dependent Autophagy and Apoptosis. Neuroscience 2023; 513:14-27. [PMID: 36549603 DOI: 10.1016/j.neuroscience.2022.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Enriched environment (EE) is effective in preventing cerebral ischemia-reperfusion (I/R) injury. However, little is known about the mechanism underlying the neuroprotection of EE preprocessing. Endoplasmic reticulum (ER) stress has been demonstrated to be extensively involved in I/R injury. We aimed to investigate the potential regulatory mechanism of ER stress in the neuroprotection of pre-ischemic EE. Rats were subjected to middle cerebral artery occlusion (MCAO) or sham surgery after 4 weeks of exposure in standard or enriched environments. We found that EE pretreatment alleviates acute neuronal injury after MCAO, as shown by reduced infarct volume and neurological deficit score. The expression of ER stress-related proteins, markers of autophagy, and apoptosis were detected to investigate the underlying mechanism. Our results showed that pre-ischemic EE inhibited the ER stress, as evidenced by the inactivation of activating transcription factor 6 (ATF6), protein kinase RNA (PKR)-like ER kinase (PERK), and inositol-requiring enzyme 1 (IRE1) pathways. Moreover, the rats reared in EE were detected with lower autophagic activity and apoptosis levels. The decrease in activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), and phospho-c-Jun N-terminal kinases (p-JNK) expression suggested EE pretreatment might inhibit autophagy and apoptosis via modulating ER stress-mediated PERK-ATF4-CHOP and IRE1-JNK signal pathways, which provides a new idea for the prevention of the deleterious cerebral and functional consequences of ischemic stroke.
Collapse
|
3
|
Takahashi H, Yamamoto T, Tsuboi A. Molecular mechanisms underlying activity-dependent ischemic tolerance in the brain. Neurosci Res 2023; 186:3-9. [PMID: 36244569 DOI: 10.1016/j.neures.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. The inhibition of cerebral blood flow triggers intertwined pathological events, resulting in cell death and loss of brain function. Interestingly, animals pre-exposed to short-term ischemia can tolerate subsequent severe ischemia. This phenomenon is called ischemic tolerance and is also triggered by other noxious stimuli. However, whether short-term exposure to non-noxious stimuli can induce ischemic tolerance remains unknown. Recently, we found that pre-exposing mice to an enriched environment for 40 min is sufficient to facilitate cell survival after a subsequent stroke. The neuroprotective process depends on the neuronal activity soon before stroke, of which the activity-dependent transcription factor Npas4 is essential. Excessive Ca2+ influx triggers Npas4 expression in ischemic neurons, leading to the activation of neuroprotective programs. Pre-induction of Npas4 in the normal brain effectively supports cell survival after stroke. Furthermore, our study revealed that Npas4 regulates L-type voltage-gated Ca2+ channels through expression of the small Ras-like GTPase Gem in ischemic neurons. Ischemic tolerance is a good model for understanding how to promote neuroprotective mechanisms in the normal and injured brain. Here, we highlight activity-dependent ischemic tolerance and discuss its role in promoting neuroprotection against stroke.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Akio Tsuboi
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
4
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. The role of enriched environment in neural development and repair. Front Cell Neurosci 2022; 16:890666. [PMID: 35936498 PMCID: PMC9350910 DOI: 10.3389/fncel.2022.890666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to genetic information, environmental factors play an important role in the structure and function of nervous system and the occurrence and development of some nervous system diseases. Enriched environment (EE) can not only promote normal neural development through enhancing neuroplasticity but also play a nerve repair role in restoring functional activities during CNS injury by morphological and cellular and molecular adaptations in the brain. Different stages of development after birth respond to the environment to varying degrees. Therefore, we systematically review the pro-developmental and anti-stress value of EE during pregnancy, pre-weaning, and “adolescence” and analyze the difference in the effects of EE and its sub-components, especially with physical exercise. In our exploration of potential mechanisms that promote neurodevelopment, we have found that not all sub-components exert maximum value throughout the developmental phase, such as animals that do not respond to physical activity before weaning, and that EE is not superior to its sub-components in all respects. EE affects the developing and adult brain, resulting in some neuroplastic changes in the microscopic and macroscopic anatomy, finally contributing to enhanced learning and memory capacity. These positive promoting influences are particularly prominent regarding neural repair after neurobiological disorders. Taking cerebral ischemia as an example, we analyzed the molecular mediators of EE promoting repair from various dimensions. We found that EE does not always lead to positive effects on nerve repair, such as infarct size. In view of the classic issues such as standardization and relativity of EE have been thoroughly discussed, we finally focus on analyzing the essentiality of the time window of EE action and clinical translation in order to devote to the future research direction of EE and rapid and reasonable clinical application.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Xia Bi
| |
Collapse
|
5
|
Pre-Exposure to Environmental Enrichment Protects against Learning and Memory Deficits Caused by Infrasound Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6208872. [PMID: 35620581 PMCID: PMC9129996 DOI: 10.1155/2022/6208872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
With the development of industrialization in recent years, infrasound has become an important component of public noise. To date, diverse studies have revealed the negative effects of infrasound on the central nervous system (CNS), especially the learning and memory ability. It is widely reported that environmental enrichment (EE) ameliorates the learning and memory deficits in different models of brain injury. Therefore, the present study was designed to determine the possible benefits of pre-exposure to EE in preventing functional deficits following infrasound exposure and their related mechanism. Adult male rats were given enriched or standard housing for 30 days. Following enrichment, the rats were exposed to 16 Hz, 130 dB infrasound for 14 days, and then their learning and memory ability was assessed. Changes to neuroinflammation, apoptosis, and oxidative stress in the hippocampus were also detected. Our results showed that the infrasound-induced deficit in learning and memory was attenuated significantly in EE pre-exposed rats. Pre-exposure to EE could induce a decrease in proinflammatory cytokines and increased anti-inflammatory cytokines and antioxidant properties in the hippocampus. Moreover, pre-exposure to EE also exerted antiapoptosis functions by upregulating the B-cell lymphoma/leukemia-2 (Bcl-2) level and downregulating the P53 level in the hippocampus. In conclusion, the results of the present study suggested that EE is neuroprotective when applied before infrasound exposure, resulting in an improved learning and memory ability by enhancing antioxidant, anti-inflammatory, and antiapoptosis capacities.
Collapse
|
6
|
Intracellular Signaling. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Takahashi H, Asahina R, Fujioka M, Matsui TK, Kato S, Mori E, Hioki H, Yamamoto T, Kobayashi K, Tsuboi A. Ras-like Gem GTPase induced by Npas4 promotes activity-dependent neuronal tolerance for ischemic stroke. Proc Natl Acad Sci U S A 2021; 118:e2018850118. [PMID: 34349016 PMCID: PMC8364162 DOI: 10.1073/pnas.2018850118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Ischemic stroke, which results in loss of neurological function, initiates a complex cascade of pathological events in the brain, largely driven by excitotoxic Ca2+ influx in neurons. This leads to cortical spreading depolarization, which induces expression of genes involved in both neuronal death and survival; yet, the functions of these genes remain poorly understood. Here, we profiled gene expression changes that are common to ischemia (modeled by middle cerebral artery occlusion [MCAO]) and to experience-dependent activation (modeled by exposure to an enriched environment [EE]), which also induces Ca2+ transients that trigger transcriptional programs. We found that the activity-dependent transcription factor Npas4 was up-regulated under MCAO and EE conditions and that transient activation of cortical neurons in the healthy brain by the EE decreased cell death after stroke. Furthermore, both MCAO in vivo and oxygen-glucose deprivation in vitro revealed that Npas4 is necessary and sufficient for neuroprotection. We also found that this protection involves the inhibition of L-type voltage-gated Ca2+ channels (VGCCs). Next, our systematic search for Npas4-downstream genes identified Gem, which encodes a Ras-related small GTPase that mediates neuroprotective effects of Npas4. Gem suppresses the membrane localization of L-type VGCCs to inhibit excess Ca2+ influx, thereby protecting neurons from excitotoxic death after in vitro and in vivo ischemia. Collectively, our findings indicate that Gem expression via Npas4 is necessary and sufficient to promote neuroprotection in the injured brain. Importantly, Gem is also induced in human cerebral organoids cultured under an ischemic condition, revealing Gem as a new target for drug discovery.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan;
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Ryo Asahina
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Masayuki Fujioka
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan
| | - Takeshi K Matsui
- Department of Future Basic Medicine, School of Medicine, Nara Medical University, Nara 634-8521, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, School of Medicine, Nara Medical University, Nara 634-8521, Japan
| | - Hiroyuki Hioki
- Department of Cell Biology and Neuroscience, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Akio Tsuboi
- Laboratory for Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Nara 634-8521, Japan;
- Laboratory for Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
8
|
Deng YH, Dong LL, Zhang YJ, Zhao XM, He HY. Enriched environment boosts the post-stroke recovery of neurological function by promoting autophagy. Neural Regen Res 2021; 16:813-819. [PMID: 33229714 PMCID: PMC8178758 DOI: 10.4103/1673-5374.297084] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 06/06/2020] [Indexed: 12/22/2022] Open
Abstract
Autophagy is crucial for maintaining cellular homeostasis, and can be activated after ischemic stroke. It also participates in nerve injury and repair. The purpose of this study was to investigate whether an enriched environment has neuroprotective effects through affecting autophagy. A Sprague-Dawley rat model of transient ischemic stroke was prepared by occlusion of the middle cerebral artery followed by reperfusion. One week after surgery, these rats were raised in either a standard environment or an enriched environment for 4 successive weeks. The enriched environment increased Beclin-1 expression and the LC3-II/LC3-I ratio in the autophagy/lysosomal pathway in the penumbra of middle cerebral artery-occluded rats. Enriched environment-induced elevations in autophagic activity were mainly observed in neurons. Enriched environment treatment also promoted the fusion of autophagosomes with lysosomes, enhanced the lysosomal activities of lysosomal-associated membrane protein 1, cathepsin B, and cathepsin D, and reduced the expression of ubiquitin and p62. After 4 weeks of enriched environment treatment, neurological deficits and neuronal death caused by middle cerebral artery occlusion/reperfusion were significantly alleviated, and infarct volume was significantly reduced. These findings suggest that neuronal autophagy is likely the neuroprotective mechanism by which an enriched environment promotes recovery from ischemic stroke. This study was approved by the Animal Ethics Committee of the Kunming University of Science and Technology, China (approval No. 5301002013855) on March 1, 2019.
Collapse
Affiliation(s)
- Yi-Hao Deng
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Ling-Ling Dong
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Yong-Jie Zhang
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Xiao-Ming Zhao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Hong-Yun He
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| |
Collapse
|
9
|
Budiono BP, See Hoe LE, Peart JN, Vider J, Ashton KJ, Jacques A, Haseler LJ, Headrick JP. Effects of voluntary exercise duration on myocardial ischaemic tolerance, kinase signaling and gene expression. Life Sci 2021; 274:119253. [PMID: 33647270 DOI: 10.1016/j.lfs.2021.119253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
AIM Exercise is cardioprotective, though optimal interventions are unclear. We assessed duration dependent effects of exercise on myocardial ischemia-reperfusion (I-R) injury, kinase signaling and gene expression. METHODS Responses to brief (2 day; 2EX), intermediate (7 and 14 day; 7EX and 14EX) and extended (28 day; 28EX) voluntary wheel running (VWR) were studied in male C57Bl/6 mice. Cardiac function, I-R tolerance and survival kinase signaling were assessed in perfused hearts. KEY FINDINGS Mice progressively increased running distances and intensity, from 2.4 ± 0.2 km/day (0.55 ± 0.04 m/s) at 2-days to 10.6 ± 0.4 km/day (0.72 ± 0.06 m/s) after 28-days. Myocardial mass and contractility were modified at 14-28 days VWR. Cardioprotection was not 'dose-dependent', with I-R tolerance enhanced within 7 days and not further improved with greater VWR duration, volume or intensity. Protection was associated with AKT, ERK1/2 and GSK3β phosphorylation, with phospho-AMPK selectively enhanced with brief VWR. Gene expression was duration-dependent: 7 day VWR up-regulated glycolytic (Pfkm) and down-regulated maladaptive remodeling (Mmp2) genes; 28 day VWR up-regulated caveolar (Cav3), mitochondrial biogenesis (Ppargc1a, Sirt3) and titin (Ttn) genes. Interestingly, I-R tolerance in 2EX/2SED groups improved vs. groups subjected to longer sedentariness, suggesting transient protection on transition to housing with running wheels. SIGNIFICANCE Cardioprotection is induced with as little as 7 days VWR, yet not enhanced with further or faster running. This protection is linked to survival kinase phospho-regulation (particularly AKT and ERK1/2), with glycolytic, mitochondrial, caveolar and myofibrillar gene changes potentially contributing. Intriguingly, environmental enrichment may also protect via similar kinase regulation.
Collapse
Affiliation(s)
- Boris P Budiono
- Charles Sturt University, School of Community Health, Port Macquarie, NSW, Australia
| | - Louise E See Hoe
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Jason N Peart
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Jelena Vider
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia
| | - Kevin J Ashton
- Bond University, Faculty of Health and Medicine, Robina, QLD, Australia
| | - Angela Jacques
- Curtin University, School of Physiotherapy and Exercise Science, Bentley, WA, Australia
| | - Luke J Haseler
- Curtin University, School of Physiotherapy and Exercise Science, Bentley, WA, Australia
| | - John P Headrick
- Griffith University, School of Medical Science, Gold Coast, QLD, Australia.
| |
Collapse
|
10
|
Hua M, Min J. Postoperative Cognitive Dysfunction and the Protective Effects of Enriched Environment: A Systematic Review. NEURODEGENER DIS 2021; 20:113-122. [PMID: 33601385 DOI: 10.1159/000513196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Currently, the number of individuals who undergo surgery is greatly increased. As a consequence, postoperative cognitive dysfunction (POCD) has gradually gained more attention. SUMMARY POCD is a perioperative complication requiring sensitive preoperative and postoperative neuropsychiatric tests, and its incidence in both cardiac and noncardiac surgery is high, especially in elderly individuals. Surgical, patient, and anesthetic factors may all lead to the occurrence and development of POCD. The key mechanism of POCD may be the inflammatory response of the central nervous system during surgery, which is similar to that of Alzheimer's disease (AD). Enriched environment (EE), a factor that can significantly improve and prevent neurodegenerative diseases, may have a beneficial effect on POCD. Key Messages: This review aims to elucidate the mechanism of the occurrence and development of POCD, analyze the possible influence of EE on POCD at the molecular level, and provide a direction for its treatment.
Collapse
Affiliation(s)
- Momin Hua
- First Clinical Medical College, Nanchang University, Nanchang, China
| | - Jia Min
- Department of Anesthesiology, First Affiliated Hospital of Nanchang University, Nanchang, China,
| |
Collapse
|
11
|
Yu KW, Wang CJ, Wu Y, Wang YY, Wang NH, Kuang SY, Liu G, Xie HY, Jiang CY, Wu JF. An enriched environment increases the expression of fibronectin type III domain-containing protein 5 and brain-derived neurotrophic factor in the cerebral cortex of the ischemic mouse brain. Neural Regen Res 2020; 15:1671-1677. [PMID: 32209771 PMCID: PMC7437579 DOI: 10.4103/1673-5374.276339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many studies have shown that fibronectin type III domain-containing protein 5 (FDNC5) and brain-derived neurotrophic factor (BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an environment that provides animals with multi-sensory stimulation and movement opportunities. An enriched environment has been shown to promote the regeneration of nerve cells, synapses, and blood vessels in the animal brain after cerebral ischemia; however, the exact mechanisms have not been clarified. This study aimed to determine whether an enriched environment could improve neurobehavioral functions after the experimental inducement of cerebral ischemia and whether neurobehavioral outcomes were associated with the expression of FDNC5 and BDNF. This study established ischemic mouse models using permanent middle cerebral artery occlusion (pMCAO) on the left side. On postoperative day 1, the mice were randomly assigned to either enriched environment or standard housing condition groups. Mice in the standard housing condition group were housed and fed under standard conditions. Mice in the enriched environment group were housed in a large cage, containing various toys, and fed with a standard diet. Sham-operated mice received the same procedure, but without artery occlusion, and were housed and fed under standard conditions. On postoperative days 7 and 14, a beam-walking test was used to assess coordination, balance, and spatial learning. On postoperative days 16–20, a Morris water maze test was used to assess spatial learning and memory. On postoperative day 15, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex were analyzed by western blot assay. The results showed that compared with the standard housing condition group, the motor balance and coordination functions (based on beam-walking test scores 7 and 14 days after operation), spatial learning abilities (based on the spatial learning scores from the Morris water maze test 16–19 days after operation), and memory abilities (based on the memory scores of the Morris water maze test 20 days after operation) of the enriched environment group improved significantly. In addition, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex increased in the enriched environment group compared with those in the standard housing condition group. Furthermore, the Pearson correlation coefficient showed that neurobehavioral functions were positively associated with the expression levels of FDNC5 and BDNF (r = 0.587 and r = 0.840, respectively). These findings suggest that an enriched environment upregulates FDNC5 protein expression in the ipsilateral cerebral cortex after cerebral ischemia, which then activates BDNF protein expression, improving neurological function. BDNF protein expression was positively correlated with improved neurological function. The experimental protocols were approved by the Institutional Animal Care and Use Committee of Fudan University, China (approval Nos. 20160858A232, 20160860A234) on February 24, 2016.
Collapse
Affiliation(s)
- Ke-Wei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Jie Wang
- Department of Rehabilitation Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Yang Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Nian-Hong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shen-Yi Kuang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong-Yu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Cong-Yu Jiang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun-Fa Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Yu K, Kuang S, Wang C, Wang Y, Liu G, Xie H, Jiang C, Wu J, Wang N, Wu Y. Changes in Mitochondria-Associated Protein Expression and Mitochondrial Function in Response to 2 Weeks of Enriched Environment Training After Cerebral Ischaemia-Reperfusion Injury. J Mol Neurosci 2019; 70:413-421. [PMID: 31782057 DOI: 10.1007/s12031-019-01428-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
Abstract
An enriched environment (EE) can stimulate the recovery of neurological function following a cerebral ischaemia-reperfusion injury; however, the impact of EE's on mitochondrial function has been insufficiently studied. Our research aimed to assess whether EE's therapeutic impact involved the enhancement of mitochondrial dysfunction. Following 2 weeks of EE training, we tested both mitochondrial function and mitochondria-associated protein expression within the cerebral cortex following cerebral ischaemia-reperfusion injury. We subjected Sprague-Dawley rats to transient focal cerebral ischaemia and categorized the rats into three separate groups, i.e. an enriched environment (EE) group, a standard condition (SC) group and a sham control group (no middle cerebral artery embolization). The rats within the EE group were raised in enriched conditions for 2 weeks, while the rats within the SC group, in comparison, were reared in standard conditions for 2 weeks. After 2 weeks, the cerebral cortices of the rats were removed. We then measured a series of indices, i.e. the protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC-1α), nuclear respiratory factor-1 (NRF-1), mitochondrial transcription factor A (TFAM) and mitochondrial protein cytochrome C oxidase subunit IV (COX IV). Furthermore, the number of mitochondria was evaluated through electron microscopy.EE upregulated the protein expression of PGC-1α, NRF-1 as well as TFAM, which function as the master regulators of mitochondrial biogenesis, in comparison with the SC group. The EE group's COX IV protein expression also exhibited an increase. Moreover, the amount of mitochondria in the peri-infarct region of the cortex increased as result of EE training. Over 2 weeks, EE training significantly increased mitochondrial biogenesis-associated protein expression and mitochondrial function. A possible mechanism of the EE leading to the improvement of neurological function is that it increases brain mitochondrial biogenesis after the rats' cerebral ischaemia-reperfusion injury. Mitochondrial biogenesis stimulation or enhancement could become an innovative strategy for neuroprotection in future treatment.
Collapse
Affiliation(s)
- Kewei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shenyi Kuang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuanjie Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuyang Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Congyu Jiang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Junfa Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Nianhong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Dergunova LV, Filippenkov IB, Stavchansky VV, Denisova AE, Yuzhakov VV, Mozerov SA, Gubsky LV, Limborska SA. Genome-wide transcriptome analysis using RNA-Seq reveals a large number of differentially expressed genes in a transient MCAO rat model. BMC Genomics 2018; 19:655. [PMID: 30185153 PMCID: PMC6125876 DOI: 10.1186/s12864-018-5039-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/27/2018] [Indexed: 01/29/2023] Open
Abstract
Background The transient middle cerebral artery occlusion (tMCAO) model is used for studying the molecular mechanisms of ischemic damage and neuroprotection. Numerous studies have demonstrated the role of individual genes and associated signaling pathways in the pathogenesis of ischemic stroke. Here, the tMCAO model was used to investigate the genome-wide response of the transcriptome of rat brain tissues to the damaging effect of ischemia and subsequent reperfusion. Results Magnetic resonance imaging and histological examination showed that the model of focal ischemia based on endovascular occlusion of the right middle cerebral artery for 90 min using a monofilament, followed by restoration of the blood flow, led to reproducible localization of ischemic damage in the subcortical structures of the brain. High-throughput RNA sequencing (RNA-Seq) revealed the presence of differentially expressed genes (DEGs) in subcortical structures of rat brains resulting from hemisphere damage by ischemia after tMCAO, as well as in the corresponding parts of the brains of sham-operated animals. Real-time reverse transcription polymerase chain reaction expression analysis of 20 genes confirmed the RNA-Seq results. We identified 469 and 1939 genes that exhibited changes in expression of > 1.5-fold at 4.5 and 24 h after tMCAO, respectively. Interestingly, we found 2741 and 752 DEGs under ischemia–reperfusion and sham-operation conditions at 24 h vs. 4.5 h after tMCAO, respectively. The activation of a large number of genes involved in inflammatory, immune and stress responses, apoptosis, ribosome function, DNA replication and other processes was observed in ischemia–reperfusion conditions. Simultaneously, massive down-regulation of the mRNA levels of genes involved in the functioning of neurotransmitter systems was recorded. A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that dozens of signaling pathways were associated with DEGs in ischemia–reperfusion conditions. Conclusions The data obtained revealed a global profile of gene expression in the rat brain sub-cortex under tMCAO conditions that can be used to identify potential therapeutic targets in the development of new strategies for the prevention and treatment of ischemic stroke. Electronic supplementary material The online version of this article (10.1186/s12864-018-5039-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lyudmila V Dergunova
- Human Molecular Genetics Department, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation. .,Research Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian National Research Medical University, Moscow, Russian Federation.
| | - Ivan B Filippenkov
- Human Molecular Genetics Department, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vasily V Stavchansky
- Human Molecular Genetics Department, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alina E Denisova
- Research Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Vadim V Yuzhakov
- A. Tsyb Medical Radiological Research Center - branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russian Federation
| | - Sergey A Mozerov
- A. Tsyb Medical Radiological Research Center - branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russian Federation
| | - Leonid V Gubsky
- Research Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Svetlana A Limborska
- Human Molecular Genetics Department, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation.,Research Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| |
Collapse
|
14
|
Wang Z, Zhou W, Dong H, Ma X, He Z. Dexmedetomidine pretreatment inhibits cerebral ischemia/reperfusion‑induced neuroinflammation via activation of AMPK. Mol Med Rep 2018; 18:3957-3964. [PMID: 30106098 DOI: 10.3892/mmr.2018.9349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/11/2018] [Indexed: 11/06/2022] Open
Abstract
Focal ischemia/reperfusion (I/R) injury induced cerebral inflammation, aggravates brain damage. The aim of the present study was to investigate the protective mechanisms of dexmedetomidine (DEX) on I/R brain injury in rats. Sprague‑Dawley rats were divided to seven experimental groups (18 rats/group): Sham surgery; middle cerebral artery occlusion (MCAO) surgery (90 min); DEX10 [10 µg/kg intraperitoneal (i.p.) injection 30 min prior to MCAO]; DEX50 (50 µg/kg i.p. 30 min prior to MCAO); DEX100 (100 µg/kg i.p. 30 min prior to MCAO); DEX50+Yohimbine [YOH; 5 mg/kg 10 min prior to DEX (50 µg/kg i.p.) administration and MCAO] and YOH (5 mg/kg 40 min prior to MCAO). At 24 h post‑MCAO surgery, neurological deficit was examined by staining damaged brain tissues with 2,3,5‑triphenyltetrazolium chloride. Neuronal apoptosis in the cerebral cortex was histologically assessed by terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling staining, and the expression levels of phosphorylated (p)‑AMP‑activated protein kinase (AMPK; Thr172) was detected by western blotting. In addition, the expression levels of tumor necrosis factor (TNF)‑α and interleukin (IL)‑1β were assessed by ELISA. At days 1, 2 and 5 following I/R, motor functions were assessed by an observer blinded to the study. The brain infarct size, neurological deficit scores, number of apoptotic neurons, expression levels of pro‑inflammatory cytokines TNF‑α and IL‑1β were increased following MCAO, whereas the motor function scores were reduced. Pretreatment with DEX prior to MCAO can reverse the effects induced by I/R. Compared with rats in the Sham group, the expression levels of p‑AMPK were mildly increased in the MCAO group and highly increased in the three DEX‑treatment groups. Pretreatment with YOH reversed the above effects of DEX and produced a similar level of cerebral I/R injury. The results demonstrated that precondition with DEX exhibited anti‑inflammatory effects on brain ischemic injury mediated by AMPK signal pathway.
Collapse
Affiliation(s)
- Zhenhong Wang
- Department of Anesthesiology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, P.R. China
| | - Wei Zhou
- Department of Anesthesiology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, P.R. China
| | - Haiping Dong
- Department of Anesthesiology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, P.R. China
| | - Xiaoxiao Ma
- Department of Anesthesiology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, P.R. China
| | - Zhenzhou He
- Department of Anesthesiology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, P.R. China
| |
Collapse
|
15
|
Alawieh A, Andersen M, Adkins DL, Tomlinson S. Acute Complement Inhibition Potentiates Neurorehabilitation and Enhances tPA-Mediated Neuroprotection. J Neurosci 2018; 38:6527-6545. [PMID: 29921716 PMCID: PMC6052238 DOI: 10.1523/jneurosci.0111-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022] Open
Abstract
Because complement activation in the subacute or chronic phase after stroke was recently shown to stimulate neural plasticity, we investigated how complement activation and complement inhibition in the acute phase after murine stroke interacts with subsequent rehabilitation therapy to modulate neuroinflammation and neural remodeling. We additionally investigated how complement and complement inhibition interacts with tissue plasminogen activator (tPA), the other standard of care therapy for stroke, and a U.S. Food and Drug Administration preclinical requirement for translation of an experimental stroke therapy. CR2fH, an injury site-targeted inhibitor of the alternative complement pathway, significantly reduced infarct volume, hemorrhagic transformation, and mortality and significantly improved long-term motor and cognitive performance when administered 1.5 or 24 h after middle cerebral artery occlusion. CR2fH interrupted a poststroke inflammatory process and significantly reduced inflammatory cytokine release, microglial activation, and astrocytosis. Rehabilitation alone showed mild anti-inflammatory effects, including reduced complement activation, but only improved cognitive recovery. CR2fH combined with rehabilitation significantly potentiated cognitive and motor recovery compared with either intervention alone and was associated with higher growth factor release and enhanced rehabilitation-induced neuroblast migration and axonal remodeling. Similar outcomes were seen in adult, aged, and female mice. Using a microembolic model, CR2fH administered in combination with acute tPA therapy improved overall survival and enhanced the neuroprotective effects of tPA, extending the treatment window for tPA therapy. A human counterpart of CR2fH has been shown to be safe and nonimmunogenic in humans and we have demonstrated robust deposition of C3d, the CR2fH targeting epitope, in ischemic human brains after stroke.SIGNIFICANCE STATEMENT Complement inhibition is a potential therapeutic approach for stroke, but it is not known how complement inhibition would interact with current standards of care. We show that, after murine ischemic stroke, rehabilitation alone induced mild anti-inflammatory effects and improved cognitive, but not motor recovery. However, brain-targeted and specific inhibition of the alternative complement pathway, when combined with rehabilitation, significantly potentiated cognitive and motor recovery compared with either intervention alone via mechanisms involving neuroregeneration and enhanced brain remodeling. Further, inhibiting the alternative pathway of complement significantly enhanced the neuroprotective effects of thrombolytic therapy and markedly expanded the therapeutic window for thrombolytic therapy.
Collapse
Affiliation(s)
- Ali Alawieh
- Department of Microbiology and Immunology
- Medical Scientist Training Program, College of Medicine
| | | | - DeAnna L Adkins
- Department of Neurosciences
- College of Health Professions, Medical University of South Carolina, Charleston, South Carolina 29425, and
- Ralph Johnson VA Medical Center, Charleston, South Carolina 29425
| | - Stephen Tomlinson
- Department of Microbiology and Immunology,
- Ralph Johnson VA Medical Center, Charleston, South Carolina 29425
| |
Collapse
|
16
|
Environmental enrichment, alone or in combination with various pharmacotherapies, confers marked benefits after traumatic brain injury. Neuropharmacology 2018; 145:13-24. [PMID: 29499273 DOI: 10.1016/j.neuropharm.2018.02.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) is a significant health care issue that affects over ten million people worldwide. Treatment options are limited with numerous failures resulting from single therapies. Fortunately, several preclinical studies have shown that combination treatment strategies may afford greater improvement and perhaps can lead to successful clinical translation, particularly if one of the therapies is neurorehabilitation. The aim of this review is to highlight TBI studies that combined environmental enrichment (EE), a preclinical model of neurorehabilitation, with pharmacotherapies. A series of PubMed search strategies yielded only nine papers that fit the criteria. The consensus is that EE provides robust neurobehavioral, cognitive, and histological improvement after experimental TBI and that the combination of EE with some pharmacotherapies can lead to benefits beyond those revealed by single therapies. However, it is noted that EE can be challenged by drugs such as the acetylcholinesterase inhibitor, donepezil, and the antipsychotic drug, haloperidol, which attenuate its efficacy. These findings may help shape clinical neurorehabilitation strategies to more effectively improve patient outcome. Potential mechanisms for the EE and pharmacotherapy-induced effects are also discussed. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
|
17
|
Chen X, Zhang X, Xue L, Hao C, Liao W, Wan Q. Treatment with Enriched Environment Reduces Neuronal Apoptosis in the Periinfarct Cortex after Cerebral Ischemia/Reperfusion Injury. Cell Physiol Biochem 2017; 41:1445-1456. [DOI: 10.1159/000468368] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/17/2017] [Indexed: 01/07/2023] Open
Abstract
Background/Aims: Enriched environment (EE) has been reported to exert neuroprotective effect in animal models of ischemic stroke. However, the underlying mechanism remains unclear. The purpose of this study was to investigate the effect of EE treatment on neuronal apoptosis in the periinfarct cortex after cerebral ischemia/reperfusion (I/R) injury. Methods: The cerebral I/R injury was established by middle cerebral artery occlusion (MCAO). A set of behavioral tests including the modified neurological severity score (mNSS), limb-placing test and foot-fault test were conducted. The infarct volume and the neuronal survival rate were evaluated by Nissl staining. The morphology and ultrastructure of ischemic neurons was examined by transmission electron microscopy. Neuronal apoptosis was assessed by double labeling of TdT-mediated dUTP-biotin nick end labeling (TUNEL) with NeuN. The expressions of apoptosis-related proteins were tested by western blotting and immunohistochemical labeling. Results: EE treatment improved neurological function, reduced infarct volume, increased neuronal survival rate and alleviated the morphological and ultrastructural damage of neurons (especially mitochondria) after I/R injury. EE treatment reduced the neuronal apoptosis, increased B cell lymphoma/leukemia-2 (Bcl-2) protein levels while decreased Bcl-2-associated X protein (Bax), cytochrome c, caspase-3 expressions and Bax/Bcl-2 ratio in the periinfarct cortex after cerebral I/R injury. Conclusion: Our findings suggest that EE treatment inhibits neuronal apoptosis in the periinfarct cortex after focal cerebral I/R injury, which may be one of the possible mechanisms underlying the neuroprotective effects of EE.
Collapse
|
18
|
Zhang X, Chen XP, Lin JB, Xiong Y, Liao WJ, Wan Q. Effect of enriched environment on angiogenesis and neurological functions in rats with focal cerebral ischemia. Brain Res 2016; 1655:176-185. [PMID: 27818208 DOI: 10.1016/j.brainres.2016.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to investigate the effect of enriched environment (EE) on cerebral angiogenesis after ischemia-reperfusion injury. Middle cerebral artery occlusion (MCAO) followed by reperfusion was performed in rats to set up an animal model of ischemia-reperfusion injury. In a set of behavioral tests, we demonstrated that the animals in the IEE (ischemia + enriched environment) group exhibited significantly improved neurological functions compared to those in the standard housing condition group. In consistent with the functional tests, smaller infarction volumes were observed in the animals of IEE group. Laser scanning confocal microscopy and 3D quantitative analysis of cerebral microvessels revealed that EE treatment increased the total vessel surface area and number of branch point in the ischemic boundary zone. IgG extraction assay showed that the blood brain barrier (BBB) leakage in the ischemic brain was attenuated after EE treatment. EE treatment also enhanced endothelial cells (ECs) proliferation and increased the expression levels of VEGF and its receptor Flk-1 after ischemia-reperfusion injury. Analyses of Spearman's correlation coefficients indicated a correlation of mNSS scores with enhanced cerebral angiogenesis. Together, the results suggest that EE treatment-induced cerebral angiogenesis may contribute to the improved neurological outcome of stroke animals after ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiu-Ping Chen
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jun-Bin Lin
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Xiong
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei-Jing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Qi Wan
- Department of Physiology, Center for Brain Clinic, Zhongnan Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
19
|
Synergic Effects of Rehabilitation and Intravenous Infusion of Mesenchymal Stem Cells After Stroke in Rats. Phys Ther 2016; 96:1791-1798. [PMID: 27174259 DOI: 10.2522/ptj.20150504] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 05/03/2016] [Indexed: 02/09/2023]
Abstract
BACKGROUND Intravenous infusion of mesenchymal stem cells (MSCs) derived from adult bone marrow improves behavioral function in rat stroke models. Rehabilitation therapy through physical exercise also provides therapeutic efficacy for cerebral ischemia. OBJECTIVE The purpose of this study was to investigate whether synergic effects of daily rehabilitation and intravenous infusion of MSCs has therapeutic effects after stroke in rats. DESIGN This was an experimental study. METHODS A permanent middle cerebral artery occlusion (MCAO) was induced by intraluminal vascular occlusion with a microfilament. Four experimental groups were studied: group 1 (vehicle only, n=10), group 2 (vehicle + exercise, n=10), group 3 (MSCs only, n=10), and group 4 (MSCs + exercise, n=10). Rat MSCs were intravenously infused at 6 hours after MCAO, and the rats received daily rehabilitation with treadmill running exercise for 20 minutes. Lesion size was assessed at 1, 14, and 35 days using magnetic resonance imaging. Functional outcome was assessed using the Limb Placement Test. RESULTS Both combined therapy and MSC infusion reduced lesion volume, induced synaptogenesis, and elicited functional improvement compared with the groups without MSC infusion, but the effect was greater in the combined therapy group. LIMITATIONS A limitation of this study is that the results were limited to an animal model and cannot be generalized to humans. CONCLUSIONS The data indicate that the combined therapy of daily rehabilitation and intravenous infusion of MSCs improved functional outcome in a rat MCAO model.
Collapse
|
20
|
Jiang C, Yu K, Wu Y, Xie H, Liu G, Wu J, Jia J, Kuang S. Enriched Environment Enhances Poststroke Neurological Function Recovery on Rat: Involvement of p-ERK1/2. J Stroke Cerebrovasc Dis 2016; 25:1590-1598. [PMID: 27068861 DOI: 10.1016/j.jstrokecerebrovasdis.2016.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/22/2016] [Accepted: 03/04/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Increasing evidence shows that exposure to an enriched environment (EE) after cerebral ischemia or reperfusion injury is neuroprotective in animal models, including that EE enhances functional recovery after ischemic stroke. However, the mechanism underlying this effect remains unclear. To clarify this critical issue, the current study investigated the effects of EE on the role of extracellular signal-regulated kinase (ERK) after cerebral ischemia or reperfusion injury of rat. METHODS Adult rats were subjected to ischemia induced by middle cerebral artery occlusion (MCAO) followed by reperfusion. Ladder walking task and limb-use asymmetry task were used to test the recovery of rat behavior on postoperative days 1, 3, 5, 7, 14 and days 3, 7, 14, respectively. On the eighth day after MCAO, infarct volume was assessed by 2,3,5-triphenyltetrazolium chloride staining. Expressions of phosphorylated ERK1/2 (p-ERK1/2) and total ERK1/2 were examined by western blot, and electron microscopy was used to evaluate the astrocytes morphology surround in the perivascular 14 days after MCAO. RESULTS EE improves the recovery of coordination and integration of motor movements on rats after cerebral ischemia or reperfusion injury. EE downregulates the level of p-ERK1/2 in the rat cortex after cerebral ischemia or reperfusion injury. Furthermore, EE reduces astrocytic swelling and injury. CONCLUSIONS These findings suggest that EE could promote rehabilitation after ischemia via regulation of p-ERK1/2 expression, which may provide a therapeutic approach for cerebral ischemia or reperfusion injury. The suppression of postischemic astrocytic swelling in the brain of the ischemic rats through the intervention of EE would be one of the underlying mechanisms in the protective effect of cerebral ischemia.
Collapse
Affiliation(s)
- Congyu Jiang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Kewei Yu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Shanghai, China.
| | - Hongyu Xie
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Gang Liu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Junfa Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Shenyi Kuang
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Su Q, Pu H, Hu C. Neuroprotection by combination of resveratrol and enriched environment against ischemic brain injury in rats. Neurol Res 2016; 38:60-8. [PMID: 26883584 DOI: 10.1080/01616412.2015.1133027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Both resveratrol (RV) and enriched environment (EE) exert beneficial effects on neurological functional recovery after an ischemic brain injury. METHODS The neuroprotective effect of combined treatment of RV and EE was examined in a rat model of middle cerebral artery occlusion (MCAO), aiming to further promote neurological functional recovery. RESULTS The combined therapy of RV and EE clearly improved locomotor activity and behaviour examination, compared to the monotherapy of RV or EE alone. Stroke severity was also markedly ameliorated by the co-treatment. Mechanistic study revealed that the combined treatment reduced oxidative stress. Moreover, the detrimental ERK1/2 signalling upregulated by MCAO injury was markedly suppressed by the co-treatment, compared to RV or EE monotherapy. DISCUSSION Altogether, the combined therapy of RV and EE showed a clearly enhanced neuroprotective effect, compared to RV or EE monotherapy, which might be a new strategy for the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Qi Su
- a Department of Rehabilitation Medicine , Nanjing Medical University Affiliated Wuxi Second Hospital , 68 Zhongshan Road, Wuxi 214002 , China
| | - Huaifang Pu
- b Department of Neurology , Nanjing Medical University Affiliated Wuxi Second Hospital , 68 Zhongshan Road, Wuxi 214002 , China
| | - Cailian Hu
- c Department of Pediatrics , Nanjing Medical University Affiliated Wuxi Second Hospital , 68 Zhongshan Road, Wuxi 214002 , China
| |
Collapse
|
22
|
Mering S, Jolkkonen J. Proper housing conditions in experimental stroke studies-special emphasis on environmental enrichment. Front Neurosci 2015; 9:106. [PMID: 25870536 PMCID: PMC4378295 DOI: 10.3389/fnins.2015.00106] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022] Open
Abstract
Environmental enrichment provides laboratory animals with novelty and extra space, allowing different forms of multisensory stimulation ranging from social grouping to enhanced motor activity. At the extreme end of the spectrum, one can have a super-enriched environment. Environmental enrichment is believed to result in improved cognitive and sensorimotor functions both in naïve rodents and in animals with brain lesions such as those occurring after a stroke. Robust behavioral effects in animals which have suffered a stroke are probably related not only to neuronal plasticity in the perilesional cortex but also in remote brain areas. There is emerging evidence to suggest that testing restorative therapies in an enriched environment can maximize treatment effects, e.g., the perilesional milieu seems to be more receptive to concomitant pharmacotherapy and/or cell therapy. This review provides an updated overview on the effect of an enriched environment in stroke animals from the practical points to be considered when planning experiments to the mechanisms explaining why combined therapies can contribute to behavioral improvement in a synergistic manner.
Collapse
Affiliation(s)
- Satu Mering
- Lab Animal Centre, University of Eastern Finland Kuopio, Finland
| | - Jukka Jolkkonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland Kuopio, Finland
| |
Collapse
|
23
|
Abstract
We review topics pertinent to the perioperative care of patients with neurological disorders. Our review addresses topics not only in the anesthesiology literature, but also in basic neurosciences, critical care medicine, neurology, neurosurgery, radiology, and internal medicine literature. We include literature published or available online up through December 8, 2013. As our review is not able to include all manuscripts, we focus on recurring themes and unique and pivotal investigations. We address the broad topics of general neuroanesthesia, stroke, traumatic brain injury, anesthetic neurotoxicity, neuroprotection, pharmacology, physiology, and nervous system monitoring.
Collapse
|
24
|
Dorfman D, Aranda ML, González Fleitas MF, Chianelli MS, Fernandez DC, Sande PH, Rosenstein RE. Environmental enrichment protects the retina from early diabetic damage in adult rats. PLoS One 2014; 9:e101829. [PMID: 25004165 PMCID: PMC4086948 DOI: 10.1371/journal.pone.0101829] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022] Open
Abstract
Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Available treatments are not completely effective. We analyzed the effect of environmental enrichment on retinal damage induced by experimental diabetes in adult Wistar rats. Diabetes was induced by an intraperitoneal injection of streptozotocin. Three days after vehicle or streptozotocin injection, animals were housed in enriched environment or remained in a standard environment. Retinal function (electroretinogram, and oscillatory potentials), retinal morphology, blood-retinal barrier integrity, synaptophysin, astrocyte and Müller cell glial fibrillary acidic protein, vascular endothelial growth factor, tumor necrosis factor-α, and brain-derived neurotrophic factor levels, as well as lipid peroxidation were assessed in retina from diabetic animals housed in standard or enriched environment. Environmental enrichment preserved scotopic electroretinogram a-wave, b-wave and oscillatory potential amplitude, avoided albumin-Evan's blue leakage, prevented the decrease in retinal synaptophysin and astrocyte glial fibrillary acidic protein levels, the increase in Müller cell glial fibrillary acidic protein, vascular endothelial growth factor and tumor necrosis factor-α levels, as well as oxidative stress induced by diabetes. In addition, enriched environment prevented the decrease in retinal brain-derived neurotrophic factor levels induced by experimental diabetes. When environmental enrichment started 7 weeks after diabetes onset, retinal function was significantly preserved. These results indicate that enriched environment could attenuate the early diabetic damage in the retina from adult rats.
Collapse
Affiliation(s)
- Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Marcos L. Aranda
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María Florencia González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Mónica S. Chianelli
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Diego C. Fernandez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
- Laboratory of Histology, School of Medicine, University of Morón, Buenos Aires, Argentina
| | - Pablo H. Sande
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E. Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
25
|
Yalcinkaya E, Celik M. Determining the etiology of hypotension: associated with reperfusion injury? Am J Emerg Med 2014; 32:469-70. [DOI: 10.1016/j.ajem.2014.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/08/2014] [Indexed: 11/25/2022] Open
|
26
|
Bondi CO, Klitsch KC, Leary JB, Kline AE. Environmental enrichment as a viable neurorehabilitation strategy for experimental traumatic brain injury. J Neurotrauma 2014; 31:873-88. [PMID: 24555571 DOI: 10.1089/neu.2014.3328] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Environmental enrichment (EE) emerged as a robust independent variable capable of influencing behavioral outcome in experimental studies after the fortuitous observation by renowned neuropsychologist Donald O. Hebb that rats raised as pets in his home performed markedly better on problem-solving tasks than those kept in the laboratory. In the subsequent years, numerous studies ensued demonstrating that EE was also capable of inducing neuroplasticity in normal (i.e., noninjured) rats. These behavioral and neural alterations provided the impetus for investigating EE as a potential therapy for traumatic brain injury (TBI), which, over the past two decades, has resulted in several reports. Hence, the aim of this review is to integrate the findings and present the current state of EE as a viable neurorehabilitation strategy for TBI. Using the specific key term searches "traumatic brain injury" and "environmental enrichment" or "enriched environment," 30 and 30 experimental TBI articles were identified by PubMed and Scopus, respectively. Of these, 27 articles were common to both search engines. An additional article was found on PubMed using the key terms "enriched environment" and "fluid percussion." A review of the bibliographies in the 34 articles did not yield additional citations. The overwhelming consensus of the 34 publications is that EE benefits behavioral and histological outcome after brain injury produced by various models. Further, the enhancements are observed in male and female as well as adult and pediatric rats and mice. Taken together, these cumulative findings provide strong support for EE as a generalized and robust preclinical model of neurorehabilitation. However, to further enhance the model and to more accurately mimic the clinic, future studies should continue to evaluate EE during more rehabilitation-relevant conditions, such as delayed and shorter time periods, as well as in combination with other therapeutic approaches, as we have been doing for the past few years.
Collapse
Affiliation(s)
- Corina O Bondi
- 1 Physical Medicine and Rehabilitation, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
27
|
Environmental enrichment decreases asphyxia-induced neurobehavioral developmental delay in neonatal rats. Int J Mol Sci 2013; 14:22258-73. [PMID: 24232451 PMCID: PMC3856064 DOI: 10.3390/ijms141122258] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/18/2013] [Accepted: 10/28/2013] [Indexed: 01/01/2023] Open
Abstract
Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia.
Collapse
|