1
|
Rolls ET, Rauschecker JP, Deco G, Huang CC, Feng J. Auditory cortical connectivity in humans. Cereb Cortex 2023; 33:6207-6227. [PMID: 36573464 PMCID: PMC10422925 DOI: 10.1093/cercor/bhac496] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
To understand auditory cortical processing, the effective connectivity between 15 auditory cortical regions and 360 cortical regions was measured in 171 Human Connectome Project participants, and complemented with functional connectivity and diffusion tractography. 1. A hierarchy of auditory cortical processing was identified from Core regions (including A1) to Belt regions LBelt, MBelt, and 52; then to PBelt; and then to HCP A4. 2. A4 has connectivity to anterior temporal lobe TA2, and to HCP A5, which connects to dorsal-bank superior temporal sulcus (STS) regions STGa, STSda, and STSdp. These STS regions also receive visual inputs about moving faces and objects, which are combined with auditory information to help implement multimodal object identification, such as who is speaking, and what is being said. Consistent with this being a "what" ventral auditory stream, these STS regions then have effective connectivity to TPOJ1, STV, PSL, TGv, TGd, and PGi, which are language-related semantic regions connecting to Broca's area, especially BA45. 3. A4 and A5 also have effective connectivity to MT and MST, which connect to superior parietal regions forming a dorsal auditory "where" stream involved in actions in space. Connections of PBelt, A4, and A5 with BA44 may form a language-related dorsal stream.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200602, China
| | - Josef P Rauschecker
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
- Institute for Advanced Study, Technical University, Munich, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200602, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China
| |
Collapse
|
2
|
Ahveninen J, Uluç I, Raij T, Nummenmaa A, Mamashli F. Spectrotemporal content of human auditory working memory represented in functional connectivity patterns. Commun Biol 2023; 6:294. [PMID: 36941477 PMCID: PMC10027691 DOI: 10.1038/s42003-023-04675-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
Recent research suggests that working memory (WM), the mental sketchpad underlying thinking and communication, is maintained by multiple regions throughout the brain. Whether parts of a stable WM representation could be distributed across these brain regions is, however, an open question. We addressed this question by examining the content-specificity of connectivity-pattern matrices between subparts of cortical regions-of-interest (ROI). These connectivity patterns were calculated from functional MRI obtained during a ripple-sound auditory WM task. Statistical significance was assessed by comparing the decoding results to a null distribution derived from a permutation test considering all comparable two- to four-ROI connectivity patterns. Maintained WM items could be decoded from connectivity patterns across ROIs in frontal, parietal, and superior temporal cortices. All functional connectivity patterns that were specific to maintained sound content extended from early auditory to frontoparietal cortices. Our results demonstrate that WM maintenance is supported by content-specific patterns of functional connectivity across different levels of cortical hierarchy.
Collapse
Affiliation(s)
- Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
- Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Işıl Uluç
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Fahimeh Mamashli
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Mair RG, Francoeur MJ, Krell EM, Gibson BM. Where Actions Meet Outcomes: Medial Prefrontal Cortex, Central Thalamus, and the Basal Ganglia. Front Behav Neurosci 2022; 16:928610. [PMID: 35864847 PMCID: PMC9294389 DOI: 10.3389/fnbeh.2022.928610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Medial prefrontal cortex (mPFC) interacts with distributed networks that give rise to goal-directed behavior through afferent and efferent connections with multiple thalamic nuclei and recurrent basal ganglia-thalamocortical circuits. Recent studies have revealed individual roles for different thalamic nuclei: mediodorsal (MD) regulation of signaling properties in mPFC neurons, intralaminar control of cortico-basal ganglia networks, ventral medial facilitation of integrative motor function, and hippocampal functions supported by ventral midline and anterior nuclei. Large scale mapping studies have identified functionally distinct cortico-basal ganglia-thalamocortical subnetworks that provide a structural basis for understanding information processing and functional heterogeneity within the basal ganglia. Behavioral analyses comparing functional deficits produced by lesions or inactivation of specific thalamic nuclei or subregions of mPFC or the basal ganglia have elucidated the interdependent roles of these areas in adaptive goal-directed behavior. Electrophysiological recordings of mPFC neurons in rats performing delayed non-matching-to position (DNMTP) and other complex decision making tasks have revealed populations of neurons with activity related to actions and outcomes that underlie these behaviors. These include responses related to motor preparation, instrumental actions, movement, anticipation and delivery of action outcomes, memory delay, and spatial context. Comparison of results for mPFC, MD, and ventral pallidum (VP) suggest critical roles for mPFC in prospective processes that precede actions, MD for reinforcing task-relevant responses in mPFC, and VP for providing feedback about action outcomes. Synthesis of electrophysiological and behavioral results indicates that different networks connecting mPFC with thalamus and the basal ganglia are organized to support distinct functions that allow organisms to act efficiently to obtain intended outcomes.
Collapse
Affiliation(s)
- Robert G. Mair
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| | - Miranda J. Francoeur
- Neural Engineering and Translation Labs, University of California, San Diego, San Diego, CA, United States
| | - Erin M. Krell
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| | - Brett M. Gibson
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| |
Collapse
|
4
|
Kienitz R, Schmid MC, Dugué L. Rhythmic sampling revisited: Experimental paradigms and neural mechanisms. Eur J Neurosci 2021; 55:3010-3024. [PMID: 34643973 DOI: 10.1111/ejn.15489] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/31/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022]
Abstract
Sampling of information is thought to be an important aspect of explorative behaviour. Evidence for it has been gained in behavioural assessments of a variety of overt and covert cognitive domains, including sensation, attention, memory, eye movements and dexterity. A common aspect across many findings is that sampling tends to exhibit a rhythmicity at low frequencies (theta, 4-8 Hz; alpha, 9-12 Hz). Neurophysiological investigations in a wide range of species, including rodents, non-human primates and humans have demonstrated the presence of sampling related neural oscillations in a number of brain areas ranging from early sensory cortex, hippocampus to high-level cognitive areas. However, to assess whether rhythmic sampling represents a general aspect of exploratory behaviour one must critically evaluate the task parameters, and their potential link with neural oscillations. Here we focus on sampling during attentive vision to present an overview on the experimental conditions that are used to investigate rhythmic sampling and associated oscillatory brain activity in this domain. This review aims to (1) provide guidelines to efficiently quantify behavioural rhythms, (2) compare results from human and non-human primate studies and (3) argue that the underlying neural mechanisms of sampling can co-occur in both sensory and high-level areas.
Collapse
Affiliation(s)
- Ricardo Kienitz
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, Frankfurt am Main, Germany.,Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Michael C Schmid
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.,Department of Movement and Neuroscience, Faculty of Natural Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laura Dugué
- Université de Paris, INCC UMR 8002, CNRS, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
5
|
Abstract
Working memory (WM) is the ability to maintain and manipulate information in the conscious mind over a timescale of seconds. This ability is thought to be maintained through the persistent discharges of neurons in a network of brain areas centered on the prefrontal cortex, as evidenced by neurophysiological recordings in nonhuman primates, though both the localization and the neural basis of WM has been a matter of debate in recent years. Neural correlates of WM are evident in species other than primates, including rodents and corvids. A specialized network of excitatory and inhibitory neurons, aided by neuromodulatory influences of dopamine, is critical for the maintenance of neuronal activity. Limitations in WM capacity and duration, as well as its enhancement during development, can be attributed to properties of neural activity and circuits. Changes in these factors can be observed through training-induced improvements and in pathological impairments. WM thus provides a prototypical cognitive function whose properties can be tied to the spiking activity of brain neurons. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Russell J Jaffe
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Mamashli F, Khan S, Hämäläinen M, Jas M, Raij T, Stufflebeam SM, Nummenmaa A, Ahveninen J. Synchronization patterns reveal neuronal coding of working memory content. Cell Rep 2021; 36:109566. [PMID: 34433024 PMCID: PMC8428113 DOI: 10.1016/j.celrep.2021.109566] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
Neuronal oscillations are suggested to play an important role in auditory working memory (WM), but their contribution to content-specific representations has remained unclear. Here, we measure magnetoencephalography during a retro-cueing task with parametric ripple-sound stimuli, which are spectrotemporally similar to speech but resist non-auditory memory strategies. Using machine learning analyses, with rigorous between-subject cross-validation and non-parametric permutation testing, we show that memorized sound content is strongly represented in phase-synchronization patterns between subregions of auditory and frontoparietal cortices. These phase-synchronization patterns predict the memorized sound content steadily across the studied maintenance period. In addition to connectivity-based representations, there are indices of more local, “activity silent” representations in auditory cortices, where the decoding accuracy of WM content significantly increases after task-irrelevant “impulse stimuli.” Our results demonstrate that synchronization patterns across auditory sensory and association areas orchestrate neuronal coding of auditory WM content. This connectivity-based coding scheme could also extend beyond the auditory domain. Mamashli et al. use machine learning analyses of human magnetoencephalography (MEG) recordings to study “working memory,” maintenance of information in mind over brief periods of time. Their results show that the human brain maintains working memory content in transient functional connectivity patterns across sensory and association areas.
Collapse
Affiliation(s)
- Fahimeh Mamashli
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Sheraz Khan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Mainak Jas
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Departments of Physical Medicine and Rehabilitation and Neurobiology, Northwestern University, 710 North Lake Shore Drive, Chicago, IL 60611, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Bldg. 149 13(th) Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Chan HL, Low I, Chen LF, Chen YS, Chu IT, Hsieh JC. A novel beamformer-based imaging of phase-amplitude coupling (BIPAC) unveiling the inter-regional connectivity of emotional prosody processing in women with primary dysmenorrhea. J Neural Eng 2021; 18. [PMID: 33691295 DOI: 10.1088/1741-2552/abed83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/10/2021] [Indexed: 12/30/2022]
Abstract
Objective. Neural communication or the interactions of brain regions play a key role in the formation of functional neural networks. A type of neural communication can be measured in the form of phase-amplitude coupling (PAC), which is the coupling between the phase of low-frequency oscillations and the amplitude of high-frequency oscillations. This paper presents a beamformer-based imaging method, beamformer-based imaging of PAC (BIPAC), to quantify the strength of PAC between a seed region and other brain regions.Approach. A dipole is used to model the ensemble of neural activity within a group of nearby neurons and represents a mixture of multiple source components of cortical activity. From ensemble activity at each brain location, the source component with the strongest coupling to the seed activity is extracted, while unrelated components are suppressed to enhance the sensitivity of coupled-source estimation.Main results. In evaluations using simulation data sets, BIPAC proved advantageous with regard to estimation accuracy in source localization, orientation, and coupling strength. BIPAC was also applied to the analysis of magnetoencephalographic signals recorded from women with primary dysmenorrhea in an implicit emotional prosody experiment. In response to negative emotional prosody, auditory areas revealed strong PAC with the ventral auditory stream and occipitoparietal areas in the theta-gamma and alpha-gamma bands, which may respectively indicate the recruitment of auditory sensory memory and attention reorientation. Moreover, patients with more severe pain experience appeared to have stronger coupling between auditory areas and temporoparietal regions.Significance. Our findings indicate that the implicit processing of emotional prosody is altered by menstrual pain experience. The proposed BIPAC is feasible and applicable to imaging inter-regional connectivity based on cross-frequency coupling estimates. The experimental results also demonstrate that BIPAC is capable of revealing autonomous brain processing and neurodynamics, which are more subtle than active and attended task-driven processing.
Collapse
Affiliation(s)
- Hui-Ling Chan
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Intan Low
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yong-Sheng Chen
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ian-Ting Chu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Integrated Brain Research Unit, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Asano R. The evolution of hierarchical structure building capacity for language and music: a bottom-up perspective. Primates 2021; 63:417-428. [PMID: 33839984 PMCID: PMC9463250 DOI: 10.1007/s10329-021-00905-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/26/2021] [Indexed: 12/27/2022]
Abstract
A central property of human language is its hierarchical structure. Humans can flexibly combine elements to build a hierarchical structure expressing rich semantics. A hierarchical structure is also considered as playing a key role in many other human cognitive domains. In music, auditory-motor events are combined into hierarchical pitch and/or rhythm structure expressing affect. How did such a hierarchical structure building capacity evolve? This paper investigates this question from a bottom-up perspective based on a set of action-related components as a shared basis underlying cognitive capacities of nonhuman primates and humans. Especially, I argue that the evolution of hierarchical structure building capacity for language and music is tractable for comparative evolutionary study once we focus on the gradual elaboration of shared brain architecture: the cortico-basal ganglia-thalamocortical circuits for hierarchical control of goal-directed action and the dorsal pathways for hierarchical internal models. I suggest that this gradual elaboration of the action-related brain architecture in the context of vocal control and tool-making went hand in hand with amplification of working memory, and made the brain ready for hierarchical structure building in language and music.
Collapse
Affiliation(s)
- Rie Asano
- Systematic Musicology, Institute of Musicology, University of Cologne, Cologne, Germany.
| |
Collapse
|
9
|
Correlates of Auditory Decision-Making in Prefrontal, Auditory, and Basal Lateral Amygdala Cortical Areas. J Neurosci 2020; 41:1301-1316. [PMID: 33303679 DOI: 10.1523/jneurosci.2217-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 11/21/2022] Open
Abstract
Spatial selective listening and auditory choice underlie important processes including attending to a speaker at a cocktail party and knowing how (or whether) to respond. To examine task encoding and the relative timing of potential neural substrates underlying these behaviors, we developed a spatial selective detection paradigm for monkeys, and recorded activity in primary auditory cortex (AC), dorsolateral prefrontal cortex (dlPFC), and the basolateral amygdala (BLA). A comparison of neural responses among these three areas showed that, as expected, AC encoded the side of the cue and target characteristics before dlPFC and BLA. Interestingly, AC also encoded the choice of the monkey before dlPFC and around the time of BLA. Generally, BLA showed weak responses to all task features except the choice. Decoding analyses suggested that errors followed from a failure to encode the target stimulus in both AC and dlPFC, but again, these differences arose earlier in AC. The similarities between AC and dlPFC responses were abolished during passive sensory stimulation with identical trial conditions, suggesting that the robust sensory encoding in dlPFC is contextually gated. Thus, counter to a strictly PFC-driven decision process, in this spatial selective listening task AC neural activity represents the sensory and decision information before dlPFC. Unlike in the visual domain, in this auditory task, the BLA does not appear to be robustly involved in selective spatial processing.SIGNIFICANCE STATEMENT We examined neural correlates of an auditory spatial selective listening task by recording single-neuron activity in behaving monkeys from the amygdala, dorsolateral prefrontal cortex, and auditory cortex. We found that auditory cortex coded spatial cues and choice-related activity before dorsolateral prefrontal cortex or the amygdala. Auditory cortex also had robust delay period activity. Therefore, we found that auditory cortex could support the neural computations that underlie the behavioral processes in the task.
Collapse
|
10
|
Wakita M. Common marmosets (Callithrix jacchus) cannot recognize global configurations of sound patterns but can recognize adjacent relations of sounds. Behav Processes 2020; 176:104136. [PMID: 32404248 DOI: 10.1016/j.beproc.2020.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/30/2020] [Accepted: 05/03/2020] [Indexed: 10/24/2022]
Abstract
Processing the temporal configuration of discrete sounds to extract a regular pattern is fundamental to humans' faculties of perceiving words and musical phrases. To investigate such auditory pattern perception in monkeys, I trained two common marmosets to discriminate between AB-AB and AA-BB patterns under two training paradigms. One was an absolute discrimination task, in which the discrimination between these stimuli without reference cues was required. The other was a relative discrimination task, in which the detection of a change from one stimulus to the other was required. The marmosets failed in the absolute discrimination task but achieved the relative discrimination task. Failure in the absolute task indicated that the marmosets were unable to form a representation of the global sound patterns in their long-term memory stores. In contrast, success in the relative task indicated that the marmosets had short-term memory of ongoing sounds that enabled an online monitoring to detect deviations between incoming sounds and the anticipated upcoming sounds. Thus, the current findings imply that marmosets can at least perceive adjacent tone relations in an auditory stream regardless of the temporal configuration of the global sound patterns.
Collapse
Affiliation(s)
- Masumi Wakita
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Kanrin 41-2, Inuyama, Aichi 484-8506, Japan.
| |
Collapse
|
11
|
Lee GY, Ryu CW, Ko HC, Jahng GH. Correlation between gray matter volume loss followed by aneurysmal subarachnoid hemorrhage and subarachnoid hemorrhage volume. Neuroradiology 2020; 62:1401-1409. [PMID: 32415391 DOI: 10.1007/s00234-020-02445-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/20/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Aneurysmal subarachnoid hemorrhage (SAH) can chronically affect cognitive function, and SAH has been suggested to result in regional brain damage. This study aimed to assess regional structural damage according to initial clinical status including SAH volume. METHODS A total of 63 consecutive patients treated with coil embolization for intracranial aneurysms for more than 6 months were enrolled. Of these, 35 patients had SAH and 28 patients who were treated for unruptured aneurysms served as controls. Volumetric T1-weighted images were acquired with 1 mm isotropic voxel. The SAH volume was measured semi-automatically from the initial brain CT scan. Voxel-based group comparison was conducted to assess regional gray matter volume (GMV) changes. Voxel-based multiple regression was conducted to analyze regional GMV change and SAH volume. The clinical factors (Glasgow Coma Scale (GCS), SAH volume, systolic blood pressure, and serum laboratory findings) associated with regional GMV were also analyzed by using multiple regression. RESULTS The SAH group had significantly lower GMV in the left hippocampus and higher GMV in the visual cortex than controls (Alphasim-corrected p < 0.05, voxel level of p < 0.001). The GMV of the bilateral hippocampi, thalami, and left medial orbital gyrus was negatively correlated with the initial SAH volume (FDR-corrected p < 0.05). SAH volume and GCS were associated with the hippocampal GMV in multiple regression (p < 0.05). CONCLUSIONS Chronic regional GMV change after SAH was related to the severity of initial clinical status including SAH volume. This finding supports the pathophysiological hypothesis of SAH-induced microstructural brain injury.
Collapse
Affiliation(s)
- Geon Yang Lee
- Department of Radiology, Kyung Hee University Medical Center, Seoul, South Korea
| | - Chang-Woo Ryu
- Department of Radiology, Kyung Hee University Hospital at Gangdong, 892 Dongnam-ro, Gangdong-gu, Seoul, 05278, South Korea. .,College of Medicine, Kyung Hee University, Seoul, South Korea.
| | - Hak Cheol Ko
- Department of Neurosurgery, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, 892 Dongnam-ro, Gangdong-gu, Seoul, 05278, South Korea.,College of Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
12
|
Fischer J, Hammerschmidt K. Towards a new taxonomy of primate vocal production learning. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190045. [PMID: 31735147 PMCID: PMC6895554 DOI: 10.1098/rstb.2019.0045] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 11/12/2022] Open
Abstract
The extent to which vocal learning can be found in nonhuman primates is key to reconstructing the evolution of speech. Regarding the adjustment of vocal output in relation to auditory experience (vocal production learning in the narrow sense), effects on the ontogenetic trajectory of vocal development as well as adjustment to group-specific call features have been found. Yet, a comparison of the vocalizations of different primate genera revealed striking similarities in the structure of calls and repertoires in different species of the same genus, indicating that the structure of nonhuman primate vocalizations is highly conserved. Thus, modifications in relation to experience only appear to be possible within relatively tight species-specific constraints. By contrast, comprehension learning may be extremely rapid and open-ended. In conjunction, these findings corroborate the idea of an ancestral independence of vocal production and auditory comprehension learning. To overcome the futile debate about whether or not vocal production learning can be found in nonhuman primates, we suggest putting the focus on the different mechanisms that may mediate the adjustment of vocal output in response to experience; these mechanisms may include auditory facilitation and learning from success. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, Göttingen, Niedersachsen 37077, Germany
- Department of Primate Cognition, Georg August University Göttingen, Göttingen, Niedersachsen, Germany
- Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Kurt Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, Göttingen, Niedersachsen 37077, Germany
- Leibniz Science Campus Primate Cognition, Göttingen, Germany
| |
Collapse
|
13
|
Margiotoudi K, Allritz M, Bohn M, Pulvermüller F. Sound symbolic congruency detection in humans but not in great apes. Sci Rep 2019; 9:12705. [PMID: 31481655 PMCID: PMC6722092 DOI: 10.1038/s41598-019-49101-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/15/2019] [Indexed: 11/20/2022] Open
Abstract
Theories on the evolution of language highlight iconicity as one of the unique features of human language. One important manifestation of iconicity is sound symbolism, the intrinsic relationship between meaningless speech sounds and visual shapes, as exemplified by the famous correspondences between the pseudowords 'maluma' vs. 'takete' and abstract curved and angular shapes. Although sound symbolism has been studied extensively in humans including young children and infants, it has never been investigated in non-human primates lacking language. In the present study, we administered the classic "takete-maluma" paradigm in both humans (N = 24 and N = 31) and great apes (N = 8). In a forced choice matching task, humans but not great apes, showed crossmodal sound symbolic congruency effects, whereby effects were more pronounced for shape selections following round-sounding primes than following edgy-sounding primes. These results suggest that the ability to detect sound symbolic correspondences is the outcome of a phylogenetic process, whose underlying emerging mechanism may be relevant to symbolic ability more generally.
Collapse
Affiliation(s)
- Konstantina Margiotoudi
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, 14195, Berlin, Germany.
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10099, Berlin, Germany.
| | - Matthias Allritz
- School of Psychology & Neuroscience, University of St. Andrews, St. Andrews, Fife, UK
| | - Manuel Bohn
- Leipziger Forschungszentrum für frühkindliche Entwicklung, Universität Leipzig, Leipzig, Germany
- Department of Psychology, Stanford University, Stanford, USA
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10099, Berlin, Germany
- Cluster of Excellence "Matters of Activity", Humboldt Universität zu Berlin, 10099, Berlin, Germany
- Einstein Center for Neurosciences Berlin, 10117, Berlin, Germany
| |
Collapse
|
14
|
Teichert T, Gurnsey K. Formation and decay of auditory short-term memory in the macaque monkey. J Neurophysiol 2019; 121:2401-2415. [PMID: 31017849 DOI: 10.1152/jn.00821.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Echoic memory (EM) is a short-lived, precategorical, and passive form of auditory short-term memory (STM). A key hallmark of EM is its rapid exponential decay with a time constant between 1 and 2 s. It is not clear whether auditory STM in the rhesus, an important model system, shares this rapid exponential decay. To resolve this shortcoming, two rhesus macaques were trained to perform a delayed frequency discrimination task. Discriminability of delayed tones was measured as a function of retention duration and the number of times the standard had been repeated before the target. Like in the human, our results show a rapid decline of discriminability with retention duration. In addition, the results suggest a gradual strengthening of discriminability with repetition number. Model-based analyses suggest the presence of two components of auditory STM: a short-lived component with a time constant on the order of 550 ms that most likely corresponds to EM and a more stable memory trace with time constants on the order of 10 s that strengthens with repetition and most likely corresponds to auditory recognition memory. NEW & NOTEWORTHY This is the first detailed quantification of the rapid temporal dynamics of auditory short-term memory in the rhesus. Much of the auditory information in short-term memory is lost within the first couple of seconds. Repeated presentations of a tone strengthen its encoding into short-term memory. Model-based analyses suggest two distinct components: an echoic memory homolog that mediates the rapid decay and a more stable but less detail-rich component that mediates strengthening of the trace with repetition.
Collapse
Affiliation(s)
- Tobias Teichert
- Department of Psychiatry, University of Pittsburgh , Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Kate Gurnsey
- Department of Psychiatry, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Wegdell F, Hammerschmidt K, Fischer J. Conserved alarm calls but rapid auditory learning in monkey responses to novel flying objects. Nat Ecol Evol 2019; 3:1039-1042. [PMID: 31133723 DOI: 10.1038/s41559-019-0903-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/16/2019] [Indexed: 11/09/2022]
Abstract
To evaluate the flexibility in vocal production and comprehension in a non-human primate, we presented a drone to West African green monkeys, Chlorocebus sabaeus. Calls given in response to the drone were clearly distinct from those given to other predators, but highly similar to the aerial alarm calls of the East African vervet monkey, Chlorocebus pygerythrus, suggesting that call structure is conserved. To probe how rapidly the animals attached meaning to the sound of the drone, we played back the drone sound after one to three exposures. Subjects immediately scanned the sky and ran for cover. In contrast to vocal production, comprehension learning was rapid and open-ended.
Collapse
Affiliation(s)
- Franziska Wegdell
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany
| | - Kurt Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany
| | - Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany. .,Department for Primate Cognition, Georg-August-University Göttingen, Göttingen, Germany. .,Leibniz ScienceCampus Primate Cognition, Göttingen, Germany.
| |
Collapse
|
16
|
Kato M, Yokoyama C, Kawasaki A, Takeda C, Koike T, Onoe H, Iriki A. Individual identity and affective valence in marmoset calls: in vivo brain imaging with vocal sound playback. Anim Cogn 2018; 21:331-343. [PMID: 29488110 PMCID: PMC5908821 DOI: 10.1007/s10071-018-1169-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/29/2022]
Abstract
As with humans, vocal communication is an important social tool for nonhuman primates. Common marmosets (Callithrix jacchus) often produce whistle-like 'phee' calls when they are visually separated from conspecifics. The neural processes specific to phee call perception, however, are largely unknown, despite the possibility that these processes involve social information. Here, we examined behavioral and whole-brain mapping evidence regarding the detection of individual conspecific phee calls using an audio playback procedure. Phee calls evoked sound exploratory responses when the caller changed, indicating that marmosets can discriminate between caller identities. Positron emission tomography with [18F] fluorodeoxyglucose revealed that perception of phee calls from a single subject was associated with activity in the dorsolateral prefrontal, medial prefrontal, orbitofrontal cortices, and the amygdala. These findings suggest that these regions are implicated in cognitive and affective processing of salient social information. However, phee calls from multiple subjects induced brain activation in only some of these regions, such as the dorsolateral prefrontal cortex. We also found distinctive brain deactivation and functional connectivity associated with phee call perception depending on the caller change. According to changes in pupillary size, phee calls from a single subject induced a higher arousal level compared with those from multiple subjects. These results suggest that marmoset phee calls convey information about individual identity and affective valence depending on the consistency or variability of the caller. Based on the flexible perception of the call based on individual recognition, humans and marmosets may share some neural mechanisms underlying conspecific vocal perception.
Collapse
Affiliation(s)
- Masaki Kato
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan
- Research Development Section, Research Promotion Hub, Office for Enhancing Institutional Capacity, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chihiro Yokoyama
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan.
| | - Akihiro Kawasaki
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Chiho Takeda
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Taku Koike
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Hirotaka Onoe
- Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan.
- RIKEN-NTU Research Centre for Human Biology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
17
|
Aboitiz F. A Brain for Speech. Evolutionary Continuity in Primate and Human Auditory-Vocal Processing. Front Neurosci 2018; 12:174. [PMID: 29636657 PMCID: PMC5880940 DOI: 10.3389/fnins.2018.00174] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/05/2018] [Indexed: 12/27/2022] Open
Abstract
In this review article, I propose a continuous evolution from the auditory-vocal apparatus and its mechanisms of neural control in non-human primates, to the peripheral organs and the neural control of human speech. Although there is an overall conservatism both in peripheral systems and in central neural circuits, a few changes were critical for the expansion of vocal plasticity and the elaboration of proto-speech in early humans. Two of the most relevant changes were the acquisition of direct cortical control of the vocal fold musculature and the consolidation of an auditory-vocal articulatory circuit, encompassing auditory areas in the temporoparietal junction and prefrontal and motor areas in the frontal cortex. This articulatory loop, also referred to as the phonological loop, enhanced vocal working memory capacity, enabling early humans to learn increasingly complex utterances. The auditory-vocal circuit became progressively coupled to multimodal systems conveying information about objects and events, which gradually led to the acquisition of modern speech. Gestural communication accompanies the development of vocal communication since very early in human evolution, and although both systems co-evolved tightly in the beginning, at some point speech became the main channel of communication.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Centro Interdisciplinario de Neurociencias, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Cognitive function surrounding resection of nonfunctioning pituitary adenomas with suprasellar extension: A prospective matched-control study. J Clin Neurosci 2017; 40:109-114. [DOI: 10.1016/j.jocn.2017.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/10/2017] [Indexed: 11/20/2022]
|
19
|
Papanicolaou AC, Kilintari M, Rezaie R, Narayana S, Babajani-Feremi A. The Role of the Primary Sensory Cortices in Early Language Processing. J Cogn Neurosci 2017; 29:1755-1765. [PMID: 28557692 DOI: 10.1162/jocn_a_01147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The results of this magnetoencephalography study challenge two long-standing assumptions regarding the brain mechanisms of language processing: First, that linguistic processing proper follows sensory feature processing effected by bilateral activation of the primary sensory cortices that lasts about 100 msec from stimulus onset. Second, that subsequent linguistic processing is effected by left hemisphere networks outside the primary sensory areas, including Broca's and Wernicke's association cortices. Here we present evidence that linguistic analysis begins almost synchronously with sensory, prelinguistic verbal input analysis and that the primary cortices are also engaged in these linguistic analyses and become, consequently, part of the left hemisphere language network during language tasks. These findings call for extensive revision of our conception of linguistic processing in the brain.
Collapse
Affiliation(s)
- Andrew C Papanicolaou
- University of Tennessee Health Science Center.,Le Bonheur Children's Hospital, Memphis, TN
| | - Marina Kilintari
- University of Tennessee Health Science Center.,Le Bonheur Children's Hospital, Memphis, TN.,University College London
| | - Roozbeh Rezaie
- University of Tennessee Health Science Center.,Le Bonheur Children's Hospital, Memphis, TN
| | - Shalini Narayana
- University of Tennessee Health Science Center.,Le Bonheur Children's Hospital, Memphis, TN
| | - Abbas Babajani-Feremi
- University of Tennessee Health Science Center.,Le Bonheur Children's Hospital, Memphis, TN
| |
Collapse
|
20
|
Schomers MR, Garagnani M, Pulvermüller F. Neurocomputational Consequences of Evolutionary Connectivity Changes in Perisylvian Language Cortex. J Neurosci 2017; 37:3045-3055. [PMID: 28193685 PMCID: PMC5354338 DOI: 10.1523/jneurosci.2693-16.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/20/2016] [Accepted: 01/11/2017] [Indexed: 01/07/2023] Open
Abstract
The human brain sets itself apart from that of its primate relatives by specific neuroanatomical features, especially the strong linkage of left perisylvian language areas (frontal and temporal cortex) by way of the arcuate fasciculus (AF). AF connectivity has been shown to correlate with verbal working memory-a specifically human trait providing the foundation for language abilities-but a mechanistic explanation of any related causal link between anatomical structure and cognitive function is still missing. Here, we provide a possible explanation and link, by using neurocomputational simulations in neuroanatomically structured models of the perisylvian language cortex. We compare networks mimicking key features of cortical connectivity in monkeys and humans, specifically the presence of relatively stronger higher-order "jumping links" between nonadjacent perisylvian cortical areas in the latter, and demonstrate that the emergence of working memory for syllables and word forms is a functional consequence of this structural evolutionary change. We also show that a mere increase of learning time is not sufficient, but that this specific structural feature, which entails higher connectivity degree of relevant areas and shorter sensorimotor path length, is crucial. These results offer a better understanding of specifically human anatomical features underlying the language faculty and their evolutionary selection advantage.SIGNIFICANCE STATEMENT Why do humans have superior language abilities compared to primates? Recently, a uniquely human neuroanatomical feature has been demonstrated in the strength of the arcuate fasciculus (AF), a fiber pathway interlinking the left-hemispheric language areas. Although AF anatomy has been related to linguistic skills, an explanation of how this fiber bundle may support language abilities is still missing. We use neuroanatomically structured computational models to investigate the consequences of evolutionary changes in language area connectivity and demonstrate that the human-specific higher connectivity degree and comparatively shorter sensorimotor path length implicated by the AF entail emergence of verbal working memory, a prerequisite for language learning. These results offer a better understanding of specifically human anatomical features for language and their evolutionary selection advantage.
Collapse
Affiliation(s)
- Malte R Schomers
- Brain Language Laboratory, Freie Universität Berlin, 14195 Berlin, Germany,
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Max Garagnani
- Brain Language Laboratory, Freie Universität Berlin, 14195 Berlin, Germany
- Centre for Robotics and Neural Systems, University of Plymouth, Plymouth PL4 8AA, United Kingdom, and
- Department of Computing, Goldsmiths, University of London, London SE14 6NW, United Kingdom
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Freie Universität Berlin, 14195 Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
21
|
Huang Y, Matysiak A, Heil P, König R, Brosch M. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates. eLife 2016; 5. [PMID: 27438411 PMCID: PMC4974052 DOI: 10.7554/elife.15441] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys.
Collapse
Affiliation(s)
- Ying Huang
- Special Lab Primate Neurobiology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Artur Matysiak
- Special Lab Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Peter Heil
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany
| | - Reinhard König
- Special Lab Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael Brosch
- Special Lab Primate Neurobiology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|