1
|
Sun J, Tan Y, Su J, Mikhail H, Pavel V, Deng Z, Li Y. Role and molecular mechanism of ghrelin in degenerative musculoskeletal disorders. J Cell Mol Med 2023; 27:3681-3691. [PMID: 37661635 PMCID: PMC10718156 DOI: 10.1111/jcmm.17944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/19/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Ghrelin is a brain-gut peptide, and the first 28-peptide that was found in the gastric mucosa. It has a growth hormone (GH)-releasing hormone-like effect and can potently promote the release of GH from pituitary GH cells; however, it is unable to stimulate GH synthesis. Therefore, ghrelin is believed to play a role in promoting bone growth and development. The correlation between ghrelin and some degenerative diseases of the musculoskeletal system has been reported recently, and ghrelin may be one of the factors influencing degenerative pathologies, such as osteoporosis, osteoarthritis, sarcopenia and intervertebral disc degeneration. With population ageing, the risk of health problems caused by degenerative diseases of the musculoskeletal system gradually increases. In this article, the roles of ghrelin in musculoskeletal disorders are summarized to reveal the potential effects of ghrelin as a key target in the treatment of related bone and muscle diseases and the need for further research.
Collapse
Affiliation(s)
- Jianfeng Sun
- Deparment of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of Medicine, Central South UniversityChangshaHunanChina
| | - Yibo Tan
- Deparment of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of Medicine, Central South UniversityChangshaHunanChina
| | - Jingyue Su
- Department of Sports MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenGuangdongChina
| | - Herasimenka Mikhail
- Republican Scientific and Practical Center of Traumatology and OrthopedicsMinskBelarus
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and OrthopedicsMinskBelarus
| | - Zhenhan Deng
- Department of Sports MedicineThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenGuangdongChina
| | - Yusheng Li
- Deparment of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
2
|
Liu K, Bai X, Chen J, Chen G, Ameen Jamal M, He Y. Molecular network mechanism of Shexiang Huayu Xingnao granules in treating intracerebral hemorrhage. IBRAIN 2023; 10:172-185. [PMID: 38915950 PMCID: PMC11193865 DOI: 10.1002/ibra.12131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 06/26/2024]
Abstract
We aim to explore the pharmacological efficacy and molecular network mechanism of Shexiang Huayu Xingnao granules (SX granules) in the treatment of intracerebral hemorrhage (ICH) based on experiments and network pharmacology. After the ICH model establishment, the behavioral functions of rats were assessed by the modified neurological severity score (mNSS), the wire suspension test, and the rotarod test. Brain histomorphological changes were observed using 2,3,5-triphenyl tetrazolium chloride (TTC), hematoxylin-eosin (HE), Nissl, and TdT-mediated dUTP nick end labeling (TUNEL) combined with neuronal nuclear (NEUN) immunofluorescence staining. The cross-targets of SX granules and ICH were obtained using network pharmacology, gene ontology (GO) enrichment analysis, and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway analysis were performed. Then, the obtained Hub genes were verified using real-time quantitative polymerase chain reaction (RT-qPCR). The mNSS score was reduced and the duration to remain wire suspended increased in the SX group. In the morphological experiment, SX granules reduced brain tissue damage, neuronal apoptosis, and the number of astrocytes in the ICH rats. Moreover, 607 targets of drug-disease intersection were obtained by network pharmacology, and 10 Hub genes were found. SX granules regulated the expression of HRAS, MAPK3, and STAT3 in ICH condition. In conclusion, SX granules improved behavioral dysfunction, abnormal alterations in brain tissue, and cell morphology in ICH rats, and potential molecular mechanism was linked with the expression of multiple genes.
Collapse
Affiliation(s)
- Ke‐Qian Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Xue Bai
- Department of NeurologySouth West Medical UniversityLuzhouChina
| | - Ji‐Lin Chen
- Animal CenterKunming Medical UniversityKunmingChina
| | | | - Muhammad Ameen Jamal
- Department of Theriogenology, Faculty of Veterinary SciencesUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Yu‐Qi He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of PharmacyZunyi Medical UniversityZunyiChina
| |
Collapse
|
3
|
Jin J, Duan J, Du L, Xing W, Peng X, Zhao Q. Inflammation and immune cell abnormalities in intracranial aneurysm subarachnoid hemorrhage (SAH): Relevant signaling pathways and therapeutic strategies. Front Immunol 2022; 13:1027756. [PMID: 36505409 PMCID: PMC9727248 DOI: 10.3389/fimmu.2022.1027756] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Intracranial aneurysm subarachnoid hemorrhage (SAH) is a cerebrovascular disorder associated with high overall mortality. Currently, the underlying mechanisms of pathological reaction after aneurysm rupture are still unclear, especially in the immune microenvironment, inflammation, and relevant signaling pathways. SAH-induced immune cell population alteration, immune inflammatory signaling pathway activation, and active substance generation are associated with pro-inflammatory cytokines, immunosuppression, and brain injury. Crosstalk between immune disorders and hyperactivation of inflammatory signals aggravated the devastating consequences of brain injury and cerebral vasospasm and increased the risk of infection. In this review, we discussed the role of inflammation and immune cell responses in the occurrence and development of aneurysm SAH, as well as the most relevant immune inflammatory signaling pathways [PI3K/Akt, extracellular signal-regulated kinase (ERK), hypoxia-inducible factor-1α (HIF-1α), STAT, SIRT, mammalian target of rapamycin (mTOR), NLRP3, TLR4/nuclear factor-κB (NF-κB), and Keap1/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/ARE cascades] and biomarkers in aneurysm SAH. In addition, we also summarized potential therapeutic drugs targeting the aneurysm SAH immune inflammatory responses, such as nimodipine, dexmedetomidine (DEX), fingolimod, and genomic variation-related aneurysm prophylactic agent sunitinib. The intervention of immune inflammatory responses and immune microenvironment significantly reduces the secondary brain injury, thereby improving the prognosis of patients admitted to SAH. Future studies should focus on exploring potential immune inflammatory mechanisms and developing additional therapeutic strategies for precise aneurysm SAH immune inflammatory regulation and genomic variants associated with aneurysm formation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Leiya Du
- 4Department of Oncology, The Second People Hospital of Yibin, Yibin, Sichuan, China
| | - Wenli Xing
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| |
Collapse
|
4
|
Wang Q, Shen ZN, Zhang SJ, Sun Y, Zheng FJ, Li YH. Protective effects and mechanism of puerarin targeting PI3K/Akt signal pathway on neurological diseases. Front Pharmacol 2022; 13:1022053. [PMID: 36353499 PMCID: PMC9637631 DOI: 10.3389/fphar.2022.1022053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 07/22/2023] Open
Abstract
Neurological diseases impose a tremendous and increasing burden on global health, and there is currently no curative agent. Puerarin, a natural isoflavone extracted from the dried root of Pueraria montana var. Lobata (Willd.) Sanjappa and Predeep, is an active ingredient with anti-inflammatory, antioxidant, anti-apoptotic, and autophagy-regulating effects. It has great potential in the treatment of neurological and other diseases. Phosphatidylinositol 3-kinases/protein kinase B (PI3K/Akt) signal pathway is a crucial signal transduction mechanism that regulates biological processes such as cell regeneration, apoptosis, and cognitive memory in the central nervous system, and is closely related to the pathogenesis of nervous system diseases. Accumulating evidence suggests that the excellent neuroprotective effect of puerarin may be related to the regulation of the PI3K/Akt signal pathway. Here, we summarized the main biological functions and neuroprotective effects of puerarin via activating PI3K/Akt signal pathway in neurological diseases. This paper illustrates that puerarin, as a neuroprotective agent, can protect nerve cells and delay the progression of neurological diseases through the PI3K/Akt signal pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu-Hang Li
- *Correspondence: Feng-Jie Zheng, ; Yu-Hang Li,
| |
Collapse
|
5
|
Song D, Yeh CT, Wang J, Guo F. Perspectives on the mechanism of pyroptosis after intracerebral hemorrhage. Front Immunol 2022; 13:989503. [PMID: 36131917 PMCID: PMC9484305 DOI: 10.3389/fimmu.2022.989503] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a highly harmful neurological disorder with high rates of mortality, disability, and recurrence. However, effective therapies are not currently available. Secondary immune injury and cell death are the leading causes of brain injury and a poor prognosis. Pyroptosis is a recently discovered form of programmed cell death that differs from apoptosis and necrosis and is mediated by gasdermin proteins. Pyroptosis is caused by multiple pathways that eventually form pores in the cell membrane, facilitating the release of inflammatory substances and causing the cell to rupture and die. Pyroptosis occurs in neurons, glial cells, and endothelial cells after ICH. Furthermore, pyroptosis causes cell death and releases inflammatory factors such as interleukin (IL)-1β and IL-18, leading to a secondary immune-inflammatory response and further brain damage. The NOD-like receptor protein 3 (NLRP3)/caspase-1/gasdermin D (GSDMD) pathway plays the most critical role in pyroptosis after ICH. Pyroptosis can be inhibited by directly targeting NLRP3 or its upstream molecules, or directly interfering with caspase-1 expression and GSDMD formation, thus significantly improving the prognosis of ICH. The present review discusses key pathological pathways and regulatory mechanisms of pyroptosis after ICH and suggests possible intervention strategies to mitigate pyroptosis and brain dysfunction after ICH.
Collapse
Affiliation(s)
- Dengpan Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| |
Collapse
|
6
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Tang J, Hu L, Long F, Zhang J, Tang J. Action mechanism of early cerebral injuries after spontaneous subarachnoid hemorrhage by silence Ghrelin and angiogenic factor with G-patch and FHA domain 1. Bioengineered 2022; 13:7340-7350. [PMID: 35259055 PMCID: PMC8974202 DOI: 10.1080/21655979.2022.2037373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The objective of the research was to investigate action mechanism of oxidative stress and cerebral injuries after subarachnoid hemorrhage (SAH) by Ghrelin and angiogenic factor G-patch and FHA domain 1 (Aggf1) and offer new research ideas to SAH clinical treatment and SAH-induced early cerebral injuries. SAH rat models were prepared by prechiasmatic anterior cistern injection. Specific Ghrelin and Aggf1 small interfering ribonucleic acid (siRNA) were designed and injected into silence Ghrelin or Aggf1 in rat left lateral ventricles. Rats were divided randomly into sham-operated (sham), SAH model, negative control siRNA, Ghrelin silence (Ghrelin(-/-)), and Aggf1 silence groups. Changes of rat neurological impairment, encephaledema, cerebral tissue phosphorylated protein kinase (p-Akt), and content changes of caspase-3 protein and oxidative stress indexes were observed, including glutathione (GSH) and oxidized glutathione (GSSG). Results showed scores of neurological impairment and water content in SAH model group were reduced compared with sham group, while p-Akt protein and GSH contents were enhanced. However, caspase-3 protein and GSSG contents were declined, showing statistically meaningful difference (P < 0.05). Compared with SAH model group, scores of neurological impairment, cerebral tissue water content, and caspase-3 protein and GSSG contents in silence Ghrelin and Aggf1 groups were increased, while p-Akt protein and GSH contents were decreased, demonstrating statistically meaningful difference (P < 0.05). To conclude, silence Ghrelin and Aggf1 aggravated early cerebral injuries after SAH, revealing that Ghrelin and Aggf1 could protect brains to some degree.
Collapse
Affiliation(s)
- Jianxun Tang
- Department of Cerebrovascular Disease, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ligang Hu
- Department of Cerebrovascular Disease, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Feng Long
- Department of Cerebrovascular Disease, General Medical College of Guilin Medical College, Guilin, China
| | - Jie Zhang
- Department of Cerebrovascular Disease, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jingfeng Tang
- Department of Cerebrovascular Disease, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
8
|
Zeng J, Zheng S, Chen Y, Qu Y, Xie J, Hong E, Lv H, Ding R, Feng L, Xie Z. Puerarin attenuates intracerebral hemorrhage-induced early brain injury possibly by PI3K/Akt signal activation-mediated suppression of NF-κB pathway. J Cell Mol Med 2021; 25:7809-7824. [PMID: 34180121 PMCID: PMC8358853 DOI: 10.1111/jcmm.16679] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Intracerebral hemorrhage (ICH) can induce intensively oxidative stress, neuroinflammation, and brain cell apoptosis. However, currently, there is no highly effective treatment available. Puerarin (PUE) possesses excellent neuroprotective effects by suppressing the NF‐κB pathway and activating the PI3K/Akt signal, but its role and related mechanisms in ICH‐induced early brain injury (EBI) remain unclear. In this study, we intended to observe the effects of PUE and molecular mechanisms on ICH‐induced EBI. ICH was induced in rats by collagenase IV injection. PUE was intraperitoneally administrated alone or with simultaneously intracerebroventricular injection of LY294002 (a specific inhibitor of the PI3K/Akt signal). Neurological deficiency, histological impairment, brain edema, hematoma volume, blood–brain barrier destruction, and brain cell apoptosis were evaluated. Western blot, immunohistochemistry staining, reactive oxygen species (ROS) measurement, and enzyme‐linked immunosorbent assay were performed. PUE administration at 50 mg/kg and 100 mg/kg could significantly reduce ICH‐induced neurological deficits and EBI. Moreover, PUE could notably restrain ICH‐induced upregulation of the NF‐κB pathway, pro‐inflammatory cytokines, ROS level, and apoptotic pathway and activate the PI3K/Akt signal. However, LY294002 delivery could efficaciously weaken these neuroprotective effects of PUE. Overall, PUE could attenuate ICH‐induced behavioral defects and EBI possibly by PI3K/Akt signal stimulation‐mediated inhibition of the NF‐κB pathway, and this made PUE a potential candidate as a promising therapeutic option for ICH‐induced EBI.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Huashan Hospital, Institute of Neurosurgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shizhong Zheng
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yizhao Chen
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoming Qu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayu Xie
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Enhui Hong
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Hongzhu Lv
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Rui Ding
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liang Feng
- Department of Neurosurgery, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Zhichong Xie
- Department of Neurosurgery, Zhujiang Hospital, The Engineering Technology Research Center of Education Ministry of China, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Wang Y, Pan XF, Liu GD, Liu ZH, Zhang C, Chen T, Wang YH. FGF-2 suppresses neuronal autophagy by regulating the PI3K/Akt pathway in subarachnoid hemorrhage. Brain Res Bull 2021; 173:132-140. [PMID: 34023434 DOI: 10.1016/j.brainresbull.2021.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
The degree of early brain injury (EBI) is a significant factor that affects the prognosis of patients with subarachnoid hemorrhage (SAH). Evidence has shown that fibroblast growth factor-2 (FGF-2) may alleviate the serious consequences of EBI after SAH. The objective of the current study was to investigate the underlying mechanism that mediates the neuroprotective effects of FGF-2 in the SAH rat model. Sprague-Dawley (SD) rats that underwent different treatments were divided into various groups. FGF-2 was administered intranasally to rats in the treatment group within 30 min after modeling. Rapamycin (an autophagy activator) or LY294002 (a PI3K/Akt pathway inhibitor) was administered intracerebroventricularly (i.c.v.) 30 min before modeling. Neurological scale and brain water content were measured in the brain tissue of the rats. TUNEL staining, Western blot, and immunofluorescence staining were performed to examine and compare the diverse effects of FGF-2 treatment, activated autophagy, and inhibited the PI3K/Akt pathway. We found that FGF-2 treatment effectively reduced the number of TUNEL-positive cells, decreased the brain water content, and improved the neurological function of rats after SAH. Additionally, the expression levels of autophagy-related proteins (LC3 and Beclin-1) were obviously decreased in the FGF-2 treatment group compared with the SAH + vehicle group. The therapeutic effects of FGF-2 in the SAH + FGF-2+rapamycin group were weakened compared with that in the SAH + FGF-2+DMSO group. In the event of the PI3K/Akt pathway inhibition, the expression levels of LC3 and Beclin-1 were enhanced, and the therapeutic effects of FGF-2 were compromised. In summary, our data collectively demonstrated that FGF-2 may suppress autophagy levels to play a neuroprotective role, at least partially by activating the PI3K/Akt pathway. These results highlight FGF-2 as a promising solution to the clinical intervention of SAH.
Collapse
Affiliation(s)
- Yue Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Xiao-Fei Pan
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Guo-Dong Liu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Zhuang-Hua Liu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Can Zhang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China
| | - Tao Chen
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China.
| | - Yu-Hai Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA), Wuxi, Jiangsu Province, 214044, China.
| |
Collapse
|
10
|
The calcimimetic R-568 attenuates subarachnoid hemorrhage-induced vasospasm through PI3K/Akt/eNOS signaling pathway in the rat model. Brain Res 2021; 1765:147508. [PMID: 33930376 DOI: 10.1016/j.brainres.2021.147508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 02/04/2023]
Abstract
Cerebral vasospasm (CVS) causes mortality and morbidity in patients after subarachnoid hemorrhage (SAH). The mechanism and adequate treatment of CVS are still elusive. R-568 is a calcimimetic agent known to exert a vasodilating effect. However, there is no report on its vasodilator effect against SAH-induced vasospasm. In the present study, we investigated the therapeutic effect of R-568 on the SAH-induced CVS model in rats. Seventy-two adult male Sprague-Dawley rats were divided into 8 groups: sham surgery; SAH only; SAH + Vehicle, SAH + R-568; SAH + R-568 + Wortmannin (the PI3K inhibitor); SAH + Wortmannin; SAH + R-568 + Calhex-231 (a calcilytic agent); SAH + Calhex-231. SAH was induced by blood (0.3 mL) given by intracisternal injection. R-568 (20 µM) was administered intracisternal immediately prior to experimental SAH. Basilar arteries (BAs) were obtained to evaluate PI3K/Akt/eNOS pathway (immunoblotting) and morphological changes 48 h after SAH. Perimeters of BAs were decreased by 24.1% in the SAH group compared to the control group and the wall thickness was increased by 75.3%. With R-568 treatment, those percentages were 9.6% and 29.6%, respectively, indicating that vasospasm was considerably improved when compared with the SAH group (P < 0.001 in both). While p-PI3K/PI3K and p-Akt/Akt ratio and eNOS protein expression were markedly decreased in the SAH rats, treatment with R-568 resulted in a significant increase in these levels. The beneficial effects of R-568 were partially blocked in the presence of Calhex-231 and completely blocked in the presence of Wortmannin. Herein, we found that treatment with R-568 would attenuate SAH-induced CVS through the PI3K/Akt/eNOS pathway and demonstrate therapeutic promise in CVS treatment following SAH.
Collapse
|
11
|
Lei W, Zeng H, Feng H, Ru X, Li Q, Xiao M, Zheng H, Chen Y, Zhang L. Development of an Early Prediction Model for Subarachnoid Hemorrhage With Genetic and Signaling Pathway Analysis. Front Genet 2020; 11:391. [PMID: 32373167 PMCID: PMC7186496 DOI: 10.3389/fgene.2020.00391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 03/30/2020] [Indexed: 01/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is devastating disease with high mortality, high disability rate, and poor clinical prognosis. It has drawn great attentions in both basic and clinical medicine. Therefore, it is necessary to explore the therapeutic drugs and effective targets for early prediction of SAH. Firstly, we demonstrate that LCN2 can effectively intervene or treat SAH from the perspective of cell signaling pathway. Next, three potential genes that we explored have been validated by manually reviewed experimental evidences. Finally, we turn out that the SAH early ensemble learning predictive model performs better than the classical LR, SVM, and Naïve-Bayes models.
Collapse
Affiliation(s)
- Wanjing Lei
- College of Computer Science, Sichuan University, Chengdu, China
| | - Han Zeng
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xufang Ru
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Qiang Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Ming Xiao
- College of Computer Science, Sichuan University, Chengdu, China
| | - Huiru Zheng
- School of Computing, Ulster University, Coleraine, United Kingdom
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Le Zhang
- College of Computer Science, Sichuan University, Chengdu, China
- College of Computer and Information Science, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Cheng Y, Chen B, Xie W, Chen Z, Yang G, Cai Y, Shang H, Zhao W. Ghrelin attenuates secondary brain injury following intracerebral hemorrhage by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway in mice. Int Immunopharmacol 2020; 79:106180. [PMID: 31926478 DOI: 10.1016/j.intimp.2019.106180] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023]
Abstract
Ghrelin, a brain-gut peptide, has been proven to exert neuroprotection in different kinds of neurological diseases; however, its role and the potential molecular mechanisms in secondary brain injury (SBI) after intracerebral hemorrhage (ICH) are still unknown. In this study, we investigate whether treatment with ghrelin may attenuate SBI in a murine ICH model, and if so, whether the neuroprotective effects are due to the inhibition of nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation and promotion of nuclear factor-E2-related factor 2 (Nrf2)/antioxidative response element (ARE) signaling pathway. Stereotactically intrastriatal infusion of autologous blood was performed to mimic ICH. Ghrelin was given intraperitoneally immediately following ICH and again 1 h later. Results showed that ghrelin attenuated neurobehavioral deficits, brain edema, hematoma volume, and perihematomal cell death post-ICH. Ghrelin inhibited the NLRP3 inflammasome activation and subsequently suppressed the neuroinflammatory response as evidenced by reduced microglia activation, neutrophil infiltration, and pro-inflammatory mediators release after ICH. Additionally, ghrelin alleviated ICH-induced oxidative stress according to the chemiluminescence of luminol and lucigenin, malondialdehyde (MDA) content, and total superoxide dismutase (SOD) activity assays. These changes were accompanied by upregulation of Nrf2 expression, Nrf2 nuclear accumulation, and enhanced Nrf2 DNA binding activity, as well as by increased expressions of Nrf2 downstream target antioxidative genes, including NAD(P)H quinine oxidoreductase-1 (NQO1), glutathione cysteine ligase regulatory subunit (GCLC), and glutathione cysteine ligase modulatory subunit (GCLM). Together, our data suggested that ghrelin protected against ICH-induced SBI by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Bin Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wanqun Xie
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zhenghong Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Guoyuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China; Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yu Cai
- Department of Neurosurgery, North Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hanbing Shang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Weiguo Zhao
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
13
|
Gortan Cappellari G, Barazzoni R. Ghrelin forms in the modulation of energy balance and metabolism. Eat Weight Disord 2019; 24:997-1013. [PMID: 30353455 DOI: 10.1007/s40519-018-0599-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a gastric hormone circulating in acylated (AG) and unacylated (UnAG) forms. This narrative review aims at presenting current emerging knowledge on the impact of ghrelin forms on energy balance and metabolism. AG represents ~ 10% of total plasma ghrelin, has an appetite-stimulating effect and is the only form for which a receptor has been identified. Moreover, other metabolic AG-induced effects have been reported, including the modulation of glucose homeostasis with stimulation of liver gluconeogenesis, the increase of fat mass and the improvement of skeletal muscle mitochondrial function. On the other hand, UnAG has no orexigenic effects, however recent reports have shown that it is directly involved in the modulation of skeletal muscle energy metabolism by improving a cluster of interlinked functions including mitochondrial redox activities, tissue inflammation and insulin signalling and action. These findings are in agreement with human studies which show that UnAG circulating levels are positively associated with insulin sensitivity both in metabolic syndrome patients and in a large cohort from the general population. Moreover, ghrelin acylation is regulated by a nutrient sensor mechanism, specifically set on fatty acids availability. These recent findings consistently point towards a novel independent role of UnAG as a regulator of muscle metabolic pathways maintaining energy status and tissue anabolism. While a specific receptor for UnAG still needs to be identified, recent evidence strongly supports the hypothesis that the modulation of ghrelin-related molecular pathways, including those involved in its acylation, may be a potential novel target in the treatment of metabolic derangements in disease states characterized by metabolic and nutritional complications.Level of evidence Level V, narrative review.
Collapse
Affiliation(s)
- Gianluca Gortan Cappellari
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
- Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy.
| |
Collapse
|
14
|
Propofol Reduces Inflammatory Brain Injury after Subarachnoid Hemorrhage: Involvement of PI3K/Akt Pathway. J Stroke Cerebrovasc Dis 2019; 28:104375. [PMID: 31590996 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104375] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/04/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Our previous study showed that propofol, one of the widely used anesthetic agents, can attenuate subarachnoid hemorrhage (SAH)-induced early brain injury (EBI) via inhibiting inflammatory and oxidative reaction. However, it is perplexing whether propofol attenuates inflammatory and oxidative reaction through modulating PI3K/Akt pathway. The present study investigated whether PI3K/Akt pathway is involved in propofol's anti-inflammation, antioxidation, and neuroprotection against SAH-induced EBI. MATERIALS AND METHODS Adult Sprague-Dawley rats underwent SAH and received treatment with propofol or vehicle after 2 and 12 hours of SAH. LY294002 was injected intracerebroventricularly to selectively inhibit PI3K/Akt signaling. Mortality, SAH grading, neurological scores, brain water content, evans blue extravasation, myeloperoxidase, malondialdehyde, superoxide dismutase, and glutathione peroxidase were measured 24 hours after SAH. Immunoreactivity of p-Akt, t-Akt, nuclear factor- kappa B (NF-κB) p65, nuclear factor erythroid-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase (NQO1), and cyclooxygenase-2 (COX-2) in rat brain was determined by western blot. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in rat brain were examined by ELISA. RESULTS Propofol significantly reduces neurological dysfunction, BBB permeability, brain edema, inflammation, and oxidative stress, all of which were reversed by LY294002. Propofol significantly upregulates the immunoreactivity of p-Akt, Nrf2, and NQO1, all of which were abolished by LY294002. Propofol significantly downregulates the overexpression of NF-κB p65, COX-2, TNF-α, and IL-1β, all of which were inhibited by LY294002. CONCLUSION These results suggest that propofol attenuates SAH-induced EBI by inhibiting inflammatory reaction and oxidative stress, which might be associated with the activation of PI3K/Akt signaling pathway.
Collapse
|
15
|
Sun J, Yang X, Zhang Y, Zhang W, Lu J, Hu Q, Liu R, Zhou C, Chen C. Salvinorin A attenuates early brain injury through PI3K/Akt pathway after subarachnoid hemorrhage in rat. Brain Res 2019; 1719:64-70. [PMID: 31125530 DOI: 10.1016/j.brainres.2019.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 02/01/2023]
Abstract
Early brain injury (EBI) refers to the direct injury to the brain during the first 72 h after subarachnoid hemorrhage (SAH), which is one of the major causes for the poor clinical outcome after SAH. In this study, we investigated the effect and the related mechanism of Salvinorin A (SA), a selective kappa opioid receptor agonist, on EBI after SAH. SA was administered by intraperitoneal injection at 24 h, 48 h and 72 h after SAH. The volume of lateral ventricle was measured by magnetic resonance imaging (MRI). The neuronal morphological changes and the apoptotic level in CA1 area of hippocampus were observed by Nissl and TUNEL staining respectively. Protein expression of p-PI3K, p-Akt, p-IKKα/β, p-NF-κB, FoxO1, Bim, Bax and Cleaved-caspase-3 was measured to explore the potential mechanism. We found that SA alleviated the neuronal morphological changes and apoptosis in CA1 area of hippocampus. The mechanism might be related to the increased protein expression of p-PI3K/p-Akt, which accompanied by decreased expression of p-IKKα/β, p-NF-κB, FoxO1, Bim, Bax and Cleaved-caspase-3 in the hippocampus. Thus, therapeutic interventions of SA targeting the PI3K/Akt pathway might be a novel approach to ameliorate EBI via reducing the apoptosis and inflammation after SAH.
Collapse
Affiliation(s)
- Juan Sun
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Neurology, Affiliated Hospital of Qinghai University, China
| | - Xiaomei Yang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Weiguang Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianfei Lu
- Discipline of Neuroscience, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, China
| | - Qin Hu
- Discipline of Neuroscience, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, China
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Changman Zhou
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
16
|
Luo Z, Zhang M, Niu X, Wu D, Tang J. Inhibition of the PI3K/Akt signaling pathway impedes the restoration of neurological function following hypoxic-ischemic brain damage in a neonatal rabbit model. J Cell Biochem 2019; 120:10175-10185. [PMID: 30614032 DOI: 10.1002/jcb.28302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Hypoxic-ischemic brain damage (HIBD), frequently occurring in infancy and childhood, is a major cause of mortality and severe neurologic impairment. This study was performed to examine the effect of the PI3K/Akt signaling pathway on HIBD in a neonatal rabbit model. MATERIALS AND METHODS Uterine artery occlusion was used to establish HIBD models in neonatal rabbits, which were then subjected to sham operation, dimethyl sulfoxide (2 mL) or LY294002 (inhibitor of PI3K/Akt signaling pathway, 6.4 μg/kg). Behavioral neurological assessment was performed in neonatal rabbits delivered by cesarean section, after which serum neuron-specific enolase (NSE) level and cerebral water content were determined. The level of cleaved caspase-3 level and apoptosis of neurons were observed by immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. Furthermore, the expression of PI3K/Akt signaling pathway- and apoptosis-related factors was examined. RESULTS In neonatal rabbits, HIBD increased the fetal death rate; reduced neurological scores of posture, righting reflex, and deglutition reflex; elevated serum NSE levels, cerebral water content, cleaved caspase-3-positive expression in hippocampal CA1 region and apoptotic neurons; inactivated PI3K/Akt signaling pathway as well as reduced Bcl-2 expression and increased BAD and Bax expression. Notably, the treatment of LY294002 further aggravated neurological impairment in neonatal rabbits in response to HIBD. CONCLUSION Following the HIBD caused by intrauterine asphyxia, the LY294002 administered through auricular vein infusion into pregnant rabbits exacerbates neurological impairment of neonatal rabbits, suggesting that inhibition of PI3K/Akt signaling pathway may serve as a candidate therapeutic target for neurological recovery.
Collapse
Affiliation(s)
- Zhihua Luo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Min Zhang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Xia Niu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - De Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Jiulai Tang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
17
|
Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology 2017; 128:142-151. [PMID: 28986282 DOI: 10.1016/j.neuropharm.2017.09.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 02/05/2023]
Abstract
Neuronal apoptosis is considered to be a crucial therapeutic target against early brain injury (EBI) after subarachnoid hemorrhage (SAH). Emerging evidence indicates that Exendin-4 (Ex-4), a glucagon-like peptide 1 receptor (GLP-1R) agonist, plays a neuroprotective role in cerebrovascular disease. This study was conducted in order to verify the neuroprotective role of EX-4 in EBI after SAH in rats. The endovascular perforation model of SAH was performed in Sprague-Dawley rats (n = 153). Ex-4 was intraperitoneally injected 1 h after SAH induction in the rats (SAH + Ex-4). To elucidate the underlying molecular mechanism, small interfering ribonucleic acid (siRNA) for GLP-1R and a specific inhibitor of PI3K, LY294002, were injected intracerebroventricularly into SAH + Ex-4 rats before induction of SAH (n = 6 per group). SAH grading evaluation, immunohistochemistry, Western blots, neurobehavioral assessment, and Fluoro-Jade C (FJC) staining experiments were performed. Expression of GLP-1R was significantly increased and mainly expressed in neurons at 24 h after SAH induction. Administration of Ex-4 significantly improved both short- and long-term neurobehavior in SAH + Ex-4 group compared to SAH + Vehicle group after SAH. Ex-4 treatment significantly increased the expression of GLP-1R, PI3K, p-Akt, Bcl-xl, and Bcl-2, while at the same time was found to decrease expression of Bax in the brain. Effects of Ex-4 were reversed by the intervention of GLP-1R siRNA and LY294002 in SAH + Ex-4+GLP-1R siRNA and SAH + Ex-4+LY294002 groups, respectively. In conclusion, the neuroprotective effect of Ex-4 in EBI after SAH was mediated by attenuation of neuronal apoptosis via GLP-1R/PI3K/Akt signaling pathway, therefore EX-4 should be further investigated as a potential therapeutic agent in stroke patients.
Collapse
|
18
|
Nrf2/HO-1 mediates the neuroprotective effect of mangiferin on early brain injury after subarachnoid hemorrhage by attenuating mitochondria-related apoptosis and neuroinflammation. Sci Rep 2017; 7:11883. [PMID: 28928429 PMCID: PMC5605716 DOI: 10.1038/s41598-017-12160-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023] Open
Abstract
Early brain injury (EBI) is involved in the process of cerebral tissue damage caused by subarachnoid hemorrhage (SAH), and multiple mechanisms, such as apoptosis and inflammation, participate in its development. Mangiferin (MF), a natural C-glucoside xanthone, has been reported to exert beneficial effects against several types of organ injury by influencing various biological progresses. The current study aimed to investigate the potential of MF to protect against EBI following SAH via histological and biological assessments. A rat perforation model of SAH was established, and MF was subsequently administered via intraperitoneal injection at a low and a high dose. High-dose MF significantly lowered the mortality of SAH animals and ameliorated their neurological deficits and brain edema. MF also dose-relatedly attenuated SAH-induced oxidative stress and decreased cortical cell apoptosis by influencing mitochondria-apoptotic proteins. In addition, MF downregulated the activation of the NLRP3 inflammasome and NF-κB as well as the production of inflammatory cytokines, and the expression of Nrf2 and HO-1 was upregulated by MF. The abovementioned findings indicate that MF is neuroprotective against EBI after SAH and Nrf2/HO-1 cascade may play a key role in mediating its effect through regulation of the mitochondrial apoptosis pathway and activation of the NLRP3 inflammasome and NF-κB.
Collapse
|
19
|
Li W, Wu X, Qu R, Wang W, Chen X, Cheng L, Liu Y, Guo L, Zhao Y, Liu C. Ghrelin protects against nucleus pulposus degeneration through inhibition of NF-κB signaling pathway and activation of Akt signaling pathway. Oncotarget 2017; 8:91887-91901. [PMID: 29190883 PMCID: PMC5696149 DOI: 10.18632/oncotarget.19695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
The objective of the present study was to examine the potential role of ghrelin in degeneration of nucleus pulposus (NP). Lower expression levels of ghrelin were found in human NP cells stimulated with interleukin-1β (IL-1β). Moreover, exogenous ghrelin suppressed IL-1β induced degeneration and inflammation associated biomarkers in human NP cells, including matrix metalloproteinase-13, a disintegrin and metalloproteinase with thrombospondin motifs-5, tumor necrosis factor-α and iNOS, which was possibly mediated by antagonization of NF-κB signaling. Moreover, ghrelin enhanced production of critical extracellular matrix of NP cells, including collagen 2, aggrecan, and Sox-9 in NP cells. Ghrelin also promoted NP tissue regeneration in a rabbit IVD degeneration model, which seems to be associated with growth hormone secretagogue receptor. Additionally, the protective role of ghrelin in anabolism potentially relies on activation of Akt signaling pathway. Taken together, ghrelin may represent a molecular target for prevention and treatment of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xihai Wu
- Department of Gynaecology and Obstetrics, Jinan Central Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Ruize Qu
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Wenhan Wang
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xiaomin Chen
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Lei Cheng
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yaoge Liu
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Linlin Guo
- Medical School of Shandong University, Jinan, Shandong 250012, P. R. China
| | - Yunpeng Zhao
- Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery and Institute of Dental Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
20
|
Cheng Y, Wei Y, Yang W, Cai Y, Chen B, Yang G, Shang H, Zhao W. Ghrelin Attenuates Intestinal Barrier Dysfunction Following Intracerebral Hemorrhage in Mice. Int J Mol Sci 2016; 17:ijms17122032. [PMID: 27929421 PMCID: PMC5187832 DOI: 10.3390/ijms17122032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023] Open
Abstract
Intestinal barrier dysfunction remains a critical problem in patients with intracerebral hemorrhage (ICH) and is associated with poor prognosis. Ghrelin, a brain-gut peptide, has been shown to exert protection in animal models of gastrointestinal injury. However, the effect of ghrelin on intestinal barrier dysfunction post-ICH and its possible underlying mechanisms are still unknown. This study was designed to investigate whether ghrelin administration attenuates intestinal barrier dysfunction in experimental ICH using an intrastriatal autologous blood infusion mouse model. Our data showed that treatment with ghrelin markedly attenuated intestinal mucosal injury at both histomorphometric and ultrastructural levels post-ICH. Ghrelin reduced ICH-induced intestinal permeability according to fluorescein isothiocyanate conjugated-dextran (FITC-D) and Evans blue extravasation assays. Concomitantly, the intestinal tight junction-related protein markers, Zonula occludens-1 (ZO-1) and claudin-5 were upregulated by ghrelin post-ICH. Additionally, ghrelin reduced intestinal intercellular adhesion molecule-1 (ICAM-1) expression at the mRNA and protein levels following ICH. Furthermore, ghrelin suppressed the translocation of intestinal endotoxin post-ICH. These changes were accompanied by improved survival rates and an attenuation of body weight loss post-ICH. In conclusion, our results suggest that ghrelin reduced intestinal barrier dysfunction, thereby reducing mortality and weight loss, indicating that ghrelin is a potential therapeutic agent in ICH-induced intestinal barrier dysfunction therapy.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yongxu Wei
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Wenlei Yang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yu Cai
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Bin Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Guoyuan Yang
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Hanbing Shang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Weiguo Zhao
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
21
|
Mao Y, Wang J, Yu F, Li Z, Li H, Guo C, Fan X. Ghrelin protects against palmitic acid or lipopolysaccharide-induced hepatocyte apoptosis through inhibition of MAPKs/iNOS and restoration of Akt/eNOS pathways. Biomed Pharmacother 2016; 84:305-313. [DOI: 10.1016/j.biopha.2016.09.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 01/24/2023] Open
|
22
|
Liu H, Zhao L, Yue L, Wang B, Li X, Guo H, Ma Y, Yao C, Gao L, Deng J, Li L, Feng D, Qu Y. Pterostilbene Attenuates Early Brain Injury Following Subarachnoid Hemorrhage via Inhibition of the NLRP3 Inflammasome and Nox2-Related Oxidative Stress. Mol Neurobiol 2016; 54:5928-5940. [DOI: 10.1007/s12035-016-0108-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/06/2016] [Indexed: 01/15/2023]
|
23
|
Ying GY, Jing CH, Li JR, Wu C, Yan F, Chen JY, Wang L, Dixon BJ, Chen G. Neuroprotective Effects of Valproic Acid on Blood-Brain Barrier Disruption and Apoptosis-Related Early Brain Injury in Rats Subjected to Subarachnoid Hemorrhage Are Modulated by Heat Shock Protein 70/Matrix Metalloproteinases and Heat Shock Protein 70/AKT Pathways. Neurosurgery 2016; 79:286-95. [DOI: 10.1227/neu.0000000000001264] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
24
|
Ghrelin attenuates brain injury in septic mice via PI3K/Akt signaling activation. Brain Res Bull 2016; 124:278-85. [DOI: 10.1016/j.brainresbull.2016.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/24/2016] [Accepted: 06/06/2016] [Indexed: 01/14/2023]
|
25
|
Mao Y, Wang J, Yu F, Cheng J, Li H, Guo C, Fan X. Ghrelin reduces liver impairment in a model of concanavalin A-induced acute hepatitis in mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5385-96. [PMID: 26451091 PMCID: PMC4592035 DOI: 10.2147/dddt.s89096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background and aims Ghrelin is a 28-amino-acid gut hormone that was first discovered as a potent growth hormone secretagogue. Recently, it has been shown to exert a strong anti-inflammatory effect. The purpose of the study reported here was to explore the effect and mechanism of ghrelin on concanavalin (Con) A-induced acute hepatitis. Methods Balb/C mice were divided into four groups: normal control (NC) (mice injected with vehicle [saline]); Con A (25 mg/kg); Con A + 10 μg/kg ghrelin; and Con A + 50 μg/kg ghrelin (1 hour before Con A injection). Pro-inflammatory cytokine levels were detected. Protein levels of phosphoinositide 3-kinase (PI3K); phosphorylated Akt (p-Akt); caspase 3, 8, and 9; and microtubule-associated protein 1 light chain 3 (LC3) were also detected. Perifosine (25 mM) (an Akt inhibitor) was used to investigate whether the protective effect of ghrelin was interrupted by an Akt inhibitor. Protein levels of p-AKT; Bcl-2; Bax; and caspase 3, 8, and 9 were also detected. Results Aspartate aminotransferase, alanine aminotransferase, and pathological damage were significantly ameliorated by ghrelin pretreatment in Con A-induced hepatitis. Inflammatory cytokines were significantly reduced by ghrelin pretreatment. Bcl-2; Bax; and caspase 3, 8, and 9 expression were also clearly affected by ghrelin pretreatment, compared with the Con A-treated group. However, the Akt kinase inhibitor reversed the decrease of Bax and caspase 3, 8, 9, and reduced the protein level of p-Akt and Bcl-2. Ghrelin activated the PI3K/Akt/Bcl-2 pathway and inhibited activation of autophagy. Conclusion Our results demonstrate that ghrelin attenuates Con A-induced acute immune hepatitis by activating the PI3K/Akt pathway and inhibiting the process of autophagy, which might be related to inhibition of inflammatory cytokine release, and prevention of hepatocyte apoptosis. These effects could be interrupted by an Akt kinase inhibitor.
Collapse
Affiliation(s)
- Yuqing Mao
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jianbo Wang
- Department of Gastroenterology and Hepatology, The Central Hospital of Lishui City, Wenzhou Medical University, Zhejiang, People's Republic of China
| | - Fujun Yu
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jian Cheng
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Huanqing Li
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology and Hepatology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, People's Republic of China
| | - Xiaoming Fan
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|