1
|
Zhou J, Zhang L, Peng J, Zhang X, Zhang F, Wu Y, Huang A, Du F, Liao Y, He Y, Xie Y, Gu L, Kuang C, Ou W, Xie M, Tu T, Pang J, Zhang D, Guo K, Feng Y, Yin S, Cao Y, Li T, Jiang Y. Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation. Cell Metab 2024; 36:2054-2068.e14. [PMID: 38906140 DOI: 10.1016/j.cmet.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 09/11/2023] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is an endocytic/signaling cell-surface receptor that regulates diverse cellular functions, including cell survival, differentiation, and proliferation. LRP1 has been previously implicated in the pathogenesis of neurodegenerative disorders, but there are inconsistencies in its functions. Therefore, whether and how LRP1 maintains brain homeostasis remains to be clarified. Here, we report that astrocytic LRP1 promotes astrocyte-to-neuron mitochondria transfer by reducing lactate production and ADP-ribosylation factor 1 (ARF1) lactylation. In astrocytes, LRP1 suppressed glucose uptake, glycolysis, and lactate production, leading to reduced lactylation of ARF1. Suppression of astrocytic LRP1 reduced mitochondria transfer into damaged neurons and worsened ischemia-reperfusion injury in a mouse model of ischemic stroke. Furthermore, we examined lactate levels in human patients with stroke. Cerebrospinal fluid (CSF) lactate was elevated in stroke patients and inversely correlated with astrocytic mitochondria. These findings reveal a protective role of LRP1 in brain ischemic stroke by enabling mitochondria-mediated astrocyte-neuron crosstalk.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lifang Zhang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xianhui Zhang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fan Zhang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuanyuan Wu
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - An Huang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fengling Du
- Department of Neonatology, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuyan Liao
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yijing He
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuke Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long Gu
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Chenghao Kuang
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Wei Ou
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Maodi Xie
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianqi Tu
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jinwei Pang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kecheng Guo
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yue Feng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shigang Yin
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yang Cao
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Yan C, Yu H, Liu Y, Wu P, Wang C, Zhao H, Yang K, Shao Q, Zhong Y, Zhao W, Li J, Liu N, Di J, Li C, Bao L, Gao C. c-Abl Tyrosine Kinase-Mediated Neuronal Apoptosis in Subarachnoid Hemorrhage by Modulating the LRP-1-Dependent Akt/GSK3β Survival Pathway. J Mol Neurosci 2021; 71:2514-2525. [PMID: 33786723 DOI: 10.1007/s12031-021-01835-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/18/2021] [Indexed: 01/31/2023]
Abstract
Accumulating evidence suggests that neuronal apoptosis plays a critical role in early brain injury (EBI) after subarachnoid hemorrhage (SAH), and the inhibition of apoptosis can induce neuroprotective effects in SAH animal models. c-Abl has been reported to promote neuronal apoptosis in Alzheimer's disease and cerebral ischemia, but its role in SAH had not been illuminated until now. In the present study, the effect of c-Abl on neuronal apoptosis induced by SAH was investigated. c-Abl protein levels and neuronal apoptosis were markedly increased 24 h after SAH, and the inhibition of endogenous c-Abl reduced neuronal apoptosis and mortality and ameliorated neurological deficits. Furthermore, c-Abl inhibition decreased the expression of cleaved caspase-3 (CC-3) after SAH. These results demonstrate the proapoptotic effect of c-Abl in EBI after SAH. Additionally, c-Abl inhibition further enhanced the SAH-induced phosphorylation of Akt and glycogen synthase kinase (GSK)3β. LY294002 abrogated the beneficial effects of targeting c-Abl and exacerbated neuronal apoptosis after SAH. SAH decreased LRP-1 levels and downregulated LRP-1 by RAP, and LRP-1 small interfering RNA (siRNA) induced a dramatic decrease in Akt/GSK3β activation in the presence of c-Abl siRNA. This is the first report showing that the c-Abl tyrosine kinase may play a key role in SAH-induced neuronal apoptosis by regulating the LRP-1-dependent Akt/GSK3β survival pathway. Thus, c-Abl has the potential to be a novel target for EBI therapy after SAH.
Collapse
Affiliation(s)
- Cong Yan
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Hongwei Yu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yao Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Pei Wu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Chunlei Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Hongbo Zhao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Kongbin Yang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Qi Shao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yingqiang Zhong
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Wenyang Zhao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Jingwei Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Nan Liu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Jinglong Di
- Department of Hematology, Harbin First Hospital, Harbin, Heilongjiang, People's Republic of China
| | - Chen Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Luhao Bao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Cheng Gao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
3
|
Cai Z, Qiao PF, Wan CQ, Cai M, Zhou NK, Li Q. Role of Blood-Brain Barrier in Alzheimer's Disease. J Alzheimers Dis 2019; 63:1223-1234. [PMID: 29782323 DOI: 10.3233/jad-180098] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) is involved in the pathogenesis of Alzheimer's disease (AD). BBB is a highly selective semipermeable structural and chemical barrier which ensures a stable internal environment of the brain and prevents foreign objects invading the brain tissue. BBB dysfunction induces the failure of Aβ transport from brain to the peripheral circulation across the BBB. Especially, decreased levels of LRP-1 (low density lipoprotein receptor-related protein 1) and increased levels of RAGE (receptor for advanced glycation endproducts) at the BBB can cause the failure of Aβ transport. The pathogenesis of AD is related to the BBB structural components, including pericytes, astrocytes, vascular endothelial cells, and tight junctions. BBB dysfunction will trigger neuroinflammation and oxidative stress, then enhance the activity of β-secretase and γ-secretase, and finally promote Aβ generation. A progressive accumulation of Aβ in brain and BBB dysfunction may become a feedback loop that gives rise to cognitive impairment and the onset of dementia. The correlation between BBB dysfunction and tau pathology has been well-reported. Therefore, regulating BBB function may be a new therapeutic target for treating AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, Chongqing, Chongqing, China
| | - Pei-Feng Qiao
- Department of Neurology, Chongqing General Hospital, Chongqing, Chongqing, China
| | - Cheng-Qun Wan
- Department of Neurology, Chongqing General Hospital, Chongqing, Chongqing, China
| | - Min Cai
- Department of Neurology, Chongqing General Hospital, Chongqing, Chongqing, China
| | - Nan-Kai Zhou
- Department of Neurology, Chongqing General Hospital, Chongqing, Chongqing, China
| | - Qin Li
- Department of Neurology, Chongqing General Hospital, Chongqing, Chongqing, China
| |
Collapse
|
4
|
Potere N, Toldo S, Abbate A. Letter by Potere et al Regarding Article, "Deletion of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Accelerates Atherosclerosis Regression and Increases C-C Chemokine Receptor Type 7 (CCR7) Expression in Plaque Macrophages". Circulation 2019; 139:1979-1980. [PMID: 30986107 DOI: 10.1161/circulationaha.118.036486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nicola Potere
- Pauley Heart Center, Virginia Commonwealth University, Richmond
| | - Stefano Toldo
- Pauley Heart Center, Virginia Commonwealth University, Richmond
| | - Antonio Abbate
- Pauley Heart Center, Virginia Commonwealth University, Richmond
| |
Collapse
|
5
|
Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis 2019; 10:429-462. [PMID: 31011487 PMCID: PMC6457046 DOI: 10.14336/ad.2019.0119] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system is an essential part of innate immunity, typically conferring protection via eliminating pathogens and accumulating debris. However, the defensive function of the complement system can exacerbate immune, inflammatory, and degenerative responses in various pathological conditions. Cumulative evidence indicates that the complement system plays a critical role in the pathogenesis of ischemic brain injury, as the depletion of certain complement components or the inhibition of complement activation could reduce ischemic brain injury. Although multiple candidates modulating or inhibiting complement activation show massive potential for the treatment of ischemic stroke, the clinical availability of complement inhibitors remains limited. The complement system is also involved in neural plasticity and neurogenesis during cerebral ischemia. Thus, unexpected side effects could be induced if the systemic complement system is inhibited. In this review, we highlighted the recent concepts and discoveries of the roles of different kinds of complement components, such as C3a, C5a, and their receptors, in both normal brain physiology and the pathophysiology of brain ischemia. In addition, we comprehensively reviewed the current development of complement-targeted therapy for ischemic stroke and discussed the challenges of bringing these therapies into the clinic. The design of future experiments was also discussed to better characterize the role of complement in both tissue injury and recovery after cerebral ischemia. More studies are needed to elucidate the molecular and cellular mechanisms of how complement components exert their functions in different stages of ischemic stroke to optimize the intervention of targeting the complement system.
Collapse
Affiliation(s)
- Yuanyuan Ma
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- 3Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijun Zhang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Takahashi H, Okuda S, Tamura M, Kamei S, Aizawa R, Kobayashi T. Prophylactic Treatment with Intravenous Immunoglobulin Attenuates Experimental Optic Neuritis in Mice. Biol Pharm Bull 2019; 42:173-178. [DOI: 10.1248/bpb.b18-00458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroyuki Takahashi
- Pharmacology Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited
| | | | - Mizuho Tamura
- Pharmacology Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited
| | | | - Reiko Aizawa
- Pharmacology Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited
| | - Tsunefumi Kobayashi
- Pharmacology Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited
| |
Collapse
|
7
|
Potere N, Del Buono MG, Niccoli G, Crea F, Toldo S, Abbate A. Developing LRP1 Agonists into a Therapeutic Strategy in Acute Myocardial Infarction. Int J Mol Sci 2019; 20:E544. [PMID: 30696029 PMCID: PMC6387161 DOI: 10.3390/ijms20030544] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Cardioprotection refers to a strategy aimed at enhancing survival pathways in the injured yet salvageable myocardium following ischemia-reperfusion. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor that can be targeted following reperfusion, to induce a cardioprotective signaling through the activation of the reperfusion injury salvage kinase (RISK) pathway. The data from preclinical studies with non-selective and selective LRP1 agonists are promising, showing a large therapeutic window for intervention to reduce infarct size after ischemia-reperfusion. A pilot clinical trial with plasma derived α1-antitrypsin (AAT), a naturally occurring LRP1 agonist, supports the translational value of LRP1 as a novel therapeutic target for cardioprotection. A phase I study with a selective LRP1 agonist has been completed showing no toxicity. These findings may open the way to early phase clinical studies with pharmacologic LRP1 activation in patients with acute myocardial infarction (AMI).
Collapse
Affiliation(s)
- Nicola Potere
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
- Unit of Cardiovascular Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy.
| | - Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Giampaolo Niccoli
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
8
|
Thom V, Arumugam TV, Magnus T, Gelderblom M. Therapeutic Potential of Intravenous Immunoglobulin in Acute Brain Injury. Front Immunol 2017; 8:875. [PMID: 28824617 PMCID: PMC5534474 DOI: 10.3389/fimmu.2017.00875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
Acute ischemic and traumatic injury of the central nervous system (CNS) is known to induce a cascade of inflammatory events that lead to secondary tissue damage. In particular, the sterile inflammatory response in stroke has been intensively investigated in the last decade, and numerous experimental studies demonstrated the neuroprotective potential of a targeted modulation of the immune system. Among the investigated immunomodulatory agents, intravenous immunoglobulin (IVIg) stand out due to their beneficial therapeutic potential in experimental stroke as well as several other experimental models of acute brain injuries, which are characterized by a rapidly evolving sterile inflammatory response, e.g., trauma, subarachnoid hemorrhage. IVIg are therapeutic preparations of polyclonal immunoglobulin G, extracted from the plasma of thousands of donors. In clinical practice, IVIg are the treatment of choice for diverse autoimmune diseases and various mechanisms of action have been proposed. Only recently, several experimental studies implicated a therapeutic potential of IVIg even in models of acute CNS injury, and suggested that the immune system as well as neuronal cells can directly be targeted by IVIg. This review gives further insight into the role of secondary inflammation in acute brain injury with an emphasis on stroke and investigates the therapeutic potential of IVIg.
Collapse
Affiliation(s)
- Vivien Thom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Fann DYW, Ng GYQ, Poh L, Arumugam TV. Positive effects of intermittent fasting in ischemic stroke. Exp Gerontol 2017; 89:93-102. [PMID: 28115234 DOI: 10.1016/j.exger.2017.01.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/26/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Intermittent fasting (IF) is a dietary protocol where energy restriction is induced by alternate periods of ad libitum feeding and fasting. Prophylactic intermittent fasting has been shown to extend lifespan and attenuate the progress and severity of age-related diseases such as cardiovascular (e.g. stroke and myocardial infarction), neurodegenerative (e.g. Alzheimer's disease and Parkinson's disease) and cancerous diseases in animal models. Stroke is the second leading cause of death, and lifestyle risk factors such as obesity and physical inactivity have been associated with elevated risks of stroke in humans. Recent studies have shown that prophylactic IF may mitigate tissue damage and neurological deficit following ischemic stroke by a mechanism(s) involving suppression of excitotoxicity, oxidative stress, inflammation and cell death pathways in animal stroke models. This review summarizes data supporting the potential hormesis mechanisms of prophylactic IF in animal models, and with a focus on findings from animal studies of prophylactic IF in stroke in our laboratory.
Collapse
Affiliation(s)
- David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Fann DYW, Lim YA, Cheng YL, Lok KZ, Chunduri P, Baik SH, Drummond GR, Dheen ST, Sobey CG, Jo DG, Chen CLH, Arumugam TV. Evidence that NF-κB and MAPK Signaling Promotes NLRP Inflammasome Activation in Neurons Following Ischemic Stroke. Mol Neurobiol 2017; 55:1082-1096. [DOI: 10.1007/s12035-017-0394-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
|