1
|
Crews FT, Coleman LG, Macht VA, Vetreno RP. Alcohol, HMGB1, and Innate Immune Signaling in the Brain. Alcohol Res 2024; 44:04. [PMID: 39135668 PMCID: PMC11318841 DOI: 10.35946/arcr.v44.1.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
PURPOSE Binge drinking (i.e., consuming enough alcohol to achieve a blood ethanol concentration of 80 mg/dL, approximately 4-5 drinks within 2 hours), particularly in early adolescence, can promote progressive increases in alcohol drinking and alcohol-related problems that develop into compulsive use in the chronic relapsing disease, alcohol use disorder (AUD). Over the past decade, neuroimmune signaling has been discovered to contribute to alcohol-induced changes in drinking, mood, and neurodegeneration. This review presents a mechanistic hypothesis supporting high mobility group box protein 1 (HMGB1) and Toll-like receptor (TLR) signaling as key elements of alcohol-induced neuroimmune signaling across glia and neurons, which shifts gene transcription and synapses, altering neuronal networks that contribute to the development of AUD. This hypothesis may help guide further research on prevention and treatment. SEARCH METHODS The authors used the search terms "HMGB1 protein," "alcohol," and "brain" across PubMed, Scopus, and Embase to find articles published between 1991 and 2023. SEARCH RESULTS The database search found 54 references in PubMed, 47 in Scopus, and 105 in Embase. A total of about 100 articles were included. DISCUSSION AND CONCLUSIONS In the brain, immune signaling molecules play a role in normal development that differs from their functions in inflammation and the immune response, although cellular receptors and signaling are shared. In adults, pro-inflammatory signals have emerged as contributing to brain adaptation in stress, depression, AUD, and neurodegenerative diseases. HMGB1, a cytokine-like signaling protein released from activated cells, including neurons, is hypothesized to activate pro-inflammatory signals through TLRs that contribute to adaptations to binge and chronic heavy drinking. HMGB1 alone and in heteromers with other molecules activates TLRs and other immune receptors that spread signaling across neurons and glia. Both blood and brain levels of HMGB1 increase with ethanol exposure. In rats, an adolescent intermittent ethanol (AIE) binge drinking model persistently increases brain HMGB1 and its receptors; alters microglia, forebrain cholinergic neurons, and neuronal networks; and increases alcohol drinking and anxiety while disrupting cognition. Studies of human postmortem AUD brain have found elevated levels of HMGB1 and TLRs. These signals reduce cholinergic neurons, whereas microglia, the brain's immune cells, are activated by binge drinking. Microglia regulate synapses through complement proteins that can change networks affected by AIE that increase drinking, contributing to risks for AUD. Anti-inflammatory drugs, exercise, cholinesterase inhibitors, and histone deacetylase epigenetic inhibitors prevent and reverse the AIE-induced pathology. Further, HMGB1 antagonists and other anti-inflammatory treatments may provide new therapies for alcohol misuse and AUD. Collectively, these findings suggest that restoring the innate immune signaling balance is central to recovering from alcohol-related pathology.
Collapse
Affiliation(s)
- Fulton T. Crews
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Leon G. Coleman
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Victoria A. Macht
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, North Carolina
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
2
|
He Y, Huang Z, Wei C, Chen J. Case Report: Abruptio placentae and epileptic seizure after occurrence of perinatal hyperglycaemia in woman with gestational diabetes mellitus and hypertriglyceridemia-induced acute pancreatitis. Front Endocrinol (Lausanne) 2023; 14:1220957. [PMID: 37920254 PMCID: PMC10619731 DOI: 10.3389/fendo.2023.1220957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/08/2023] [Indexed: 11/04/2023] Open
Abstract
Hypertriglyceridemia-induced acute pancreatitis seldom occurs in the second trimester of pregnancy with gestational diabetes mellitus. For these patients, the existing knowledge on concomitant hyperglycemia is not sufficient. We report a case of abruptio placentae and epileptic seizure following perinatal hyperglycaemia in woman with gestational diabetes mellitus and hypertriglyceridemia-induced acute pancreatitis. The occurrence of abruptio placentae and epileptic seizure may be associated with concomitant hyperglycemia, and the epileptic seizure was terminated after she underwent treatment with insulin. We should pay more attention to the adverse effects of perinatal hyperglycemia and continue to give appropriate insulin treatment even if patients have passed the acute phase of hypertriglyceridemia-induced acute pancreatitis.
Collapse
Affiliation(s)
- Yanlang He
- Medical College of Nanchang University, Nanchang, China
- Department of Gastroenterology and Hepatology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zhijie Huang
- Medical College of Nanchang University, Nanchang, China
| | - Changli Wei
- Department of Gastroenterology and Hepatology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
3
|
Wallace SR, Pagano PJ, Kračun D. MicroRNAs in the Regulation of NADPH Oxidases in Vascular Diabetic and Ischemic Pathologies: A Case for Alternate Inhibitory Strategies? Antioxidants (Basel) 2022; 12:70. [PMID: 36670932 PMCID: PMC9854786 DOI: 10.3390/antiox12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Since their discovery in the vasculature, different NADPH oxidase (NOX) isoforms have been associated with numerous complex vascular processes such as endothelial dysfunction, vascular inflammation, arterial remodeling, and dyslipidemia. In turn, these often underlie cardiovascular and metabolic pathologies including diabetes mellitus type II, cardiomyopathy, systemic and pulmonary hypertension and atherosclerosis. Increasing attention has been directed toward miRNA involvement in type II diabetes mellitus and its cardiovascular and metabolic co-morbidities in the search for predictive and stratifying biomarkers and therapeutic targets. Owing to the challenges of generating isoform-selective NOX inhibitors (NOXi), the development of specific NOXis suitable for therapeutic purposes has been hindered. In that vein, differential regulation of specific NOX isoforms by a particular miRNA or combina-tion thereof could at some point become a reasonable approach for therapeutic targeting under some circumstances. Whereas administration of miRNAs chronically, or even acutely, to patients poses its own set of difficulties, miRNA-mediated regulation of NOXs in the vasculature is worth surveying. In this review, a distinct focus on the role of miRNAs in the regulation of NOXs was made in the context of type II diabetes mellitus and ischemic injury models.
Collapse
Affiliation(s)
- Sean R. Wallace
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Damir Kračun
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
4
|
Chen J, Huang F, Fang X, Li S, Liang Y. Silencing TLR4 using an ultrasound-targeted microbubble destruction-based shRNA system reduces ischemia-induced seizures in hyperglycemic rats. Open Life Sci 2022; 17:1689-1697. [PMID: 36619717 PMCID: PMC9795576 DOI: 10.1515/biol-2022-0526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 12/28/2022] Open
Abstract
The toll-like receptor 4 (TLR4) pathway is involved in seizures. We investigated whether ultrasound-targeted microbubble destruction (UTMD)-mediated delivery of short hairpin RNA (shRNA) targeting the TLR4 gene (shRNA-TLR4) can reduce ischemia-induced seizures in rats with hyperglycemia. A total of 100 male Wistar rats were randomly assigned to five groups: (1) Sham; (2) normal saline (NS); (3) shRNA-TLR4, where rats were injected with shRNA-TLR4; (4) shRNA-TLR4 + US, where rats were injected with shRNA-TLR4 followed by ultrasound (US) irradiation; and (5) shRNA-TLR4 + microbubbles (MBs) + US, where rats were injected with shRNA-TLR4 mixed with MBs followed by US irradiation. Western blot and immunohistochemical staining were used to measure TLR4-positive cells. Half of the rats in the NS group developed tonic-clonic seizures, and TLR4 expression in the CA3 region of the hippocampus was increased in these rats. In addition, the NS group showed an increased number of TLR4-positive cells compared with the Sham group, while there was a decreased number of TLR4-positive cells in the shRNA, shRNA + US, and shRNA + MBs + US groups. Our findings indicate that the TLR4 pathway is involved in the pathogenesis of ischemia-induced seizures in hyperglycemic rats and that UTMD technology may be a promising strategy to treat brain diseases.
Collapse
Affiliation(s)
- Jia Chen
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Fami Huang
- Department of Intensive Care Unit, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511500, China
| | - Xiaobo Fang
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Siying Li
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510150, China
| | - Yanling Liang
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, 510150, China,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China
| |
Collapse
|
5
|
TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by activating PI3K/AKT pathway after spinal cord injury. Cell Death Dis 2020; 11:693. [PMID: 32826878 PMCID: PMC7443136 DOI: 10.1038/s41419-020-02824-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022]
Abstract
Neuroinflammation plays a crucial role in the secondary phase of spinal cord injury (SCI), and is initiated following the activation of toll-like receptor 4 (TLR4). However, the downstream mechanism remains unknown. Pyroptosis is a form of inflammatory programmed cell death, which is closely involved in neuroinflammation, and it can be regulated by TLR4 according to a recent research. In addition, several studies have shown that long non-coding RNAs (lncRNAs) based mechanisms were related to signal transduction downstream of TLR4 in the regulation of inflammation. Thus, in this study, we want to determine whether TLR4 can regulate pyroptosis after SCI via lncRNAs. Our results showed that TLR4 was activated following SCI and promoted the expression of lncRNA-F630028O10Rik. This lncRNA functioned as a ceRNA for miR-1231-5p/Col1a1 axis and enhanced microglial pyroptosis after SCI by activating the PI3K/AKT pathway. Furthermore, we determined STAT1 was the upstream transcriptional factor of IncRNA-F630028O10Rik and was induced by the damage-responsive TLR4/MyD88 signal. Our findings provide new insights and a novel therapeutic strategy for treating SCI.
Collapse
|
6
|
Coleman LG, Zou J, Crews FT. Microglial depletion and repopulation in brain slice culture normalizes sensitized proinflammatory signaling. J Neuroinflammation 2020; 17:27. [PMID: 31954398 PMCID: PMC6969463 DOI: 10.1186/s12974-019-1678-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Background Microglia are critical mediators of neuroimmune pathology across multiple neurologic disorders. Microglia can be persistently activated or “primed” by Toll-like receptor (TLR) activation, ethanol, stress, and other insults. Thus, strategies to prevent or reverse microglial priming may be beneficial for conditions that involve progressively increasing microglial activation. Microglial depletion with repopulation is emerging as a potential therapy to normalize chronic immune activation. Primary organotypic hippocampal slice culture (OHSC) allows for the study of neuroimmune activation as well as microglial depletion and repopulation without involvement of peripheral immune activation. OHSC undergoes functional maturation and retains cytoarchitecture similar to in vivo. Methods OHSC underwent microglial depletion with the CSF1R antagonist PLX3397 with or without repopulation after removal of PLX3397. Immune, trophic, and synaptic gene changes in response to agonists of TLRs 2, 3, 4, 7, and 9 as well as ethanol were assessed in the settings of microglial depletion and repopulation. Gi-DREADD inhibition of microglia was used to confirm select findings seen with depletion. The ability of microglial repopulation to prevent progressive proinflammatory gene induction by chronic ethanol was also investigated. Results Microglia were depleted (> 90%) by PLX3397 in OHSC. Microglial depletion blunted proinflammatory responses to several TLR agonists as well as ethanol, which was mimicked by Gi-DREADD inhibition of OHSC microglia. Removal of PLX3397 was followed by complete repopulation of microglia. OHSCs with repopulated microglia showed increased baseline expression of anti-inflammatory cytokines (e.g., IL-10), microglial inhibitory signals (e.g., CX3CL1), and growth factors (e.g., BDNF). This was associated with blunted induction (~ 50%) of TNFα and IL-1β in response to agonists to TLR4 and TLR7. Further, chronic cycled ethanol from 4 days in vitro (DIV) to 16DIV caused immediate 2-fold inductions of TNFα and IL-1β that grew to ~4-fold of age-matched control slices by 40DIV. This persistent inflammatory gene expression was completely reversed by microglial depletion and repopulation after chronic ethanol. Conclusions Microglia in OHSCs mediate proinflammatory responses to TLR agonists and ethanol. Microglial repopulation promoted an anti-inflammatory, trophic neuroenvironment and normalized proinflammatory gene expression. This supports the possibility of microglial depletion with repopulation as a strategy to reverse chronic neuroimmune activation.
Collapse
Affiliation(s)
- Leon G Coleman
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, CB#7178, 1021 Thurston-Bowles Building, Chapel Hill, NC, USA. .,Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, Chapel Hill, NC, USA.
| | - Jian Zou
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, CB#7178, 1021 Thurston-Bowles Building, Chapel Hill, NC, USA
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, CB#7178, 1021 Thurston-Bowles Building, Chapel Hill, NC, USA.,Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, Chapel Hill, NC, USA.,Department of Psychiatry, The University of North Carolina School of Medicine, Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Kan M, Song L, Zhang X, Zhang J, Fang P. Circulating high mobility group box-1 and toll-like receptor 4 expressions increase the risk and severity of epilepsy. ACTA ACUST UNITED AC 2019; 52:e7374. [PMID: 31241711 PMCID: PMC6596364 DOI: 10.1590/1414-431x20197374] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/16/2019] [Indexed: 12/29/2022]
Abstract
This study aimed to investigate the association of serum high-mobility group box-1 (HMGB1) and toll-like receptor 4 (TLR4) expressions with the risk of epilepsy as well as their correlations with disease severity and resistance to anti-epilepsy drugs. One hundred and five epilepsy patients and 100 healthy controls (HCs) were enrolled in this case-control study, and serum samples were collected from all participants to assess the HMGB1 and TLR4 expressions by enzyme-linked immunosorbent assay (ELISA). Both serum HMGB1 (P<0.001) and TLR4 (P<0.001) expressions were higher in epilepsy patients than in HCs, and they displayed good predictive values for risk of epilepsy. Moreover, HMGB1 was positively correlated with TLR4 level (r=0.735, P<0.001). HMGB1 and TLR4 levels were both elevated in patients with an average seizure duration >5 min compared to patients with a seizure duration ≤5 min (P=0.001 and P=0.014, respectively). Also, HMGB1 and TLR4 were increased in patients with seizure frequency >3 times per month compared to patients with seizure frequency ≤3 times per month (both P=0.001). In addition, HMGB1 and TLR4 expressions were higher in intractable cases compared to drug-responsive cases (P<0.001). In conclusion, both HMGB1 and TLR4 expressions were correlated with increased risk and severity of epilepsy and their level was higher in patients resistant to anti-epilepsy drugs.
Collapse
Affiliation(s)
- Minchen Kan
- Department of Neurology, HanDan Central Hospital, Handan, China
| | - Lihong Song
- Medical Department, HanDan Central Hospital, Handan, China
| | | | - Jing Zhang
- Department of Neurology, HanDan Central Hospital, Handan, China
| | - Pingping Fang
- Department of Neurology, HanDan Central Hospital, Handan, China
| |
Collapse
|
8
|
Abstract
Innate immune signaling is an important feature in the pathology of alcohol use disorders. Alcohol abuse causes persistent innate immune activation in the brain. This is seen in postmortem human alcoholic brain specimens, as well as in primate and rodent models of alcohol consumption. Further, in vitro models of alcohol exposure in neurons and glia also demonstrate innate immune activation. The activation of the innate immune system seems to be important in the development of alcohol use pathology, as anti-immune therapies reduce pathology and ethanol self-administration in rodent models. Further, innate immune activation has been identified in each of the stages of addiction: binge/intoxication, withdrawal/negative affect, and preoccupation/craving. This suggests that innate immune activation may play a role both in the development and maintenance of alcoholic pathology. In this chapter, we discuss the known contributions of innate immune signaling in the pathology of alcohol use disorders, and present potential therapeutic interventions that may be beneficial for alcohol use disorders.
Collapse
Affiliation(s)
- Leon G Coleman
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Andersson U, Yang H, Harris H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Expert Opin Ther Targets 2018; 22:263-277. [PMID: 29447008 DOI: 10.1080/14728222.2018.1439924] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION High-mobility group box 1 (HMGB1) is a ubiquitous nuclear protein that promotes inflammation when released extracellularly after cellular activation, stress, damage or death. HMGB1 operates as one of the most intriguing molecules in inflammatory disorders via recently elucidated signal and molecular transport mechanisms. Treatments based on antagonists specifically targeting extracellular HMGB1 have generated encouraging results in a wide number of experimental models of infectious and sterile inflammation. Clinical studies are still to come. Areas covered: We here summarize recent advances regarding pathways for extracellular HMGB1 release, receptor usage, and functional consequences of post-translational modifications. The review also addresses results of preclinical HMGB1-targeted therapy studies in multiple inflammatory conditions and outlines the current status of emerging clinical HMGB1-specific antagonists. Expert opinion: Blocking excessive amounts of extracellular HMGB1, particularly the disulfide isoform, offers an attractive clinical opportunity to ameliorate systemic inflammatory diseases. Therapeutic interventions to regulate intracellular HMGB1 biology must still await a deeper understanding of intracellular HMGB1 functions. Future work is needed to create more robust assays to evaluate functional bioactivity of HMGB1 antagonists. Forthcoming clinical studies would also greatly benefit from a development of antibody-based assays to quantify HMGB1 redox isoforms, presently assessed by mass spectrometry methods.
Collapse
Affiliation(s)
- Ulf Andersson
- a Department of Women's and Children's Health, Center for Molecular Medicine (CMM) L8:04, Karolinska Institutet , Karolinska University Hospital , Stockholm , Sweden
| | - Huan Yang
- b Laboratory of Biomedical Science , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Helena Harris
- c Unit of Rheumatology, Department of Medicine, Center for Molecular Medicine (CMM) L, 8:04, Karolinska Institutet , Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
10
|
Wang FX, Yang XL, Ma YS, Wei YJ, Yang MH, Chen X, Chen B, He Q, Yang QW, Yang H, Liu SY. TRIF contributes to epileptogenesis in temporal lobe epilepsy during TLR4 activation. Brain Behav Immun 2018; 67:65-76. [PMID: 28867282 DOI: 10.1016/j.bbi.2017.07.157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence indicates that inflammatory processes play a crucial role in the etiopathology of epilepsy and seizure disorders. The Toll/IL-1R domain-containing adapter-inducing IFN-β (TRIF) activated several transcriptions leading to the production of pro-inflammatory cytokines in the central nervous system, which suggests a potential role for TRIF in the epileptogenesis of epilepsy. In this study, we investigated the roles of TRIF in human and mice epileptogenic tissues. Western blot and immunohistochemistry assays showed that the expression of TRIF was significantly upregulated in neurons and glial cells in both human epileptic tissues and mouse models, and positively correlated with seizure frequency. TRIF expression positively correlated with high-mobility group box 1 (HMGB1) expression. In TRIF-deficient mice, electroencephalograms displayed a significant decrease in seizure frequency and duration time, while KA induced seizures compared with wild-type (WT) mice. The number and duration time of spontaneous seizures were also decreased in the chronic KA-induced TRIF-deficient mouse models. In TLR4-deficient hippocampal neurons and mouse models, TRIF expression was lower compared with WT mice during HMGB1 and KA stimulation. Meanwhile, in KA-induced TRIF-deficient mouse models, microglia activation was significantly suppressed; pro-inflammatory factors including IL-1β, TNF-α, iNOS, HMGB1 and IFN-β were reduced; and the survival of the neurons in the hippocampus increased compared with WT mice. Our findings suggested that TRIF may be involved in the epileptogenesis of temporal lobe epilepsy, which would make it a potential therapeutic target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Fa-Xiang Wang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xiao-Lin Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yuan-Shi Ma
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yu-Jia Wei
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Mei-Hua Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xin Chen
- Department of Neurosurgery, Chengdu Military General Hospital, Sichuan 610083, China
| | - Bing Chen
- Department of Neurosurgery, Nanchong Central Hospital, Sichuan 637900, China
| | - Qian He
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qing-Wu Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Shi-Yong Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
11
|
Wang X, Yin F, Li L, Kong H, You B, Zhang W, Chen S, Peng J. Intracerebroventricular injection of miR-146a relieves seizures in an immature rat model of lithium-pilocarpine induced status epilepticus. Epilepsy Res 2017; 139:14-19. [PMID: 29144992 DOI: 10.1016/j.eplepsyres.2017.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Status epilepticus (SE) is a common, life-threatening neurological emergency that confers a high degree of morbidity and mortality. Increasing evidence indicates that neuroinflammation plays a critical role in the pathogenesis of SE. MicroRNA-146a (miR-146a) has been reported to be an important posttranscriptional inflammation-associated microRNA. The aim of this study was to investigate the effect of miR-146a in SE and the mechanism by which it operates. METHODS To study the effect of miR-146a in SE, we chose intracerebroventricular injection for rat at 21-28days old, and made a lithium-pilocarpine-induced SE rat model. We assessed latency time and Lado grade by behavior observation. We performed qPCR, ELISA and western blot tests on rat hippocampus to measure the expression levels of miR-146a, IL-1β, TNF-α, TLR4 and NF-κB. RESULTS In the miR-146a antagomir injection group, the latency to generalized convulsions was shorter, the duration and degree of seizures were more severe, the expression level of miR-146a was clearly decreased, and IL-1β, TNF-α, TLR4 and NF-κB were all significantly up-regulated. The opposite was true for rats treated with miR-146a agomir. CONCLUSION Our findings elucidate the role of inflammation in the pathogenesis of SE in immature rats, and show that regulating the expression level of miR-146a may provide a novel insights into the pathogenesis of SE.
Collapse
Affiliation(s)
- Xiaole Wang
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital of Central South University, China; Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, China
| | - Linhong Li
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Huimin Kong
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Baiyang You
- Department of Cardiovascular, Xiangya Hospital of Central South University, China
| | - Weixi Zhang
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Shuyuan Chen
- Department of Pediatrics, Xiangya Hospital of Central South University, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital of Central South University, China.
| |
Collapse
|
12
|
Su D, Ma J, Yang J, Kang Y, Lv M, Li Y. Monosialotetrahexosy-1 ganglioside attenuates diabetes-associated cerebral ischemia/reperfusion injury through suppression of the endoplasmic reticulum stress-induced apoptosis. J Clin Neurosci 2017; 41:54-59. [DOI: 10.1016/j.jocn.2017.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/13/2017] [Indexed: 11/29/2022]
|
13
|
Sterile Neuroinflammation and Strategies for Therapeutic Intervention. Int J Inflam 2017; 2017:8385961. [PMID: 28127491 PMCID: PMC5239986 DOI: 10.1155/2017/8385961] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
Sterile neuroinflammation is essential for the proper brain development and tissue repair. However, uncontrolled neuroinflammation plays a major role in the pathogenesis of various disease processes. The endogenous intracellular molecules so called damage-associated molecular patterns or alarmins or damage signals that are released by activated or necrotic cells are thought to play a crucial role in initiating an immune response. Sterile inflammatory response that occurs in Alzheimer's disease (AD), Parkinson's disease (PD), stroke, hemorrhage, epilepsy, or traumatic brain injury (TBI) creates a vicious cycle of unrestrained inflammation, driving progressive neurodegeneration. Neuroinflammation is a key mechanism in the progression (e.g., AD and PD) or secondary injury development (e.g., stroke, hemorrhage, stress, and TBI) of multiple brain conditions. Hence, it provides an opportunity for the therapeutic intervention to prevent progressive tissue damage and loss of function. The key for developing anti-neuroinflammatory treatment is to minimize the detrimental and neurotoxic effects of inflammation while promoting the beneficial and neurotropic effects, thereby creating ideal conditions for regeneration and repair. This review outlines how inflammation is involved in the pathogenesis of major nonpathogenic neuroinflammatory conditions and discusses the complex response of glial cells to damage signals. In addition, emerging experimental anti-neuroinflammatory drug treatment strategies are discussed.
Collapse
|
14
|
A. Richard S, Min W, Su Z, Xu HX. Epochal neuroinflammatory role of high mobility group box 1 in central nervous system diseases. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.2.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
15
|
Xia L, Lei Z, Shi Z, Guo D, Su H, Ruan Y, Xu ZC. Enhanced autophagy signaling in diabetic rats with ischemia-induced seizures. Brain Res 2016; 1643:18-26. [DOI: 10.1016/j.brainres.2016.04.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/15/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
|
16
|
Reduced expression of IA channels is associated with post-ischemic seizures. Epilepsy Res 2016; 124:40-8. [PMID: 27259067 DOI: 10.1016/j.eplepsyres.2016.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/09/2015] [Accepted: 05/17/2016] [Indexed: 01/04/2023]
Abstract
PURPOSE Post-stroke seizures are considered as a major cause of epilepsy in adults. The pathophysiologic mechanisms resulting in post-stroke seizures are not fully understood. The present study attempted to reveal a new mechanism underlying neuronal hyperexcitability responsible to the seizure development after ischemic stroke. METHODS Transient global ischemia was produced in adult Wistar rats using the 4-vessel occlusion (4-VO) method. The spontaneous behavioral seizures were defined by the Racine scale III-V. The neuronal death in the brain was determined by hematoxylin-eosin staining. The expression levels of A-type potassium channels were analyzed by immunohistochemical staining and western blotting. RESULTS We found that the incidence of spontaneous behavioral seizures increased according to the severity of ischemia with 0% after 15-min ischemia and ∼50% after 25-min ischemia. All behavioral seizures occurred with 48h after ischemia. Morphological analysis indicated that brain damage was not correlated with behavioral seizures. Immunohistochemical staining showed that the expression levels of the A-type potassium channel subunit Kv4.2 was significantly reduced in ischemic brains with behavioral seizures, but not in ischemic brains without seizures. In addition, rats failing to develop spontaneous behavioral seizures within 2days after ischemia were more sensitive to bicuculline-induced seizures at 2 months after ischemia than control rats. Meanwhile, Kv4.2 expression was decreased in brain at 2 months after ischemia. CONCLUSION Our results demonstrated the reduction of Kv4.2 expression might contribute to the development of post-ischemic seizures and long-term increased seizure susceptibility after ischemia. The mechanisms underlying post-stroke seizures and epilepsy is unknown so far. The down-regulation of IA channels may explained the abnormal neuronal hyperexcitability responsible for the seizure development after ischemic stroke.
Collapse
|
17
|
Lucke-Wold BP, Nguyen L, Turner RC, Logsdon AF, Chen YW, Smith KE, Huber JD, Matsumoto R, Rosen CL, Tucker ES, Richter E. Traumatic brain injury and epilepsy: Underlying mechanisms leading to seizure. Seizure 2015; 33:13-23. [PMID: 26519659 DOI: 10.1016/j.seizure.2015.10.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023] Open
Abstract
Post-traumatic epilepsy continues to be a major concern for those experiencing traumatic brain injury. Post-traumatic epilepsy accounts for 10-20% of epilepsy cases in the general population. While seizure prophylaxis can prevent early onset seizures, no available treatments effectively prevent late-onset seizure. Little is known about the progression of neural injury over time and how this injury progression contributes to late onset seizure development. In this comprehensive review, we discuss the epidemiology and risk factors for post-traumatic epilepsy and the current pharmacologic agents used for treatment. We highlight limitations with the current approach and offer suggestions for remedying the knowledge gap. Critical to this pursuit is the design of pre-clinical models to investigate important mechanistic factors responsible for post-traumatic epilepsy development. We discuss what the current models have provided in terms of understanding acute injury and what is needed to advance understanding regarding late onset seizure. New model designs will be used to investigate novel pathways linking acute injury to chronic changes within the brain. Important components of this transition are likely mediated by toll-like receptors, neuroinflammation, and tauopathy. In the final section, we highlight current experimental therapies that may prove promising in preventing and treating post-traumatic epilepsy. By increasing understanding about post-traumatic epilepsy and injury expansion over time, it will be possible to design better treatments with specific molecular targets to prevent late-onset seizure occurrence following traumatic brain injury.
Collapse
Affiliation(s)
- Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Linda Nguyen
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Aric F Logsdon
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
| | - Yi-Wen Chen
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Kelly E Smith
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
| | - Jason D Huber
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
| | - Rae Matsumoto
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA; College of Pharmacy, Touro University California, 1310 Club Drive, Vallejo, CA 94592, USA
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Eric S Tucker
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Erich Richter
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| |
Collapse
|
18
|
Yuan B, Shen H, Lin L, Su T, Huang Z, Yang Z. Scavenger receptor SRA attenuates TLR4-induced microglia activation in intracerebral hemorrhage. J Neuroimmunol 2015; 289:87-92. [PMID: 26616876 DOI: 10.1016/j.jneuroim.2015.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/08/2015] [Accepted: 10/08/2015] [Indexed: 11/25/2022]
Abstract
Scavenger receptor A (SRA) has been shown to participate in the pattern recognition of pathogen infection. However, its role in intracerebral hemorrhage has not been well defined. In this study, we detected SRA and TLR4 expression and inflammatory response of microglia treated with erythrocyte lysate in vitro, and observed the cerebral water content and neurological deficit of ICH mice in vivo. We found that SRA deficiency leads to greater sensitivity to erythrocyte lysate-induced inflammatory response. SRA down-regulated inflammatory response expression in microglia by suppressing TLR4-induced activation. Collectively, we have identified the molecular linkage between SRA and the TLR4 signaling pathways in ICH. And our results reveal that SRA has important clinical implications for TLR-targeted immunotherapeutical strategy in ICH.
Collapse
Affiliation(s)
- Bangqing Yuan
- Department of Neurosurgery, The 476th Hospital of PLA, Fuzhou, Fujian 350025, China
| | - Hanchao Shen
- Department of Neurosurgery, The 476th Hospital of PLA, Fuzhou, Fujian 350025, China
| | - Li Lin
- Department of Neurosurgery, The 476th Hospital of PLA, Fuzhou, Fujian 350025, China
| | - Tonggang Su
- Department of Neurosurgery, The 476th Hospital of PLA, Fuzhou, Fujian 350025, China
| | - Zemin Huang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Zhao Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China.
| |
Collapse
|