1
|
Granado MDJ, Pinato L, Santiago J, Barbalho SM, Parmezzan JEL, Suzuki LM, Cabrini ML, Spressão DRMS, Carneiro de Camargo AL, Guissoni Campos LM. Melatonin receptors and Per1 expression in the inferior olivary nucleus of the Sapajus apella monkey. Front Neurosci 2022; 16:1072772. [PMID: 36605547 PMCID: PMC9809291 DOI: 10.3389/fnins.2022.1072772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Melatonin is a transducer of photic environmental information and participates in the synchronization of various physiological and behavioral phenomena. Melatonin can act directly in several areas of the central nervous system through its membrane receptors coupled to G protein, called MT1 and MT2 receptors. In some structures, such as the retina, hypothalamus and pars tuberalis, the expression of both melatonin receptors shows circadian variations. Melatonin can act in the synchronization of the clock proteins rhythm in these areas. Using the immunohistochemistry technique, we detected the immunoexpression of the melatonin receptors and clock genes clock protein Per1 in the inferior olivary nucleus (ION) of the Sapajus apella monkey at specific times of the light-dark phase. The mapping performed by immunohistochemistry showed expressive immunoreactivity (IR) Per1 with predominance during daytime. Both melatonin receptors were expressed in the ION without a day/night difference. The presence of both melatonin receptors and the Per1 protein in the inferior olivary nucleus can indicate a functional role not only in physiological, as in sleep, anxiety, and circadian rhythm, but also a chronobiotic role in motor control mechanisms.
Collapse
Affiliation(s)
- Marcos Donizete Junior Granado
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marília, Brazil
| | - Jeferson Santiago
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Jessica Ellen Lima Parmezzan
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Lenita Mayumi Suzuki
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Mayara Longui Cabrini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | | | - Ana Letícia Carneiro de Camargo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil
| | - Leila Maria Guissoni Campos
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Medical School, University of Marilia (UNIMAR), Marília, Brazil,*Correspondence: Leila Maria Guissoni Campos,
| |
Collapse
|
2
|
Fiuza FP, Queiroz JPG, Aquino ACQ, Câmara DA, Brandão LEM, Lima RH, Cavalcanti JRLP, Engelberth RCGJ, Cavalcante JS. Aging Alters Daily and Regional Calretinin Neuronal Expression in the Rat Non-image Forming Visual Thalamus. Front Aging Neurosci 2021; 13:613305. [PMID: 33716710 PMCID: PMC7943479 DOI: 10.3389/fnagi.2021.613305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/01/2021] [Indexed: 11/29/2022] Open
Abstract
Aging affects the overall physiology, including the image-forming and non-image forming visual systems. Among the components of the latter, the thalamic retinorecipient inter-geniculate leaflet (IGL) and ventral lateral geniculate (vLGN) nucleus conveys light information to subcortical regions, adjusting visuomotor, and circadian functions. It is noteworthy that several visual related cells, such as neuronal subpopulations in the IGL and vLGN are neurochemically characterized by the presence of calcium binding proteins. Calretinin (CR), a representative of such proteins, denotes region-specificity in a temporal manner by variable day–night expression. In parallel, age-related brain dysfunction and neurodegeneration are associated with abnormal intracellular concentrations of calcium. Here, we investigated whether daily changes in the number of CR neurons are a feature of the aged IGL and vLGN in rats. To this end, we perfused rats, ranging from 3 to 24 months of age, within distinct phases of the day, namely zeitgeber times (ZTs). Then, we evaluated CR immunolabeling through design-based stereological cell estimation. We observed distinct daily rhythms of CR expression in the IGL and in both the retinorecipient (vLGNe) and non-retinorecipient (vLGNi) portions of the vLGN. In the ZT 6, the middle of the light phase, the CR cells are reduced with aging in the IGL and vLGNe. In the ZT 12, the transition between light to dark, an age-related CR loss was found in all nuclei. While CR expression predominates in specific spatial domains of vLGN, age-related changes appear not to be restricted at particular portions. No alterations were found in the dark/light transition or in the middle of the dark phase, ZTs 0, and 18, respectively. These results are relevant in the understanding of how aging shifts the phenotype of visual related cells at topographically organized channels of visuomotor and circadian processing.
Collapse
Affiliation(s)
- Felipe P Fiuza
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - José Pablo G Queiroz
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Antônio Carlos Q Aquino
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Diego A Câmara
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Luiz Eduardo M Brandão
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ramon H Lima
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - José Rodolfo L P Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Health Science Center, University of State of Rio Grande do Norte, Mossoró, Brazil
| | - Rovena Clara G J Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
3
|
Xu G, Yang T, Shen H. Effect of Circadian Clock and Light-Dark Cycles in Onchidium reevesii: Possible Implications for Long-Term Memory. Genes (Basel) 2019; 10:E488. [PMID: 31252693 PMCID: PMC6679201 DOI: 10.3390/genes10070488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 11/28/2022] Open
Abstract
The sea slug Onchidium reevesii inhabits the intertidal zone, which is characterized by a changeable environment. Although the circadian modulation of long-term memory (LTM) is well documented, the interaction of the circadian clock with light-dark masking in LTM of intertidal animals is not well understood. We characterized the LTM of Onchidium and tested the expression levels of related genes under a light-dark (LD) cycle and constant darkness (i.e., dark-dark, or DD) cycle. Results indicated that both learning behavior and LTM show differences between circadian time (CT) 10 and zeitgeber time (ZT) 10. In LD, the cry1 gene expressed irregularly, and per2 expression displayed a daily pattern and a peak expression level at ZT 18. OnCREB1 (only in LD conditions) and per2 transcripts cycled in phase with each other. In DD, the cry1 gene had its peak expression at CT 10, and per2 expressed its peak level at CT 18. OnCREB1 had two peak expression levels at ZT 10 or ZT 18 which correspond to the time node of peaks in cry1 and per2, respectively. The obtained results provide an LTM pattern that is different from other model species of the intertidal zone. We conclude that the daily transcriptional oscillations of Onchidium for LTM were affected by circadian rhythms and LD cycle masking.
Collapse
Affiliation(s)
- Guolyu Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China.
| | - Tiezhu Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China.
| | - Heding Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China.
| |
Collapse
|
4
|
Guissoni Campos LM, Hataka A, Vieira IZ, Buchaim RL, Robalinho IF, Arantes GEPS, Viégas JS, Bosso H, Bravos RM, Pinato L. Circadian Clock Proteins and Melatonin Receptors in Neurons and Glia of the Sapajus apella Cerebellum. Front Physiol 2018; 9:5. [PMID: 29479318 PMCID: PMC5811497 DOI: 10.3389/fphys.2018.00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
Oscillations of brain proteins in circadian rhythms are important for determining several cellular and physiological processes in anticipation of daily and seasonal environmental rhythms. In addition to the suprachiasmatic nucleus, the primary central oscillator, the cerebellum shows oscillations in gene and protein expression. The variety of local circuit rhythms that the cerebellar cortex contains influences functions such as motivational processes, regulation of feeding, food anticipation, language, and working memory. The molecular basis of the cerebellar oscillator has been demonstrated by "clock gene" expression within cells of the cerebellar layers. Genetic and epidemiological evidence suggests that disruption of circadian rhythms in humans can lead to many pathological conditions. Despite this importance, data about clock gene and protein expression in the cerebellum of diurnal (day-active) species, specifically primates, is currently poorly explored, mainly in regard to cellular identity, as well as the relationship with other molecules also involved in cerebellar functions. These studies could contribute to clarification of the possible mechanisms behind cerebellar rhythmicity. Considering that calcium binding proteins (CaBPs) play crucial roles in preserving and modulating cerebellar functions and that clock gene expression can be controlled by afferent projections or paracrine circadian signals such as the hormone melatonin, the present study aimed to describe cellular identities, distribution patterns and day/night expression changes in PER1, PER2, CaBPs, and MT1 and MT2 melatonin receptors in the cerebellar cortex of a diurnal primate using conventional fluorescence and peroxidase-antiperoxidase immunocytochemical techniques. PER1 and PER2 immunoreactive (IR) cells were observed in the Purkinje cells of the cerebellum, and MT1 and MT2 receptors were localized around Purkinje cells in the Pj layer in Bergmann cells. This identity was confirmed by the S100β-IR of these cells. The highest expression of PER seen in the daytime analysis coincided with the highest expression of melatonin receptors. CaBPs showed day/night morphological and density changes in the cerebellar cortex. The presence of the same temporal variations in the expression of PER in the Pj neurons and in MT1 and MT2 receptors in Bergmann cells indicates a possible relation between these cells during the rhythmic processing of the cerebellum, in addition to the CaBP temporal morphological and density changes.
Collapse
Affiliation(s)
- Leila M Guissoni Campos
- São Paulo State University (UNESP), Marília, Brazil.,University of Marília (UNIMAR), Marília, Brazil
| | | | | | - Rogério L Buchaim
- University of Marília (UNIMAR), Marília, Brazil.,University of São Paulo - USP, Bauru, Brazil
| | | | | | | | | | | | | |
Collapse
|
5
|
Campos LMG, Osório EC, Santos GLDS, Nogueira MI, Cruz-Rizzolo RJ, Pinato L. Temporal changes in calcium-binding proteins in the medial geniculate nucleus of the monkey Sapajus apella. J Chem Neuroanat 2015. [PMID: 26222835 DOI: 10.1016/j.jchemneu.2015.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The subdivisions of the medial geniculate complex can be distinguished based on the immunostaining of calcium-binding proteins and by the properties of the neurons within each subdivision. The possibility of changes in neurochemistry in this and other central auditory areas are important aspects to understand the basis that contributing to functional variations determined by environmental cycles or the animal's cycles of activity and rest. This study investigated, for the first time, day/night differences in the amounts of parvalbumin-, calretinin- and calbindin-containing neurons in the thalamic auditory center of a non-human primate, Sapajus apella. The immunoreactivity of the PV-IR, CB-IR and CR-IR neurons demonstrated different distribution patterns among the subdivisions of the medial geniculate. Moreover, a high number of CB- and CR-IR neurons were found during day, whereas PV-IR was predominant at night. We conclude that in addition to the chemical heterogeneity of the medial geniculate nucleus with respect to the expression of calcium-binding proteins, expression also varied relative to periods of light and darkness, which may be important for a possible functional adaptation of central auditory areas to environmental changes and thus ensure the survival and development of several related functions.
Collapse
Affiliation(s)
- Leila M G Campos
- Department of Speech-Language and Hearing Therapy, São Paulo State University, Marilia, SP, Brazil; University of Marilia, Medical School, Marilia, SP, Brazil
| | - Elaine C Osório
- Department of Speech-Language and Hearing Therapy, São Paulo State University, Marilia, SP, Brazil
| | | | - Maria Inês Nogueira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | | | - Luciana Pinato
- Department of Speech-Language and Hearing Therapy, São Paulo State University, Marilia, SP, Brazil.
| |
Collapse
|