1
|
Dalto JF, Medina JH. Time-dependent inhibition of Rac1 in the VTA enhances long-term aversive memory: implications in active forgetting mechanisms. Sci Rep 2023; 13:13507. [PMID: 37598223 PMCID: PMC10439914 DOI: 10.1038/s41598-023-40434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
The fate of memories depends mainly on two opposing forces: the mechanisms required for the storage and maintenance of memory and the mechanisms underlying forgetting, being the latter much less understood. Here, we show the effect of inhibiting the small Rho GTPase Rac1 on the fate of inhibitory avoidance memory in male rats. The immediate post-training micro-infusion of the specific Rac1 inhibitor NSC23766 (150 ng/0.5 µl/ side) into the ventral tegmental area (VTA) enhanced long-term memory at 1, 7, and 14 days after a single training. Additionally, an opposed effect occurred when the inhibitor was infused at 12 h after training while no effect was observed immediately after testing animals at 1 day. Control experiments ruled out the possibility that post-training memory enhancement was due to facilitation of memory formation since no effect was found when animals were tested at 1 h after acquisition and no memory enhancement was observed after the formation of a weak memory. Immediate post-training micro-infusion of Rac1 inhibitor into the dorsal hippocampus, or the amygdala did not affect memory. Our findings support the idea of a Rac1-dependent time-specific active forgetting mechanism in the VTA controlling the strength of a long-term aversive memory.
Collapse
Affiliation(s)
- Juliana F Dalto
- Instituto de Biología Celular y Neurociencias "Prof. Eduardo de Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155, 3rd Floor, C1121ABG, Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencias "Prof. Eduardo de Robertis", Facultad de Medicina, Universidad de Buenos Aires-CONICET, Paraguay 2155, 3rd Floor, C1121ABG, Buenos Aires, Argentina.
- Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Mollick JA, Hazy TE, Krueger KA, Nair A, Mackie P, Herd SA, O'Reilly RC. A systems-neuroscience model of phasic dopamine. Psychol Rev 2020; 127:972-1021. [PMID: 32525345 PMCID: PMC8453660 DOI: 10.1037/rev0000199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe a neurobiologically informed computational model of phasic dopamine signaling to account for a wide range of findings, including many considered inconsistent with the simple reward prediction error (RPE) formalism. The central feature of this PVLV framework is a distinction between a primary value (PV) system for anticipating primary rewards (Unconditioned Stimuli [USs]), and a learned value (LV) system for learning about stimuli associated with such rewards (CSs). The LV system represents the amygdala, which drives phasic bursting in midbrain dopamine areas, while the PV system represents the ventral striatum, which drives shunting inhibition of dopamine for expected USs (via direct inhibitory projections) and phasic pausing for expected USs (via the lateral habenula). Our model accounts for data supporting the separability of these systems, including individual differences in CS-based (sign-tracking) versus US-based learning (goal-tracking). Both systems use competing opponent-processing pathways representing evidence for and against specific USs, which can explain data dissociating the processes involved in acquisition versus extinction conditioning. Further, opponent processing proved critical in accounting for the full range of conditioned inhibition phenomena, and the closely related paradigm of second-order conditioning. Finally, we show how additional separable pathways representing aversive USs, largely mirroring those for appetitive USs, also have important differences from the positive valence case, allowing the model to account for several important phenomena in aversive conditioning. Overall, accounting for all of these phenomena strongly constrains the model, thus providing a well-validated framework for understanding phasic dopamine signaling. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Jessica A Mollick
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Thomas E Hazy
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Kai A Krueger
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Ananta Nair
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Prescott Mackie
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Seth A Herd
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Randall C O'Reilly
- Department of Psychology and Neuroscience, University of Colorado Boulder
| |
Collapse
|
3
|
Lewis V, Laberge F, Heyland A. Temporal Profile of Brain Gene Expression After Prey Catching Conditioning in an Anuran Amphibian. Front Neurosci 2020; 13:1407. [PMID: 31992968 PMCID: PMC6971186 DOI: 10.3389/fnins.2019.01407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
A key goal in modern neurobiology is to understand the mechanisms underlying learning and memory. To that end, it is essential to identify the patterns of gene expression and the temporal sequence of molecular events associated with learning and memory processes. It is also important to ascertain if and how these molecular events vary between organisms. In vertebrates, learning and memory processes are characterized by distinct phases of molecular activity involving gene transcription, structural change, and long-term maintenance of such structural change in the nervous system. Utilizing next generation sequencing techniques, we profiled the temporal expression patterns of genes in the brain of the fire-bellied toad Bombina orientalis after prey catching conditioning. The fire-bellied toad is a basal tetrapod whose neural architecture and molecular pathways may help us understand the ancestral state of learning and memory mechanisms in tetrapods. Differential gene expression following conditioning revealed activity in molecular pathways related to immediate early genes (IEG), cytoskeletal modification, axon guidance activity, and apoptotic processes. Conditioning induced early IEG activity coinciding with transcriptional activity and neuron structural modification, followed by axon guidance and cell adhesion activity, and late neuronal pruning. While some of these gene expression patterns are similar to those found in mammals submitted to conditioning, some interesting divergent expression profiles were seen, and differential expression of some well-known learning-related mammalian genes is missing altogether. These results highlight the importance of using a comparative approach in the study of the mechanisms of leaning and memory and provide molecular resources for a novel vertebrate model in the relatively poorly studied Amphibia.
Collapse
Affiliation(s)
- Vern Lewis
- Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | | - Andreas Heyland
- Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Abstract
In the past few decades, the field of neuroepigenetics has investigated how the brain encodes information to form long-lasting memories that lead to stable changes in behaviour. Activity-dependent molecular mechanisms, including, but not limited to, histone modification, DNA methylation and nucleosome remodelling, dynamically regulate the gene expression required for memory formation. Recently, the field has begun to examine how a learning experience is integrated at the level of both chromatin structure and synaptic physiology. Here, we provide an overview of key established epigenetic mechanisms that are important for memory formation. We explore how epigenetic mechanisms give rise to stable alterations in neuronal function by modifying synaptic structure and function, and highlight studies that demonstrate how manipulating epigenetic mechanisms may push the boundaries of memory.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Helfer P, Shultz TR. Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking. PLoS Comput Biol 2018; 14:e1006147. [PMID: 29813048 PMCID: PMC5993340 DOI: 10.1371/journal.pcbi.1006147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/08/2018] [Accepted: 04/16/2018] [Indexed: 01/13/2023] Open
Abstract
In long-term potentiation (LTP), one of the most studied types of neural plasticity, synaptic strength is persistently increased in response to stimulation. Although a number of different proteins have been implicated in the sub-cellular molecular processes underlying induction and maintenance of LTP, the precise mechanisms remain unknown. A particular challenge is to demonstrate that a proposed molecular mechanism can provide the level of stability needed to maintain memories for months or longer, in spite of the fact that many of the participating molecules have much shorter life spans. Here we present a computational model that combines simulations of several biochemical reactions that have been suggested in the LTP literature and show that the resulting system does exhibit the required stability. At the core of the model are two interlinked feedback loops of molecular reactions, one involving the atypical protein kinase PKMζ and its messenger RNA, the other involving PKMζ and GluA2-containing AMPA receptors. We demonstrate that robust bistability-stable equilibria both in the synapse's potentiated and unpotentiated states-can arise from a set of simple molecular reactions. The model is able to account for a wide range of empirical results, including induction and maintenance of late-phase LTP, cellular memory reconsolidation and the effects of different pharmaceutical interventions.
Collapse
Affiliation(s)
- Peter Helfer
- Department of Psychology and Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Thomas R. Shultz
- Department of Psychology and School of Computer Science, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Popik B, Crestani AP, Silva MO, Quillfeldt JA, de Oliveira Alvares L. Calpain modulates fear memory consolidation, retrieval and reconsolidation in the hippocampus. Neurobiol Learn Mem 2018; 151:53-58. [PMID: 29630999 DOI: 10.1016/j.nlm.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/20/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
Abstract
It has been proposed that long-lasting changes in dendritic spines provide a physical correlate for memory formation and maintenance. Spine size and shape are highly plastic, controlled by actin polymerization/depolymerization cycles. This actin dynamics are regulated by proteins such as calpain, a calcium-dependent cysteine protease that cleaves the structural cytoskeleton proteins and other targets involved in synaptic plasticity. Here, we tested whether the pharmacological inhibition of calpain in the dorsal hippocampus affects memory consolidation, retrieval and reconsolidation in rats trained in contextual fear conditioning. We first found that post-training infusion of the calpain inhibitor PD150606 impaired long-term memory consolidation, but not short-term memory. Next, we showed that pre-test infusion of the calpain inhibitor hindered memory retrieval. Finally, blocking calpain activity after memory reactivation disrupted reconsolidation. Taken together, our results show that calpain play an essential role in the hippocampus by enabling memory formation, expression and reconsolidation.
Collapse
Affiliation(s)
- Bruno Popik
- Laboratório de Neurobiologia da Memória, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil
| | - Ana Paula Crestani
- Laboratório de Psicobiologia e Neurocomputação, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, 91.501-970 Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil
| | - Mateus Oliveira Silva
- Laboratório de Neurobiologia da Memória, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil
| | - Jorge Alberto Quillfeldt
- Laboratório de Psicobiologia e Neurocomputação, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, 91.501-970 Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil
| | - Lucas de Oliveira Alvares
- Laboratório de Neurobiologia da Memória, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90.046-900 Porto Alegre, Brazil.
| |
Collapse
|
7
|
Lunardi P, Sachser RM, Sierra RO, Pedraza LK, Medina C, de la Fuente V, Romano A, Quillfeldt JA, de Oliveira Alvares L. Effects of Hippocampal LIMK Inhibition on Memory Acquisition, Consolidation, Retrieval, Reconsolidation, and Extinction. Mol Neurobiol 2017; 55:958-967. [DOI: 10.1007/s12035-016-0361-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/28/2016] [Indexed: 02/06/2023]
|
8
|
Sachser RM, Haubrich J, Lunardi PS, de Oliveira Alvares L. Forgetting of what was once learned: Exploring the role of postsynaptic ionotropic glutamate receptors on memory formation, maintenance, and decay. Neuropharmacology 2016; 112:94-103. [PMID: 27425202 DOI: 10.1016/j.neuropharm.2016.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Over the past years, extensive research in experimental cognitive neuroscience has provided a comprehensive understanding about the role of ionotropic glutamate receptor (IGluR)-dependent signaling underpinning postsynaptic plasticity induced by long-term potentiation (LTP), the leading cellular basis of long-term memory (LTM). However, despite the fact that iGluR-mediated postsynaptic plasticity regulates the formation and persistence of LTP and LTM, here we discuss the state-of-the-art regarding the mechanisms underpinning both LTP and LTM decay. First, we review the crucial roles that iGluRs play on memory encoding and stabilization. Second, we discuss the latest findings in forgetting considering hippocampal GluA2-AMPAR trafficking at postsynaptic sites as well as dendritic spine remodeling possibly involved in LTP decay. Third, on the role of retrieving consolidated LTMs, we discuss the mechanisms involved in memory destabilization that occurs followed reactivation that share striking similarities with the neurobiological basis of forgetting. Fourth, since different AMPAR subunits as well as postsynaptic scaffolding proteins undergo ubiquitination, the ubiquitin-proteasome system (UPS) is discussed in light of memory decay. In conclusion, we provide an integrated overview revealing some of the mechanisms determining memory forgetting that are mediated by iGluRs. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Ricardo Marcelo Sachser
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Josué Haubrich
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Santana Lunardi
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization. Neural Plast 2016; 2016:2819107. [PMID: 26881098 PMCID: PMC4736993 DOI: 10.1155/2016/2819107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/21/2015] [Accepted: 10/01/2015] [Indexed: 01/28/2023] Open
Abstract
Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine.
Collapse
|
10
|
Snow WM, Pahlavan PS, Djordjevic J, McAllister D, Platt EE, Alashmali S, Bernstein MJ, Suh M, Albensi BC. Morris Water Maze Training in Mice Elevates Hippocampal Levels of Transcription Factors Nuclear Factor (Erythroid-derived 2)-like 2 and Nuclear Factor Kappa B p65. Front Mol Neurosci 2015; 8:70. [PMID: 26635523 PMCID: PMC4649017 DOI: 10.3389/fnmol.2015.00070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022] Open
Abstract
Research has identified several transcription factors that regulate activity-dependent plasticity and memory, with cAMP-response element binding protein (CREB) being the most well-studied. In neurons, CREB activation is influenced by the transcription factor nuclear factor kappa B (NF-κB), considered central to immunity but more recently implicated in memory. The transcription factor early growth response-2 (Egr-2), an NF-κB gene target, is also associated with learning and memory. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an antioxidant transcription factor linked to NF-κB in pathological conditions, has not been studied in normal memory. Given that numerous transcription factors implicated in activity-dependent plasticity demonstrate connections to NF-κB, this study simultaneously evaluated protein levels of NF-κB, CREB, Egr-2, Nrf2, and actin in hippocampi from young (1 month-old) weanling CD1 mice after training in the Morris water maze, a hippocampal-dependent spatial memory task. After a 6-day acquisition period, time to locate the hidden platform decreased in the Morris water maze. Mice spent more time in the target vs. non-target quadrants of the maze, suggestive of recall of the platform location. Western blot data revealed a decrease in NF-κB p50 protein after training relative to controls, whereas NF-κB p65, Nrf2 and actin increased. Nrf2 levels were correlated with platform crosses in nearly all tested animals. These data demonstrate that training in a spatial memory task results in alterations in and associations with particular transcription factors in the hippocampus, including upregulation of NF-κB p65 and Nrf2. Training-induced increases in actin protein levels caution against its use as a loading control in immunoblot studies examining activity-dependent plasticity, learning, and memory.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada ; Faculty of Health Sciences, Department of Pharmacology and Therapeutics, College of Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Payam S Pahlavan
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada ; Faculty of Health Sciences, Department of Pharmacology and Therapeutics, College of Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Jelena Djordjevic
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada ; Faculty of Health Sciences, Department of Pharmacology and Therapeutics, College of Medicine, University of Manitoba Winnipeg, MB, Canada
| | - Danielle McAllister
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada
| | - Eric E Platt
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada
| | - Shoug Alashmali
- Department of Human Nutritional Sciences, University of Manitoba Winnipeg, MB, Canada
| | - Michael J Bernstein
- Department of Psychological and Social Sciences, Pennsylvania State University Abington Abington, PA, USA
| | - Miyoung Suh
- Department of Human Nutritional Sciences, University of Manitoba Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research Winnipeg, MB, Canada ; Faculty of Health Sciences, Department of Pharmacology and Therapeutics, College of Medicine, University of Manitoba Winnipeg, MB, Canada ; Faculty of Engineering, Department of Electrical and Computer Engineering, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
11
|
Sturgeon M, Davis D, Albers A, Beatty D, Austin R, Ferguson M, Tounsel B, Liebl FLW. The Notch ligand E3 ligase, Mind Bomb1, regulates glutamate receptor localization in Drosophila. Mol Cell Neurosci 2015; 70:11-21. [PMID: 26596173 DOI: 10.1016/j.mcn.2015.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 12/29/2022] Open
Abstract
The postsynaptic density (PSD) is a protein-rich network important for the localization of postsynaptic glutamate receptors (GluRs) and for signaling downstream of these receptors. Although hundreds of PSD proteins have been identified, many are functionally uncharacterized. We conducted a reverse genetic screen for mutations that affected GluR localization using Drosophila genes that encode homologs of mammalian PSD proteins. 42.8% of the mutants analyzed exhibited a significant change in GluR localization at the third instar larval neuromuscular junction (NMJ), a model synapse that expresses homologs of AMPA receptors. We identified the E3 ubiquitin ligase, Mib1, which promotes Notch signaling, as a regulator of synaptic GluR localization. Mib1 positively regulates the localization of the GluR subunits GluRIIA, GluRIIB, and GluRIIC. Mutations in mib1 and ubiquitous expression of Mib1 that lacks its ubiquitin ligase activity result in the loss of synaptic GluRIIA-containing receptors. In contrast, overexpression of Mib1 in all tissues increases postsynaptic levels of GluRIIA. Cellular levels of Mib1 are also important for the structure of the presynaptic motor neuron. While deficient Mib1 signaling leads to overgrowth of the NMJ, ubiquitous overexpression of Mib1 results in a reduction in the number of presynaptic motor neuron boutons and branches. These synaptic changes may be secondary to attenuated glutamate release from the presynaptic motor neuron in mib1 mutants as mib1 mutants exhibit significant reductions in the vesicle-associated protein cysteine string protein and in the frequency of spontaneous neurotransmission.
Collapse
Affiliation(s)
- Morgan Sturgeon
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Dustin Davis
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Amanda Albers
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Derek Beatty
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Rik Austin
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Matt Ferguson
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Brittany Tounsel
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL 62026, United States.
| |
Collapse
|