1
|
Wu H, Wu L, Yu W, Gu C, Li Y, Chen K, Zhang L, Qian F. Veronica linariifolia subsp. dilatata ameliorates LPS-induced acute lung injury by attenuating endothelial cell barrier dysfunction via EGFR/Akt/ZO-1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117545. [PMID: 38056533 DOI: 10.1016/j.jep.2023.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried aerial parts of Veronica linariifolia subsp. dilatata (Nakai & Kitag.) D.Y.Hong named Shui Man Jing (SMJ) is a traditional Chinese medicine with a long history of clinical use in the treatment of chronic bronchitis and coughing up blood, however, its role on acute lung injury (ALI) has not been revealed yet. AIM OF THE STUDY To assess the efficiency of SMJ on ALI and to investigate whether it inhibited endothelial barrier dysfunction by regulating the EGFR/Akt/ZO-1 pathway to alleviate ALI in vivo and in vitro based on the result of network pharmacology. MATERIALS AND METHODS An in vivo model of ALI was established using inhalation of atomized lipopolysaccharide (LPS), and the effects of SMJ on ALI were evaluated through histopathological examination and inflammatory cytokines, lung histology and edema, vascular and alveolar barrier disruption. Network pharmacology was applied to predict the mechanism of SMJ in the treatment of ALI. The crucial targets were validated by RT-PCR, Western Blotting, molecular docking, immunohistochemistry and immunofluorescence methods in vivo and in virto. RESULTS Administration of SMJ protected mice against LPS-induced ALI, including ameliorating the histological alterations in the lung tissues, and decreasing lung edema, protein content of bronchoalveolar lavage fluid, infiltration of inflammatory cell and secretion of cytokines. SMJ exerted protective effects in ALI by inhibiting endothelial barrier dysfunction in mice and bEnd.3 cell. SMJ relieved endothelial barrier dysfunction induced by LPS through upregulating the EGFR expression. SMJ also increased the phosphorylation of Akt, and ZO-1 expression both in vivo and in vitro. CONCLUSION SMJ attenuates vascular endothelial barrier dysfunction for LPS-induced ALI via EGFR/Akt/ZO-1 pathway, and is a promising novel therapeutic candidate for ALI.
Collapse
Affiliation(s)
- Huayan Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Longlong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenchao Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chenming Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liuqiang Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Fei Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Network Pharmacology and Bioinformatics Methods Reveal the Mechanism of Berberine in the Treatment of Ischaemic Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5160329. [PMID: 35815278 PMCID: PMC9259241 DOI: 10.1155/2022/5160329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022]
Abstract
Aim To elucidate the mechanism of action of berberine on ischaemic stroke based on network pharmacology, bioinformatics, and experimental verification. Methods Berberine-related long noncoding RNAs (lncRNAs) were screened from public databases. Differentially expressed lncRNAs in ischaemic stroke were retrieved from the Gene Expression Omnibus (GEO) database. GSE102541 was comprehensively analysed using GEO2R. The correlation between lncRNAs and ischaemic stroke was evaluated by the mammalian noncoding RNA-disease repository (MNDR) database. The component-target-disease network and protein-protein interaction (PPI) network of berberine in the treatment of ischaemic stroke were constructed by using network pharmacology. We then performed gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses. Finally, according to the molecular docking analysis and the binding probability between the lncRNA and key proteins, the effectiveness of the results was further verified by in vitro experiments. Results After matching stroke-related lncRNAs with berberine-related lncRNAs, four genes were selected as potential targets of berberine in the treatment of ischaemic stroke. Subsequently, lncRNA H19 was identified as the potential crucial regulatory lncRNA of berberine. Here, 52 target proteins of berberine in the treatment of ischaemic stroke were identified through database mining. Through topological analysis, 20 key targets were identified which were enriched in inflammation, apoptosis, and immunity. Molecular docking results showed that MAPK8, JUN, and EGFR were central genes. Finally, in vitro experiments demonstrated that lncRNA H19, p-JNK1/JNK1, p-c-Jun/c-Jun, and EGFR expressions were significantly increased in hypoxia-treated SH-SY5Y cells and were restored by berberine treatment. Conclusion The potential targets and biological effects of berberine in the treatment of ischaemic stroke were predicted in this study. The lncRNA H19/EGFR/JNK1/c-Jun signalling pathway may be a key mechanism of berberine-induced neuroprotection in ischaemic stroke.
Collapse
|
3
|
Shan S, Zhang Y, Zhao H, Zeng T, Zhao X. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. CHEMOSPHERE 2022; 298:134261. [PMID: 35302003 DOI: 10.1016/j.chemosphere.2022.134261] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/21/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) have been well demonstrated as potential threats to the ecosystem, whereas the neurotoxicity of MPs in mammals remains to be elucidated. The current study was designed to investigate whether 50 nm polystyrene nanoplastics (PS-NPs) could pass through the blood-brain barrier (BBB), and to elucidate the underlying mechanisms and the following neurotoxic manifestation. In vivo study showed that PS-NPs (0.5-50 mg/kg. bw PS-NPs for 7 days) significantly induced the increase of permeability of BBB, and dose-dependently accumulated in the brain of mice. In addition, PS-NPs were found to be present in microglia, and induced microglia activation and neuron damage in the mouse brain. In vitro studies using the immortalized human cerebral microvascular endothelial cell (hCMEC/D3), the most commonly used cell model for BBB-related studies, revealed that PS-NPs could be internalized into cells, and caused reactive oxygen species (ROS) production, nuclear factor kappa-B (NF-κB) activation, tumor necrosis factors α (TNF-α) secretion, and necroptosis of hCMEC/D3 cells. Furthermore, PS-NPs exposure led to disturbance of the tight junction (TJ) formed by hCMEC/D3, as demonstrated by the decline of transendothelial electrical resistance (TEER) and decreased expression of occludin. Lastly, PS-NPs exposure resulted in the activation of murine microglia BV2 cells, and the cell medium of PS-NPs-exposed BV2 induced obvious damage to murine neuron HT-22 cells. Collectively, these results suggest that PS-NPs could pass through BBB and induce neurotoxicity in mammals probably by inducing activation of microglia.
Collapse
Affiliation(s)
- Shan Shan
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yifan Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huiwen Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Tian M, Wang W, Wang K, Jin P, Lenahan C, Wang Y, Tan J, Wen H, Deng S, Zhao F, Gong Y. Dexmedetomidine alleviates cognitive impairment by reducing blood-brain barrier interruption and neuroinflammation via regulating Th1/Th2/Th17 polarization in an experimental sepsis model of mice. Int Immunopharmacol 2021; 101:108332. [PMID: 34785141 DOI: 10.1016/j.intimp.2021.108332] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023]
Abstract
Clinical studies have shown that dexmedetomidine (DEX) reduces mortality and inflammation in patients with sepsis, and ameliorates cognitive decline in both postoperative and critical care patients. This study aims to explain the neuroprotective effects provided by DEX in mice with cecal ligation and puncture (CLP)-induced polymicrobial sepsis. Mice were treated with DEX intraperitoneally three times every two hours after CLP. The survival rate, body weight, and clinical scores were recorded each day. Morris water maze (MWM) and fear conditioning tests were used to evaluate cognitive function. Blood brain barrier (BBB) permeability, hippocampal inflammation, hippocampal neural apoptosis, and T helper (Th) cell subgroups were assessed. Furthermore, Atipamezole was used to verify that the potential neuroprotective effects in the sepsis-associated encephalopathy (SAE) were mediated by DEX. Compared with the Sham group, CLP mice showed significant cognitive impairment, BBB interruption, excessive neuroinflammation, and neuronal apoptosis. These detrimental effects of CLP were attenuated by DEX. Furthermore, we found that DEX corrects peripheral Th1/Th2/Th17 shift and reduces proinflammatory cytokines in the hippocampus. Additionally, atipamezole prevented DEX's protective effect. Taken together, DEX alleviates cognitive impairments by reducing blood-brain barrier interruption and neuroinflammation by regulating Th1/Th2/Th17 polarization.
Collapse
Affiliation(s)
- Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Wang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kai Wang
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Peng Jin
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Cameron Lenahan
- Burrell college of Osteopathic Medicine, Las Cruses, NM 88003 United States
| | - Yao Wang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiaying Tan
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Huimei Wen
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feng Zhao
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
5
|
Wu S, Yang S, Qu H. circ_CHFR regulates ox-LDL-mediated cell proliferation, apoptosis, and EndoMT by miR-15a-5p/EGFR axis in human brain microvessel endothelial cells. Open Life Sci 2021; 16:1053-1063. [PMID: 34676300 PMCID: PMC8483062 DOI: 10.1515/biol-2021-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/29/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) is a significant risk factor for various brain vascular diseases. Circular RNA (circRNA) is involved in the pathogenesis of brain vascular diseases. This study revealed the roles of circ_CHFR in ox-LDL-mediated cell proliferation, apoptosis, and endothelial-to-mesenchymal transition (EndoMT). Our results showed that circ_CHFR and EGFR expressions were dramatically upregulated, while miR-15a-5p expression was downregulated in ox-LDL-induced human brain microvessel endothelial cells (HBMECs) relative to control groups. circ_CHFR knockdown hindered the effects of ox-LDL exposure on cell proliferation, cell cycle, apoptosis, and EndoMT in HBMECs, whereas these impacts were abolished by miR-15a-5p inhibitor. In addition, circ_CHFR functioned as a sponge of miR-15a-5p and miR-15a-5p bound to EGFR. Thus, we concluded that circ_CHFR silencing hindered ox-LDL-mediated cell proliferation, apoptosis, and EndoMT by downregulating EGFR expression through sponging miR-15a-5p in HBMECs. Our findings provide a new mechanism for studying circRNA-directed therapy in ox-LDL-induced human brain vascular diseases.
Collapse
Affiliation(s)
- Shanwu Wu
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| | - Sheng Yang
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| | - Hongyan Qu
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| |
Collapse
|
6
|
Wang X, Wang F, Lin L, Liang W, Liu S, Hua L, Wang X, Chen H, Peng Z, Wu B. Transcriptome Differences in Pig Tracheal Epithelial Cells in Response to Pasteurella Multocida Infection. Front Vet Sci 2021; 8:682514. [PMID: 34490391 PMCID: PMC8417048 DOI: 10.3389/fvets.2021.682514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022] Open
Abstract
Pasteurella multocida generally colonizes mammalian/bird respiratory tracts and mainly causes respiratory disorders in both humans and animals. To date, the effects of P. multocida infection on the respiratory epithelial barriers and molecules in host respiratory epithelial cells in their response to P. multocida infection are still not well-known. In this study, we used newborn pig tracheal epithelial (NPTr) cells as an in vitro model to investigate the effect of P. multocida infection on host respiratory epithelial barriers. By detecting the transepithelial electrical resistance (TEER) values of NPTr cells and the expression of several known molecules associated with cell adherens and junctions, we found that P. multocida infection disrupted the barrier functions of NPTr cells. By performing RNA sequencing (RNA-Seq), we determined 30 differentially expressed genes (DEGs), including the vascular endothelial growth factor A (VEGFA) encoding gene VEGFA, which participated in biological processes (GO:0034330, GO:0045216, and GO:0098609) closely related to epithelial adhesion and barrier functions. These 30 DEGs participated in 22 significant signaling pathways with a p-value < 0.05, including the transforming growth factor (TGF)-beta signaling pathway (KEGG ID: ssc04350), hypoxia-inducible factor 1 (HIF-1) signaling pathway (KEGG ID: ssc04066), epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor resistance (KEGG ID: ssc01521), tumor necrosis factor (TNF) signaling pathway (KEGG ID: ssc04668), and mitogen-activated protein kinase (MAPK) signaling pathway (KEGG ID: ssc04010), which are reported to have roles in contributing to the production of inflammatory factors as well as the regulation of epithelial adhesion and barrier function in other tissues and organisms. The results presented in this study may help improve our understanding of the pathogenesis of P. multocida.
Collapse
Affiliation(s)
- Xueying Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Fei Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Lin Lin
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Wan Liang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Songtao Liu
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
7
|
Wang Y, Zhang F, Xiong N, Xu H, Chai S, Wang H, Wang J, Zhao H, Jiang X, Fu P, Xiang W. Remodelling and Treatment of the Blood-Brain Barrier in Glioma. Cancer Manag Res 2021; 13:4217-4232. [PMID: 34079374 PMCID: PMC8166259 DOI: 10.2147/cmar.s288720] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
The blood-brain barrier (BBB) is an essential structure of the central nervous system (CNS), and its existence makes the local internal environment of the CNS a relatively independent structure distinct from other internal environments of the human body to ensure normal physiological and high stability of activities of the CNS. Changes in BBB structure and function are fundamental to the pathophysiology of many diseases. The occurrence and development of glioma are often accompanied by a series of changes in the structure and function of the internal environment, the most significant of which is remodelling of the BBB. The remodelling of the BBB usually leads to changes in the permeability of local microvessels, which provide certain favourable conditions for the occurrence and development of glioma. Meanwhile, the newly generated abnormal blood vessels and the remaining intact regions of the BBB also hinder the effects of drug treatments. Changes in permeability and structural function often lead to the creation of abnormally functioning vascular regions, which pose further treatment challenges. At present, therapeutic methods for glioma have not achieved satisfactory effects in clinical practice, and emerging therapeutic methods have not yet been widely used in clinical practice. In this review, we summarize the knowledge of remodelling of the BBB in the glioma environment, the type of changes that occur, and current BBB treatment methods and prospects for the treatment of glioma.
Collapse
Affiliation(s)
- Yihao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Fangcheng Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Nanxiang Xiong
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Hao Xu
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan, 430022, People's Republic of China
| | - Songshan Chai
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Haofei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jiajing Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
8
|
Qiao L, Qin Y, Wang Y, Liang Y, Zhu D, Xiong W, Li L, Bao D, Zhang L, Jin X. A brain glioma gene delivery strategy by angiopep-2 and TAT-modified magnetic lipid-polymer hybrid nanoparticles. RSC Adv 2020; 10:41471-41481. [PMID: 35516547 PMCID: PMC9057840 DOI: 10.1039/d0ra07161g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/26/2020] [Indexed: 11/21/2022] Open
Abstract
Owing to the existence of the blood-brain barrier (BBB), most treatments cannot achieve significant effects on gliomas. In this study, synergistic multitarget Ang-TAT-Fe3O4-pDNA-(ss)373 lipid-polymer hybrid nanoparticles (LPNPs) were designed to penetrate the BBB and deliver therapeutic genes to glioma cells. The basic material of the nanoparticles was PCL3750-ss-PEG7500-ss-PCL3750, and is called (ss)373 herein. (ss)373 NPs, Fe3O4 magnetic nanoparticles (MNPs), DOTAP, and DSPE-PEG-MAL formed the basic structure of LPNPs by self-assembly. The Fe3O4 MNPs were wrapped in (ss)373 NPs to implement magnetic targeting. Then, the Angiopep-2 peptide (Ang) and transactivator of transcription (TAT) were coupled with DSPE-PEG-MAL. Both can enhance BBB penetration and tumor targeting. Finally, the pDNA was compressed on DOTAP to form the complete gene delivery system. The results indicated that the Ang-TAT-Fe3O4-pDNA-(ss)373 LPNPs were 302.33 nm in size. In addition, their zeta potential was 4.66 mV, and they had good biocompatibility. The optimal nanoparticles/pDNA ratio was 5 : 1, as shown by gel retardation assay. In this characterization, compared with other LPNPs, the modified single Ang or without the addition of the Fe3O4 MNPs, the penetration efficiency of the BBB model formed by hCMEC/D3 cells, and the transfection efficiency of C6 cells using pEGFP-C1 as the reporter gene were significantly improved with Ang-TAT-Fe3O4-pDNA-(ss)373 LPNPs in the magnetic field.
Collapse
Affiliation(s)
- Lanxin Qiao
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Yu Qin
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Biomedical Engineering Tianjin 300192 China
| | - Yaxin Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Yi Liang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Dunwan Zhu
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Biomedical Engineering Tianjin 300192 China
| | - Wei Xiong
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Lu Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Di Bao
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Linhua Zhang
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Biomedical Engineering Tianjin 300192 China
| | - Xu Jin
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| |
Collapse
|
9
|
Koskimäki J, Polster SP, Li Y, Romanos S, Srinath A, Zhang D, Carrión-Penagos J, Lightle R, Moore T, Lyne SB, Stadnik A, Piedad K, Cao Y, Shenkar R, Dimov AV, Hobson N, Christoforidis GA, Carroll T, Girard R, Awad IA. Common transcriptome, plasma molecules, and imaging signatures in the aging brain and a Mendelian neurovascular disease, cerebral cavernous malformation. GeroScience 2020; 42:1351-1363. [PMID: 32556941 DOI: 10.1007/s11357-020-00201-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Brain senescence is associated with impaired endothelial barrier function, angiogenic and inflammatory activity, and propensity to brain hemorrhage. The same pathological changes occur in cerebral cavernous malformations (CCM), a genetic neurovascular anomaly. We hypothesized common transcriptomic and plasma cytokine signatures in the aging brain and CCM. We identified 320 genes [fold change ≥1.5; p < 0.05; false discovery rate (FDR) corrected] commonly dysregulated in the aging brain and CCM. Ontology and pathway analyses of the common differentially expressed genes were related to inflammation and extracellular matrix organization. Plasma levels of C-reactive protein and angiopoietin-2 were significantly greater in older compared to younger healthy non-CCM subjects and were also greater in CCM (Sporadic and Familial) subjects regardless of age (all: p < 0.05; FDR corrected). Plasma levels of vascular endothelial growth factor were significantly greater in older compared to younger subjects, in both healthy non-CCM and Sporadic-CCM groups (all: padj < 0.05). Plasma levels of vascular endothelial growth factor were also significantly greater in Familial-CCM cases with germ line mutations regardless of age (all: padj < 0.05) compared to both healthy non-CCM and Sporadic-CCM subjects. Brain white matter vascular permeability assessed by MRI followed the same pattern as vascular endothelial growth factor across all groups. In addition, quantitative susceptibility mapping of brain white matter, a measure of iron deposition, was increased in older compared to younger healthy non-CCM subjects. Genetic aberrations, plasma molecules, and imaging biomarkers in a well characterized Mendelian neurovascular disease may also be applicable in the aging brain. Graphical abstract.
Collapse
Affiliation(s)
- Janne Koskimäki
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Sean P Polster
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Yan Li
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA.,Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Abhinav Srinath
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Dongdong Zhang
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Julián Carrión-Penagos
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Seán B Lyne
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Agnieszka Stadnik
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Kristina Piedad
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Alexey V Dimov
- Department of Diagnostic Radiology, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Nick Hobson
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Gregory A Christoforidis
- Department of Diagnostic Radiology, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Timothy Carroll
- Department of Diagnostic Radiology, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA.
| |
Collapse
|
10
|
A Combined Proteomics and Bioinformatics Approach Reveals Novel Signaling Pathways and Molecular Targets After Intracerebral Hemorrhage. J Mol Neurosci 2020; 70:1186-1197. [PMID: 32170712 PMCID: PMC7359136 DOI: 10.1007/s12031-020-01526-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a non-traumatic cerebrovascular disorder with very high morbidity and mortality and regarded as one of the deadliest stroke subtypes. Notably, there is no effective treatment for ICH. Despite an overall increase in preclinical studies, the pathophysiology of ICH is complex and remains enigmatic. To this end, ICH was induced in male CD-1 mice and the ipsilateral brain tissue was characterized in an unbiased manner using a combination of proteomics and bioinformatics approaches. A total of 4833 proteins were revealed by quantitative proteomic analysis. Of those, 207 proteins exhibited significantly altered expression after ICH in comparison to sham. It was found that 46 proteins were significantly upregulated and 161 proteins were significantly downregulated after ICH compared to sham. The quantitative proteomics approach combined with bioinformatics revealed several novel molecular targets (cyclin-dependent-like kinase 5, E3 ubiquitin-protein ligase, protein phosphatase 2A-alpha, protein phosphatase 2A-beta, serine/threonine-protein kinase PAK1, alpha-actinin-4, calpain-8, axin-1, NCK1, and septin-4), and related signaling pathways, which could play roles in secondary brain injury and long-term neurobehavioral outcomes after ICH warranting further investigation.
Collapse
|
11
|
MicroRNAs in central nervous system diseases: A prospective role in regulating blood-brain barrier integrity. Exp Neurol 2019; 323:113094. [PMID: 31676317 DOI: 10.1016/j.expneurol.2019.113094] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022]
Abstract
Given the essential role of the blood-brain barrier (BBB) in the central nervous system (CNS), cumulative investigations have been performed to elucidate how modulation of BBB structural and functional integrity affects the pathogenesis of CNS diseases such as stroke, traumatic brain injuries, dementia, and cerebral infection. Recent studies have demonstrated that microRNAs (miRNAs) contribute to the maintenance of the BBB and thereby mediate CNS homeostasis. This review summarizes emerging studies that demonstrate cerebral miRNAs regulate BBB function in CNS disorders, emphasizing the direct role of miRNAs in BBB molecular composition. Evidence presented in this review will encourage a deeper understanding of the mechanisms by which miRNAs regulate BBB function, and facilitate the development of new miRNAs-based therapies in patients with CNS diseases.
Collapse
|
12
|
Lin M, Zhu L, Wang J, Xue Y, Shang X. miR-424-5p maybe regulate blood-brain barrier permeability in a model in vitro with Abeta incubated endothelial cells. Biochem Biophys Res Commun 2019; 517:525-531. [PMID: 31375213 DOI: 10.1016/j.bbrc.2019.07.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/19/2019] [Indexed: 11/27/2022]
Abstract
The blood-brain barrier (BBB) in AD patients and in animal models is changed. However, the mechanisms are still unclear. Here, we found that miR-424-5p was upregulated in Abeta-incubated microvascular endothelial cells. TEER and HRP exudation tests showed that miR-424-5p silencing significantly decreased BBB permeability in vitro BBB model with Abeta-incubated. MiR-424-5p silencing upregulated expression of the tight junction proteins, ZO-1 and occludin in Abeta-incubated microvascular endothelial cells. Furthermore, dual luciferase reporter gene assay results confirmed the presence of a potential binding site for miR-424-5p on the 3'UTR of Endophilin-1. Endophilin-1 was down-regulated in Abeta-incubated endothelial cells in which miR-424-5p was silenced. In conclusion, the present study demonstrates that miR-424-5p could affect the expression of tight junction proteins (ZO-1 and occludin) via Endophilin-1 and thereby maybe regulate BBB permeability in an BBB model in vitro with Abeta incubated endothelial cells. MiR-424-5p may thus serve as a protective target for AD and provide a new strategy for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Meiqing Lin
- Department of Neurology, First Affiliated Hospital of China Medical University, Shengyang, 110001, People's Republic of China
| | - Lu Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shengyang, 110001, People's Republic of China
| | - Jirui Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shengyang, 110001, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shengyang, 110001, People's Republic of China
| | - Xiuli Shang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shengyang, 110001, People's Republic of China.
| |
Collapse
|
13
|
Hinkel S, Mattern K, Dietzel A, Reichl S, Müller-Goymann CC. Parametric investigation of static and dynamic cell culture conditions and their impact on hCMEC/D3 barrier properties. Int J Pharm 2019; 566:434-444. [PMID: 31163193 DOI: 10.1016/j.ijpharm.2019.05.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 01/27/2023]
Abstract
In brain research, the hCMEC/D3 cell line is widely used for the establishment of a human in vitro blood-brain barrier (BBB) model. However, its barrier integrity seems to be insufficient for drug permeability studies, represented by rather low transendothelial electrical resistance (TEER) and high permeability of small molecules. Therefore, this study covers a parametric investigation of static and dynamic cell culture conditions to improve barrier functionality of hCMEC/D3. The effect of basal media was investigated by analyzing changes in proliferation rate, barrier integrity and gene expression of cellular junction proteins. The cells were able to grow in different cell culture media, including serum-free media. However, none of these media enhanced strongly the growth rate or barrier integrity compared to the microvascular endothelial cell growth medium-2 (EGM™-2 MV). Furthermore, hCMEC/D3 cells did not respond positively regarding TEER to any tested parameter neither supplements, coating materials nor co-cultures with the human immortalized astrocyte cell line SVGmm. Furthermore, the impact of dynamic conditions was examined by using the Dynamic Micro Tissue Engineering System (DynaMiTES). Cultivation conditions were successfully adapted to the DynaMiTES design and no negative effect was detected by analyzing cell viability and cell count, albeit TEER remained also unchanged. Consequently, the hCMEC/D3 model has considerable limitations and further improvements or alternative cell lines are required.
Collapse
Affiliation(s)
- S Hinkel
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstraße 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - K Mattern
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - A Dietzel
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - S Reichl
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstraße 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - C C Müller-Goymann
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstraße 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany.
| |
Collapse
|
14
|
Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, Li J, Genet N, Henrique Geraldo L, Benedetti L, Künzel S, Pibouin-Fragner L, Thomas JL, Eichmann A. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun 2019; 10:2350. [PMID: 31138815 PMCID: PMC6538628 DOI: 10.1038/s41467-019-10359-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Endothelial cell migration, proliferation and survival are triggered by VEGF-A activation of VEGFR2. However, how these cell behaviors are regulated individually is still unknown. Here we identify Endophilin-A2 (ENDOA2), a BAR-domain protein that orchestrates CLATHRIN-independent internalization, as a critical mediator of endothelial cell migration and sprouting angiogenesis. We show that EndoA2 knockout mice exhibit postnatal angiogenesis defects and impaired front-rear polarization of sprouting tip cells. ENDOA2 deficiency reduces VEGFR2 internalization and inhibits downstream activation of the signaling effector PAK but not ERK, thereby affecting front-rear polarity and migration but not proliferation or survival. Mechanistically, VEGFR2 is directed towards ENDOA2-mediated endocytosis by the SLIT2-ROBO pathway via SLIT-ROBO-GAP1 bridging of ENDOA2 and ROBO1. Blocking ENDOA2-mediated endothelial cell migration attenuates pathological angiogenesis in oxygen-induced retinopathy models. This work identifies a specific endocytic pathway controlling a subset of VEGFR2 mediated responses that could be targeted to prevent excessive sprouting angiogenesis in pathological conditions.
Collapse
Affiliation(s)
- Gael Genet
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kevin Boyé
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Thomas Mathivet
- Inserm U970, Paris Cardiovascular Research Center, Paris, 75015, France
| | - Roxana Ola
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Functional Genomics, Proteomics and Experimental Pathology Department, Prof. Dr. I. Chiricuta Oncology Institute, Cluj-Napoca, Romania, Department of Basic, Preventive and Clinical Science, University of Transylvania, Brasov, Romania
| | - Feng Zhang
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jinyu Li
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Nafiisha Genet
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | | | - Lorena Benedetti
- Department of Neuroscience and Cell Biology, School of Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Steffen Künzel
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | | | - Jean-Leon Thomas
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Sorbonne Universités, UPMC Université Paris 06, Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique, AP-HP, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA.
- Inserm U970, Paris Cardiovascular Research Center, Paris, 75015, France.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
15
|
Zhu L, Lin M, Ma J, Liu W, Gao L, Wei S, Xue Y, Shang X. The role of LINC00094/miR-224-5p (miR-497-5p)/Endophilin-1 axis in Memantine mediated protective effects on blood-brain barrier in AD microenvironment. J Cell Mol Med 2019; 23:3280-3292. [PMID: 30801976 PMCID: PMC6484416 DOI: 10.1111/jcmm.14214] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/19/2018] [Accepted: 01/20/2019] [Indexed: 12/16/2022] Open
Abstract
The dysfunction of the blood-brain barrier (BBB) is one of the main pathological features of Alzheimer's disease (AD). Memantine (MEM), an N-methyl-d-aspartate (NMDA) receptor antagonist, has been reported that been used widely for AD therapy. This study was performed to demonstrate the role of the MEM in regulating BBB permeability in AD microenvironment as well as its possible mechanisms. The present study showed that LINC00094 was dramatically increased in Abeta1-42 -incubated microvascular endothelial cells (ECs) of BBB model in vitro. Besides, it was decreased in MEM-incubated ECs. Silencing LINC00094 significantly decreased BBB permeability, meanwhile up-regulating the expression of ZO-1, occludin and claudin-5. Furthermore, silencing LINC00094 enhance the effect of MEM on decreasing BBB permeability in AD microenvironment. The analysis of the mechanism demonstrated that reduction of LINC00094 inhibited Endophilin-1 expression by up-regulating miR-224-4p/miR-497-5p, promoted the expression of ZO-1, occludin and claudin-5, and ultimately alleviated BBB permeability in AD microenvironment. Taken together, the present study suggests that the MEM/LINC00094/miR-224-5p (miR-497-5p)/Endophilin-1 axis plays a crucial role in the regulation of BBB permeability in AD microenvironment. Silencing LINC00094 combined with MEM provides a novel target for the therapy of AD.
Collapse
Affiliation(s)
- Lu Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Meiqing Lin
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Wenjing Liu
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lili Gao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shanshan Wei
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Xiuli Shang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Yang S, Jin H, Zhao ZG. Epidermal growth factor treatment has protective effects on the integrity of the blood-brain barrier against cerebral ischemia injury in bEnd3 cells. Exp Ther Med 2019; 17:2397-2402. [PMID: 30867725 DOI: 10.3892/etm.2019.7186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Tight junctions (TJs) serve an important role in maintaining the integrity of the blood-brain barrier (BBB), while neurological disorders, including ischemic stroke, induce TJ disruption and increase BBB permeability; results include edema formation and hemorrhage transformation. Cerebral endothelium protection presents a promising approach in ischemic stroke therapy. In the current study, protective effects of the epidermal growth factor (EGF) on ischemia-induced disruption of BBB integrity were examined using an oxygen-glucose deprivation (OGD) model in bEnd3 cells. Expression levels of claudin-5 and TJ protein-1 (ZO-1) were determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis. Cell viability was evaluated by cell counting kit-8 assay and the endothelial permeability of Lucifer yellow (LY) was assessed using Transwell assays. The results revealed that post-ischemia administration of EGF (250 ng/ml) significantly attenuated the decrease in mRNA (P<0.05) and protein (P<0.01) expression levels of claudin-5 and ZO-1, and the increase in endothelial permeability of LY (P<0.05) induced by 4 h OGD exposure followed by 24 h reoxygenation. In addition, EGF did not significant affect cell viability. The current study suggested a potential of EGF to improve BBB integrity against ischemic injury by upregulating the expression of TJ proteins and reducing endothelial permeability.
Collapse
Affiliation(s)
- Shu Yang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Hong Jin
- Disinfection Evaluation Research Center, Institute of Disease Prevention and Control of PLA, Beijing 100071, P.R. China
| | - Zhi-Gang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| |
Collapse
|
17
|
Yang L, Zhang Y, Ma Y, Du J, Gu L, Zheng L, Zhang X. Effect of melatonin on EGF- and VEGF-induced monolayer permeability of HUVECs. Am J Physiol Heart Circ Physiol 2018; 316:H1178-H1191. [PMID: 30575440 DOI: 10.1152/ajpheart.00542.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Melatonin is a natural hormone involved in the regulation of circadian rhythm, immunity, and cardiovascular function. In the present study, we focused on the mechanism of melatonin in the regulation of vascular permeability. We found that melatonin could inhibit both VEGF- and EGF-induced monolayer permeability of human umbilical vein endothelial cells (HUVECs) and change the tyrosine phosphorylation of vascular-endothelial (VE-)cadherin, which was related to endothelial barrier function. In addition, phospho-AKT (Ser473) and phospho-ERK(1/2) played significant roles in the regulation of VE-cadherin phosphorylation. Both the phosphatidylinositol 3-kinase/AKT inhibitor LY49002 and MEK/ERK inhibitor U0126 could inhibit the permeability of HUVECs, but with different effects on tyrosine phosphorylation of VE-cadherin. Melatonin can influence the two growth factor-induced phosphorylation of AKT (Ser473) but not ERK(1/2). Our results show that melatonin can inhibit growth factor-induced monolayer permeability of HUVECs by influencing the phosphorylation of AKT and VE-cadherin. Melatonin can be a potential treatment for diseases associated with abnormal vascular permeability. NEW & NOTEWORTHY We found that melatonin could inhibit both EGF- and VEGF-induced monolayer permeability of human umbilical vein endothelial cells, which is related to phosphorylation of vascular-endothelial cadherin. Blockade of phosphatidylinositol 3-kinase/AKT and MEK/ERK pathways could inhibit the permeability of human umbilical vein endothelial cells, and phosphorylation of AKT (Ser473) might be a critical event in the changing of monolayer permeability and likely has cross-talk with the MEK/ERK pathway.
Collapse
Affiliation(s)
- Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University , Changzhou, Jiangsu , China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University , Nanjing, Jiangsu , China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University , Nanjing, Jiangsu , China
| | - Yadong Ma
- Department of Physiology, Nanjing Medical University , Nanjing, Jiangsu , China
| | - Jun Du
- Department of Physiology, Nanjing Medical University , Nanjing, Jiangsu , China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University , Nanjing, Jiangsu , China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University , Nanjing, Jiangsu , China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University , Nanjing, Jiangsu , China
| | - Lu Zheng
- General Laboratory, The Third Affiliated Hospital of Soochow University , Changzhou, Jiangsu , China
| | - Xiaoying Zhang
- Department of Cardiothoracic surgery and the General Laboratory, The Third Affiliated Hospital of Soochow University , Changzhou, Jiangsu , China
| |
Collapse
|
18
|
Effect of low-frequency but high-intensity noise exposure on swine brain blood barrier permeability and its mechanism of injury. Neurosci Lett 2017; 662:122-128. [PMID: 28941872 DOI: 10.1016/j.neulet.2017.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Vibroacousitic disease (VAD) is caused by excessive exposure to low-frequency but high-intensity noise. The integrity of the brain blood barrier (BBB) is essential for the brain. The study aimed to investigate the effect of noise exposure on the BBB. METHODS Healthy male Bama swine were exposed to 50, 70, 100, and 120Hz, 140dB noise for 30min. After exposure, CT brain imaging and ex vivo fluorescent imaging of parenchymal EB leakage were performed (each group consisted of N=3 swine). The human cerebral microvascular endothelial cells were exposed to 70Hz, 140dB noise for 5min. RESULTS The BBB permeability assay showed that 50, 70, and 100Hz with 140dB noise exposure accelerated BBB permeability, and the BBB opening at 70Hz was most serious and reversible. Additionally, CT images demonstrated that the noise-induced opening of the BBB caused no intracerebral hemorrhage. This noise-induced BBB opening was related to the downregulation of zo-1 and occludin. Finally, cysteinyl leukotriene receptor 1 (CysLT1 receptor) was found to regulate noise-induced tight junction defects in vitro. CONCLUSIONS In conclusion, noise exposure accelerates the formation of a high-permeability BBB with leaky tight junctions through a CysLT1-mediated mechanism, which warrants additional research.
Collapse
|
19
|
Blood-brain barrier dysfunction induced by silica NPs in vitro and in vivo : Involvement of oxidative stress and Rho-kinase/JNK signaling pathways. Biomaterials 2017; 121:64-82. [DOI: 10.1016/j.biomaterials.2017.01.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 01/03/2023]
|
20
|
Ashok A, Rai NK, Raza W, Pandey R, Bandyopadhyay S. Chronic cerebral hypoperfusion-induced impairment of Aβ clearance requires HB-EGF-dependent sequential activation of HIF1α and MMP9. Neurobiol Dis 2016; 95:179-93. [PMID: 27431094 DOI: 10.1016/j.nbd.2016.07.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 01/25/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) manifests Alzheimer's Disease (AD) neuropathology, marked by increased amyloid beta (Aβ). Besides, hypoxia stimulates Heparin-binding EGF-like growth factor (HB-EGF) mRNA expression in the hippocampus. However, involvement of HB-EGF in CCH-induced Aβ pathology remains unidentified. Here, using Bilateral Common Carotid Artery Occlusion mouse model, we explored the mechanism of HB-EGF regulated Aβ induction in CCH. We found that HB-EGF inhibition suppressed, while exogenous-HB-EGF triggered hippocampal Aβ, proving HB-EGF-dependent Aβ increase. We also detected that HB-EGF affected the expression of primary Aβ transporters, receptor for advanced glycation end-products (RAGE) and lipoprotein receptor-related protein-1 (LRP-1), indicating impaired Aβ clearance across the blood-brain barrier (BBB). An HB-EGF-dependent loss in BBB integrity supported impaired Aβ clearance. The effect of HB-EGF on Amyloid Precursor Protein pathway was relatively insignificant, suggesting a lesser effect on Aβ generation. Delving into BBB disruption mechanism demonstrated HB-EGF-mediated stimulation of Matrix metalloprotease-9 (MMP9), which affected BBB via HB-EGF-ectodomain shedding and epidermal growth factor receptor activation. Examining the intersection of HB-EGF-regulated pathway and hypoxia revealed HB-EGF-dependent increase in transcription factor, Hypoxia-inducible factor-1alpha (HIF1α). Further, via binding to hypoxia-responsive elements in MMP9 gene, HIF1α stimulated MMP9 expression, and therefore appeared as a prominent intermediary in HB-EGF-induced BBB damage. Overall, our study reveals the essential role of HB-EGF in triggering CCH-mediated Aβ accumulation. The proposed mechanism involves an HB-EGF-dependent HIF1α increase, generating MMP9 that stimulates soluble-HB-EGF/EGFR-induced BBB disintegration. Consequently, CCH-mediated hippocampal RAGE and LRP-1 deregulation together with BBB damage impair Aβ transport and clearance where HB-EGF plays a pivotal role.
Collapse
Affiliation(s)
- Anushruti Ashok
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nagendra Kumar Rai
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Waseem Raza
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rukmani Pandey
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
21
|
Immortalized endothelial cell lines for in vitro blood–brain barrier models: A systematic review. Brain Res 2016; 1642:532-545. [DOI: 10.1016/j.brainres.2016.04.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/05/2016] [Accepted: 04/12/2016] [Indexed: 12/18/2022]
|
22
|
Prolonged Morphine Exposure Induces Increased Firm Adhesion in an in Vitro Model of the Blood-Brain Barrier. Int J Mol Sci 2016; 17:ijms17060916. [PMID: 27294916 PMCID: PMC4926449 DOI: 10.3390/ijms17060916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 11/17/2022] Open
Abstract
The blood-brain barrier (BBB) has been defined as a critically important protective barrier that is involved in providing essential biologic, physiologic, and immunologic separation between the central nervous system (CNS) and the periphery. Insults to the BBB can cause overall barrier damage or deregulation of the careful homeostasis maintained between the periphery and the CNS. These insults can, therefore, yield numerous phenotypes including increased overall permeability, interendothelial gap formation, alterations in cytokine and chemokine secretion, and accelerated cellular passage. The current studies expose the human brain microvascular endothelial cell line, hCMEC/D3, to prolonged morphine exposure and aim to uncover the mechanisms underlying alterations in barrier function in vitro. These studies show alterations in the mRNA and protein levels of the cellular adhesion molecules (CAMs) intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and activated leukocyte cell adhesion molecule that correlate with an increased firm adhesion of the CD3⁺ subpopulation of peripheral blood mononuclear cells (PBMCs). Overall, these studies suggest that prolonged morphine exposure may result in increased cell migration into the CNS, which may accelerate pathological processes in many diseases that involve the BBB.
Collapse
|
23
|
Strazza M, Maubert ME, Pirrone V, Wigdahl B, Nonnemacher MR. Co-culture model consisting of human brain microvascular endothelial and peripheral blood mononuclear cells. J Neurosci Methods 2016; 269:39-45. [PMID: 27216631 DOI: 10.1016/j.jneumeth.2016.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 04/29/2016] [Accepted: 05/17/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Numerous systems exist to model the blood-brain barrier (BBB) with the goal of understanding the regulation of passage into the central nervous system (CNS) and the potential impact of selected insults on BBB function. These models typically focus on the intrinsic cellular properties of the BBB, yet studies of peripheral cell migration are often excluded due to technical restraints. NEW METHOD This method allows for the study of in vitro cellular transmigration following exposure to any treatment of interest through optimization of co-culture conditions for the human brain microvascular endothelial cells (BMEC) cell line, hCMEC/D3, and primary human peripheral blood mononuclear cells (PBMCs). RESULTS hCMEC/D3 cells form functionally confluent monolayers on collagen coated polytetrafluoroethylene (PTFE) transwell inserts, as assessed by microscopy and tracer molecule (FITC-dextran (FITC-D)) exclusion. Two components of complete hCMEC/D3 media, EBM-2 base-media and hydrocortisone (HC), were determined to be cytotoxic to PBMCs. By combining the remaining components of complete hCMEC/D3 media with complete PBMC media a resulting co-culture media was established for use in hCMEC/D3-PBMC co-culture functional assays. COMPARISON WITH EXISTING METHODS Through this method, issues of extensive differences in culture media conditions are resolved allowing for treatments and functional assays to be conducted on the two cell populations co-cultured simultaneously. CONCLUSION Described here is an in vitro co-culture model of the BBB, consisting of the hCMEC/D3 cell line and primary human PBMCs. The co-culture media will now allow for the study of exposure to potential insults to BBB function over prolonged time courses.
Collapse
Affiliation(s)
- Marianne Strazza
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA.
| | - Monique E Maubert
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA.
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA.
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Bluemle Life Sciences Building, 233 South 10th Street Suite 1050, Philadelphia, PA 19107, USA.
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS #1013A, Philadelphia, PA 19102, USA.
| |
Collapse
|
24
|
MicroRNA-107 prevents amyloid-beta induced blood-brain barrier disruption and endothelial cell dysfunction by targeting Endophilin-1. Exp Cell Res 2016; 343:248-257. [DOI: 10.1016/j.yexcr.2016.03.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 11/21/2022]
|
25
|
Eum SY, Jaraki D, András IE, Toborek M. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2. Toxicol Appl Pharmacol 2015; 287:258-66. [PMID: 26080028 DOI: 10.1016/j.taap.2015.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 05/20/2015] [Accepted: 06/11/2015] [Indexed: 01/30/2023]
Abstract
Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs.
Collapse
Affiliation(s)
- Sung Yong Eum
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Dima Jaraki
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ibolya E András
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|