1
|
Chellian R, Behnood-Rod A, Bruijnzeel AW. Sex differences in nicotine intake and relapse behavior in nicotine-dependent adult wistar rats. Front Pharmacol 2024; 15:1415219. [PMID: 39391691 PMCID: PMC11464435 DOI: 10.3389/fphar.2024.1415219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Tobacco use is highly addictive and the leading cause of premature mortality in the world. Long-access nicotine self-administration procedures in rats closely model human smoking behavior. However, significant gaps remain in our understanding of sex differences in the development of dependence and relapse in adult rats. Methods In the present study, we investigated operant responding for both nicotine and saline and the development of dependence in adult rats of both sexes. The rats had daily access to nicotine or saline for 6 h per day, 7 days per week. Dependence was assessed by evaluating precipitated and spontaneous somatic withdrawal signs, measuring locomotor activity in the small open field test, and assessing anxiety-like behavior in the large open field and elevated plus maze test. The sucrose preference test was used to determine if cessation of nicotine intake leads to anhedonia. It was also investigated if a period of forced abstinence affects nicotine-seeking behavior. Results This study showed that nicotine intake is higher in females than in males when given daily long access to nicotine. Daily nicotine self-administration led to more precipitated and spontaneous somatic withdrawal signs compared to saline self-administration, with no sex differences observed. In addition, cessation of nicotine intake led to a similar increase in activity in both males and females in the small open field test. However, cessation of nicotine intake did not increase anxiety-like behavior or cause anhedonia in either males or females. A time course analysis revealed that the nicotinic acetylcholine receptor antagonist mecamylamine affected nicotine intake differently in males and females, increasing intake in males and decreasing intake in females. Three weeks of forced abstinence led to an increase in nicotine and saline-seeking behavior. The rats exhibited more nicotine than saline seeking, and the females displayed more nicotine seeking than the males. Discussion The present findings demonstrate that females self-administer more nicotine and display more nicotine-seeking behavior than males. Furthermore, there were no sex differences in somatic withdrawal signs or activity during abstinence from nicotine. This work underscores the importance of considering sex differences across various aspects of addiction, including intake and relapse, when developing novel treatments for tobacco use disorder.
Collapse
|
2
|
Chen Z, Lu N, Li X, Liu Q, Li Y, Li X, Yu X, Zhao H, Liu C, Tang X, Wang X, Huang W. The Effect of a Caffeine and Nicotine Combination on Nicotine Withdrawal Syndrome in Mice. Nutrients 2024; 16:3048. [PMID: 39339647 PMCID: PMC11435009 DOI: 10.3390/nu16183048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Nicotine dependence is an important cause of excessive exposure to tobacco combustion compounds in most smokers. Nicotine replacement therapy is the main method to treat nicotine dependence, but it still has its shortcomings, such as the inability to mitigate withdrawal effects and limited applicability. It has been hypothesized that a combination of low-dose nicotine and caffeine could achieve the same psychological stimulation effect as a high dose of nicotine without causing nicotine withdrawal effects. To establish a model of nicotine dependence, male C57BL/6J mice were subcutaneously injected four times a day with nicotine (2 mg/kg) for 15 days and fed with water containing nicotine at the same time. They were randomly divided into four groups. After 24 h of withdrawal, different groups were injected with saline, nicotine (0.25 mg/kg or 0.1 mg/kg), or nicotine (0.1 mg/kg) and caffeine (20 mg/kg). Behavioral and physiological changes were evaluated by an assessment of physical signs, open field tests, elevated plus maze experiments, forced swimming tests, hot plate tests, and new-object-recognition tests. The changes in dopamine release in the prefrontal cortex (PFC) and ventral tegmental area (VTA) in the midbrain were analyzed using ELISA. The results showed that a combination of caffeine and nicotine could effectively relieve nicotine withdrawal syndrome, increase movement ability and pain thresholds, reduce anxiety and depression, enhance memory and cognitive ability, and increase the level of dopamine release in the PFC and VTA. Thus, caffeine combined with nicotine has potential as a stable and effective treatment option to help humans with smoking cessation.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Naiyan Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Sports and Health Research Institute, Jiangnan University, Wuxi 214122, China
| | - Xu Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingrun Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiyue Li
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China
| | - Ximiao Yu
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China
| | - Haotian Zhao
- Sports and Health Research Institute, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xun Wang
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China
| | - Weisun Huang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| |
Collapse
|
3
|
Domin H, Śmiałowska M. The diverse role of corticotropin-releasing factor (CRF) and its CRF1 and CRF2 receptors under pathophysiological conditions: Insights into stress/anxiety, depression, and brain injury processes. Neurosci Biobehav Rev 2024; 163:105748. [PMID: 38857667 DOI: 10.1016/j.neubiorev.2024.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Corticotropin-releasing factor (CRF, corticoliberin) is a neuromodulatory peptide activating the hypothalamic-pituitary-adrenal (HPA) axis, widely distributed in the central nervous system (CNS) in mammals. In addition to its neuroendocrine effects, CRF is essential in regulating many functions under physiological and pathophysiological conditions through CRF1 and CRF2 receptors (CRF1R, CRF2R). This review aims to present selected examples of the diverse and sometimes opposite effects of CRF and its receptor ligands in various pathophysiological states, including stress/anxiety, depression, and processes associated with brain injury. It seems interesting to draw particular attention to the fact that CRF and its receptor ligands exert different effects depending on the brain structures or subregions, likely stemming from the varied distribution of CRFRs in these regions and interactions with other neurotransmitters. CRFR-mediated region-specific effects might also be related to brain site-specific ligand binding and the associated activated signaling pathways. Intriguingly, different types of CRF molecules can also influence the diverse actions of CRF in the CNS.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland.
| | - Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland
| |
Collapse
|
4
|
Gozen O, Aypar B, Ozturk Bintepe M, Tuzcu F, Balkan B, Koylu EO, Kanit L, Keser A. Chronic Nicotine Consumption and Withdrawal Regulate Melanocortin Receptor, CRF, and CRF Receptor mRNA Levels in the Rat Brain. Brain Sci 2024; 14:63. [PMID: 38248278 PMCID: PMC10813117 DOI: 10.3390/brainsci14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Alterations in the various neuropeptide systems in the mesocorticolimbic circuitry have been implicated in negative effects associated with drug withdrawal. The corticotropin-releasing factor (CRF) and α-melanocyte-stimulating hormone are two peptides that may be involved. This study investigated the regulatory effects of chronic nicotine exposure and withdrawal on the mRNA levels of melanocortin receptors (MC3R, MC4R), CRF, and CRF receptors (CRFR1 and CRFR2) expressed in the mesocorticolimbic system. Rats were given drinking water with nicotine or without nicotine (control group) for 12 weeks, after which they continued receiving nicotine (chronic exposure) or were withdrawn from nicotine for 24 or 48 h. The animals were decapitated following behavioral testing for withdrawal signs. Quantitative real-time PCR analysis demonstrated that nicotine exposure (with or without withdrawal) increased levels of CRF and CRFR1 mRNA in the amygdala, CRF mRNA in the medial prefrontal cortex, and CRFR1 mRNA in the septum. Nicotine withdrawal also enhanced MC3R and MC4R mRNA levels in different brain regions, while chronic nicotine exposure was associated with increased MC4R mRNA levels in the nucleus accumbens. These results suggest that chronic nicotine exposure and withdrawal regulate CRF and melanocortin signaling in the mesocorticolimbic system, possibly contributing to negative affective state and nicotine addiction.
Collapse
Affiliation(s)
- Oguz Gozen
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| | - Buket Aypar
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
| | - Meliha Ozturk Bintepe
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
| | - Fulya Tuzcu
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
| | - Burcu Balkan
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| | - Ersin O. Koylu
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| | - Lutfiye Kanit
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| | - Aysegul Keser
- Department of Physiology, School of Medicine, Ege University, 35100 Izmir, Turkey; (O.G.)
- Center for Brain Research, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
5
|
Ataka K, Asakawa A, Iwai H, Kato I. Musclin prevents depression-like behavior in male mice by activating urocortin 2 signaling in the hypothalamus. Front Endocrinol (Lausanne) 2023; 14:1288282. [PMID: 38116320 PMCID: PMC10728487 DOI: 10.3389/fendo.2023.1288282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Physical activity is recommended as an alternative treatment for depression. Myokines, which are secreted from skeletal muscles during physical activity, play an important role in the skeletal muscle-brain axis. Musclin, a newly discovered myokine, exerts physical endurance, however, the effects of musclin on emotional behaviors, such as depression, have not been evaluated. This study aimed to access the anti-depressive effect of musclin and clarify the connection between depression-like behavior and hypothalamic neuropeptides in mice. Methods We measured the immobility time in the forced swim (FS) test, the time spent in open arm in the elevated-plus maze (EPM) test, the mRNA levels of hypothalamic neuropeptides, and enumerated the c-Fos-positive cells in the paraventricular nucleus (PVN), arcuate nucleus (ARC), and nucleus tractus solitarii (NTS) in mice with the intraperitoneal (i.p.) administration of musclin. Next, we evaluated the effects of a selective corticotropin-releasing factor (CRF) type 1 receptor antagonist, selective CRF type 2 receptor antagonist, melanocortin receptor (MCR) agonist, and selective melanocortin 4 receptor (MC4R) agonist on changes in behaviors induced by musclin. Finally we evaluated the antidepressant effect of musclin using mice exposed to repeated water immersion (WI) stress. Results We found that the i.p. and i.c.v. administration of musclin decreased the immobility time and relative time in the open arms (open %) in mice and increased urocortin 2 (Ucn 2) levels but decreased proopiomelanocortin levels in the hypothalamus. The numbers of c-Fos-positive cells were increased in the PVN and NTS but decreased in the ARC of mice with i.p. administration of musclin. The c-Fos-positive cells in the PVN were also found to be Ucn 2-positive. The antidepressant and anxiogenic effects of musclin were blocked by central administration of a CRF type 2 receptor antagonist and a melanocortin 4 receptor agonist, respectively. Peripheral administration of musclin also prevented depression-like behavior and the decrease in levels of hypothalamic Ucn 2 induced by repeated WI stress. Discussion These data identify the antidepressant effects of musclin through the activation of central Ucn 2 signaling and suggest that musclin and Ucn 2 can be new therapeutic targets and endogenous peptides mediating the muscle-brain axis.
Collapse
Affiliation(s)
- Koji Ataka
- Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikuo Kato
- Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
6
|
Simon B, Thury AÁ, Török L, Földesi I, Csabafi K, Bagosi Z. The effects of alcohol on anxiety-like, depression-like, and social behavior immediately and a day after binge drinking. Alcohol 2023; 112:17-24. [PMID: 37236432 DOI: 10.1016/j.alcohol.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
The aim of the present study was to determine the effects of binge drinking on anxiety-like, depression-like, and social behavior. The participation of the corticotropin-releasing factor (CRF) receptors (CRF1 and CRF2) in these effects was also investigated. Therefore, male C57BL/6 mice were exposed to drinking in the dark, a classical animal model for binge drinking, and treated intracerebroventricularly (icv) with selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin2B, immediately or 24 h after binge drinking. After 30 min, the animals were investigated in an elevated plus-maze test and a forced swim test for anxiety-like and depression-like signs, respectively. In addition, mice were tested in a three-chamber social interaction arena for sociability and preference for social novelty. Immediately after binge drinking, mice exposed to alcohol expressed anxiolytic and antidepressant effects, which were reduced by astressin2B, but not antalarmin. Moreover, mice exposed to alcohol showed increased sociability and preference for social novelty immediately after binge drinking. In contrast, 24 h after binge drinking mice exposed to alcohol presented anxiety-like and depression-like signs, which were reversed by antalarmin, but not astressin2B. However, mice exposed to alcohol did not show any significant change in social interaction after 24 h. The present study demonstrates that alcohol exerts different effects on anxiety-like, depression-like, and social behavior immediately and a day after binge drinking, and that the anxiolytic and antidepressant effects produced by binge drinking are mediated by CRF2, whereas the anxiety-like and depression-like signs observed the next day are promoted by CRF1.
Collapse
Affiliation(s)
- Balázs Simon
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
| | - Attila Ágoston Thury
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - László Török
- Department of Traumatology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Imre Földesi
- Institute of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Tanaka M, Szabó Á, Vécsei L, Giménez-Llort L. Emerging Translational Research in Neurological and Psychiatric Diseases: From In Vitro to In Vivo Models. Int J Mol Sci 2023; 24:15739. [PMID: 37958722 PMCID: PMC10649796 DOI: 10.3390/ijms242115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Revealing the underlying pathomechanisms of neurological and psychiatric disorders, searching for new biomarkers, and developing novel therapeutics all require translational research [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Department of Psychiatry & Forensic Medicine, Faculty of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
8
|
Ayman J, Palotai M, Dochnal R, Bagosi Z. Ghrelin Amplifies the Nicotine-Induced Release of Dopamine in the Bed Nucleus of Stria Terminalis (BNST). Biomedicines 2023; 11:2456. [PMID: 37760897 PMCID: PMC10525377 DOI: 10.3390/biomedicines11092456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ghrelin is an orexigenic neuropeptide that is known for stimulating the release of growth hormone (GH) and appetite. In addition, ghrelin has been implicated in addiction to drugs such as nicotine. Nicotine is the principal psychoactive component in tobacco and is responsible for the reward sensation produced by smoking. In our previous in vitro superfusion studies, it was demonstrated that ghrelin and nicotine stimulate equally the dopamine release in the rat amygdala, and ghrelin amplifies the nicotine-induced dopamine release in the rat striatum. However, less attention was paid to the actions of ghrelin and nicotine in the bed nucleus of the stria terminalis (BNST). Therefore, in the present study, nicotine and ghrelin were superfused to the BNST of male Wistar rats, and the dopamine release from the BNST was measured in vitro. In order to determine which receptors mediate these effects, mecamylamine, a non-selective nicotinic acetylcholine receptor (nAchR) antagonist, and GHRP-6, a selective growth hormone secretagogue receptor (GHS-R1A) antagonist, were also superfused to the rat BNST. Nicotine significantly increased the release of dopamine, and this effect was significantly inhibited by mecamylamine. Ghrelin increased dopamine release even more significantly than nicotine did, and this effect was significantly inhibited by GHRP-6. Moreover, when administered together, ghrelin significantly amplified the nicotine-induced release of dopamine in the BNST, and this additive effect was reversed partly by mecamylamine and partly by GHRP-6. Therefore, the present study provides a new base of evidence for the involvement of ghrelin in dopamine signaling implicated in nicotine addiction.
Collapse
Affiliation(s)
- Jázmin Ayman
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi School of Medicine, University of Szeged, H-6701 Szeged, Hungary;
| | - Miklós Palotai
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Roberta Dochnal
- Department of Pediatrics and Pediatric Health Center, Albert Szent-Györgyi School of Medicine, University of Szeged, H-6701 Szeged, Hungary;
| | - Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
9
|
Simon B, Buzás A, Bokor P, Csabafi K, Ibos KE, Bodnár É, Török L, Földesi I, Siska A, Bagosi Z. The Effects of Alcohol Intoxication and Withdrawal on Hypothalamic Neurohormones and Extrahypothalamic Neurotransmitters. Biomedicines 2023; 11:biomedicines11051288. [PMID: 37238959 DOI: 10.3390/biomedicines11051288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 05/28/2023] Open
Abstract
The aim of the present study was to determine the effects of alcohol intoxication and withdrawal on hypothalamic neurohormones such as corticotropin-releasing factor (CRF) and arginine vasopressin (AVP), and extrahypothalamic neurotransmitters such as striatal dopamine (DA), amygdalar gamma aminobutyric acid (GABA), and hippocampal glutamate (GLU). In addition, the participation of the two CRF receptors, CRF1 and CRF2, was investigated. For this purpose, male Wistar rats were exposed to repeated intraperitoneal (ip) administration of alcohol every 12 h, for 4 days and then for 1 day of alcohol abstinence. On the fifth or sixth day, intracerebroventricular (icv) administration of selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin2B was performed. After 30 min, the expression and concentration of hypothalamic CRF and AVP, the concentration of plasma adrenocorticotropic hormone (ACTH) and corticosterone (CORT), and the release of striatal DA, amygdalar GABA, and hippocampal GLU were measured. Our results indicate that the neuroendocrine changes induced by alcohol intoxication and withdrawal are mediated by CRF1, not CRF2, except for the changes in hypothalamic AVP, which are not mediated by CRF receptors.
Collapse
Affiliation(s)
- Balázs Simon
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 1, 6720 Szeged, Hungary
| | - András Buzás
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 1, 6720 Szeged, Hungary
| | - Péter Bokor
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 1, 6720 Szeged, Hungary
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 1, 6720 Szeged, Hungary
| | - Katalin Eszter Ibos
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 1, 6720 Szeged, Hungary
| | - Éva Bodnár
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 1, 6720 Szeged, Hungary
| | - László Török
- Department of Traumatology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Imre Földesi
- Institute of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Andrea Siska
- Institute of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Str. 1, 6720 Szeged, Hungary
| |
Collapse
|
10
|
Nikbakhtzadeh M, Ranjbar H, Moradbeygi K, Zahedi E, Bayat M, Soti M, Shabani M. Cross-talk between the HPA axis and addiction-related regions in stressful situations. Heliyon 2023; 9:e15525. [PMID: 37151697 PMCID: PMC10161713 DOI: 10.1016/j.heliyon.2023.e15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Addiction is a worldwide problem that has a negative impact on society by imposing significant costs on health care, public security, and the deactivation of the community economic cycle. Stress is an important risk factor in the development of addiction and relapse vulnerability. Here we review studies that have demonstrated the diverse roles of stress in addiction. Term searches were conducted manually in important reference journals as well as in the Google Scholar and PubMed databases, between 2010 and 2022. In each section of this narrative review, an effort has been made to use pertinent sources. First, we will provide an overview of changes in the Hypothalamus-Pituitary-Adrenal (HPA) axis component following stress, which impact reward-related regions including the ventral tegmental area (VTA) and nucleus accumbens (NAc). Then we will focus on internal factors altered by stress and their effects on drug addiction vulnerability. We conclude that alterations in neuro-inflammatory, neurotrophic, and neurotransmitter factors following stress pathways can impact related mechanisms on craving and relapse susceptibility.
Collapse
Affiliation(s)
- Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center of Kerman, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | | | - Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monavareh Soti
- Neuroscience Research Center of Kerman, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
- Corresponding author. Neuroscience Research Center, Neuropharmacology institute, Kerman University of Medical Sciences, Kerman, Postal Code: 76198-13159, Iran.
| | - Mohammad Shabani
- Neuroscience Research Center of Kerman, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
- Corresponding author. Neuroscience Research Center, Neuropharmacology institute, Kerman University of Medical Sciences, Kerman, Postal Code: 76198-13159, Iran.
| |
Collapse
|
11
|
Alghamdi NJ, Burns CT, Valdes R. The urocortin peptides: biological relevance and laboratory aspects of UCN3 and its receptor. Crit Rev Clin Lab Sci 2022; 59:573-585. [PMID: 35738909 DOI: 10.1080/10408363.2022.2080175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The urocortins are polypeptides belonging to the corticotropin-releasing hormone family, known to modulate stress responses in mammals. Stress, whether induced physically or psychologically, is an underlying cause or consequence of numerous clinical syndromes. Identifying biological markers associated with the homeostatic regulation of stress could provide a clinical laboratory approach for the management of stress-related disorders. The neuropeptide, urocortin 3 (UCN3), and the corticotropin-releasing hormone receptor 2 (CRHR2) constitute a regulatory axis known to mediate stress homeostasis. Dysregulation of this peptide/receptor axis is believed to play a role in several clinical conditions including post-traumatic stress, sleep apnea, cardiovascular disease, and other health problems related to stress. Understanding the physiology and measurement of the UCN3/CRHR2 axis is important for establishing a viable clinical laboratory diagnostic. In this article, we focus on evidence supporting the role of UCN3 and its receptor in stress-related clinical syndromes. We also provide insight into the measurements of UCN3 in blood and urine. These potential biomarkers provide new opportunities for clinical research and applications of laboratory medicine diagnostics in stress management.
Collapse
Affiliation(s)
- Norah J Alghamdi
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | | | - Roland Valdes
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
12
|
Abstract
BACKGROUND Animal models are critical to improve our understanding of the neuronal mechanisms underlying nicotine withdrawal. Nicotine dependence in rodents can be established by repeated nicotine injections, chronic nicotine infusion via osmotic minipumps, oral nicotine intake, tobacco smoke exposure, nicotine vapor exposure, and e-cigarette aerosol exposure. The time course of nicotine withdrawal symptoms associated with these methods has not been reviewed in the literature. AIM The goal of this review is to discuss nicotine withdrawal symptoms associated with the cessation of nicotine, tobacco smoke, nicotine vapor, and e-cigarette aerosol exposure in rats and mice. Furthermore, age and sex differences in nicotine withdrawal symptoms are reviewed. RESULTS Cessation of nicotine, tobacco smoke, nicotine vapor, and e-cigarette aerosol exposure leads to nicotine withdrawal symptoms such as somatic withdrawal signs, changes in locomotor activity, anxiety- and depressive-like behavior, learning and memory deficits, attention deficits, hyperalgesia, and dysphoria. These withdrawal symptoms are most pronounced within the first week after cessation of nicotine exposure. Anxiety- and depressive-like behavior, and deficits in learning and memory may persist for several months. Adolescent (4-6 weeks old) rats and mice display fewer nicotine withdrawal symptoms than adults (>8 weeks old). In adult rats and mice, females show fewer nicotine withdrawal symptoms than males. The smoking cessation drugs bupropion and varenicline reduce nicotine withdrawal symptoms in rodents. CONCLUSION The nicotine withdrawal symptoms that are observed in rodents are similar to those observed in humans. Tobacco smoke and e-cigarette aerosol contain chemicals and added flavors that enhance the reinforcing properties of nicotine. Therefore, more valid animal models of tobacco and e-cigarette use need to be developed by using tobacco smoke and e-cigarette aerosol exposure methods to induce dependence.
Collapse
Affiliation(s)
| | - Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, USA
| | | | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, USA
| | - Vijayapandi Pandy
- Department of Pharmacology, Chalapathi Institute of Pharmaceutical Sciences, Guntur, India
| | | |
Collapse
|
13
|
Altered mRNA Levels of Stress-Related Peptides in Mouse Hippocampus and Caudate-Putamen in Withdrawal after Long-Term Intermittent Exposure to Tobacco Smoke or Electronic Cigarette Vapour. Int J Mol Sci 2021; 22:ijms22020599. [PMID: 33435320 PMCID: PMC7827390 DOI: 10.3390/ijms22020599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotine addiction is a severe public health problem. The aim of this study was to investigate the alterations in key neurotransmissions after 60 days of withdrawal from seven weeks of intermittent cigarette smoke, e-cigarette vapours, or an e-cigarette vehicle. In the nicotine withdrawal groups, increased depressive and anxiety/obsessive–compulsive-like behaviours were demonstrated in the tail suspension, sucrose preference and marble burying tests. Cognitive impairments were detected in the spatial object recognition test. A significant increase in Corticotropin-releasing factor (Crf) and Crf1 mRNA levels was observed, specifically after cigarette withdrawal in the caudate-putamen nucleus (CPu). The nociceptin precursor levels were reduced by cigarette (80%) and e-cigarette (50%) withdrawal in the CPu. The delta opioid receptor showed a significant reduction in the hippocampus driven by the exposure to an e-cigarette solubilisation vehicle, while the mRNA levels doubled in the CPu of mice that had been exposed to e-cigarettes. Withdrawal after exposure to e-cigarette vapour induced a 35% Bdnf mRNA decrease in the hippocampus, whereas Bdnf was augmented by 118% by cigarette withdrawal in the CPu. This study shows that long-term withdrawal-induced affective and cognitive symptoms associated to lasting molecular alterations in peptidergic signalling may determine the impaired neuroplasticity in the hippocampal and striatal circuitry.
Collapse
|
14
|
Nega S, Marquez P, Hamid A, Ahmad SM, Lutfy K. The role of pituitary adenylyl cyclase activating polypeptide in affective signs of nicotine withdrawal. J Neurosci Res 2020; 98:1549-1560. [PMID: 32476165 DOI: 10.1002/jnr.24649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/17/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Recent evidence implicates endogenous pituitary adenylyl cyclase activating polypeptide (PACAP) in the aversive effect of nicotine. In the present study, we assessed if nicotine-induced conditioned place preference (CPP) or affective signs of nicotine withdrawal would be altered in the absence of PACAP and if there were any sex-related differences in these responses. Male and female mice lacking PACAP and their wild-type controls were tested for baseline place preference on day 1, received conditioning with saline or nicotine (1 mg/kg) on alternate days for 6 days and were then tested for CPP the next day. Mice were then exposed to four additional conditioning and were tested again for nicotine-induced CPP 24 hr later. Controls were conditioned with saline in both chambers and tested similarly. All mice were then, 96 hr later, challenged with mecamylamine (3 mg/kg), and tested for anxiety-like behaviors 30 min later. Mice were then, 2 hr later, forced to swim for 15 min and then tested for depression-like behaviors 24 hr later. Our results showed that male but not female mice lacking PACAP expressed a significant CPP that was comparable to their wild-type controls. In contrast, male but not female mice lacking PACAP exhibited reduced anxiety- and depression-like behaviors compared to their wild-type controls following the mecamylamine challenge. These results suggest that endogenous PACAP is involved in affective signs of nicotine withdrawal, but there is a sex-related difference in this response.
Collapse
Affiliation(s)
- Shiromani Nega
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Paul Marquez
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Abdul Hamid
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Syed Muzzammil Ahmad
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
15
|
Ponzoni L, Braida D, Carboni L, Moretti M, Viani P, Clementi F, Zoli M, Gotti C, Sala M. Persistent cognitive and affective alterations at late withdrawal stages after long-term intermittent exposure to tobacco smoke or electronic cigarette vapour: Behavioural changes and their neurochemical correlates. Pharmacol Res 2020; 158:104941. [PMID: 32450347 DOI: 10.1016/j.phrs.2020.104941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Smoking cessation induces a withdrawal syndrome associated with anxiety, depression, and impaired neurocognitive functions, but much less is known about the withdrawal of e-cigarettes (e-CIG). We investigated in Balb/c mice the behavioural and neurochemical effects of withdrawal for up to 90 days after seven weeks' intermittent exposure to e-CIG vapour or cigarette smoke (CIG). The withdrawal of e-CIG and CIG induced early behavioural alterations such as spatial memory deficits (spatial object recognition task), increased anxiety (elevated plus maze test) and compulsive-like behaviour (marble burying test) that persisted for 60-90 days. Notably, attention-related (virtual object recognition task) and depression-like behaviours (tail suspension and sucrose preference tests) appeared only 15-30 days after withdrawal and persisted for as long as up to 90 days. At hippocampal level, the withdrawal-induced changes in the levels of AMPA receptor GluA1 and GluA2/3 subunits, PSD 95 protein, corticotropin-releasing factor (Crf) and Crf receptor 1 (CrfR1) mRNA were biphasic: AMPA receptor subunit and PSD95 protein levels initially remained unchanged and decreased after 60-90 days, whereas Crf/CrfR1 mRNA levels initially increased and then markedly decreased after 60 days. These late reductions correlated with the behavioural impairments, particularly the appearance of depression-like behaviours. Our findings show that major behavioural and neurochemical alterations persist or even first appear late after the withdrawal of chronic CIG smoke or e-CIG vapour exposure, and underline importance of conducting similar studies of humans, including e-CIG vapers.
Collapse
Affiliation(s)
- Luisa Ponzoni
- CNR, Institute of Neuroscience, Milan, Italy; Fondazione Zardi-Gori, Milan, Italy; Dept. of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Daniela Braida
- Dept. of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Milena Moretti
- CNR, Institute of Neuroscience, Milan, Italy; Dept. of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Paola Viani
- Dept. of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Francesco Clementi
- CNR, Institute of Neuroscience, Milan, Italy; Dept. of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Cecilia Gotti
- CNR, Institute of Neuroscience, Milan, Italy; Dept. of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.
| | - Mariaelvina Sala
- CNR, Institute of Neuroscience, Milan, Italy; Dept. of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Opposing effects of acute and repeated nicotine exposure on boldness in zebrafish. Sci Rep 2020; 10:8570. [PMID: 32444782 PMCID: PMC7244486 DOI: 10.1038/s41598-020-65382-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Nicotine is an addictive compound that activates neuronal nicotinic acetylcholine receptors (nAChRs) and causes behavioural effects that vary with dose, schedule of administration, and animal model. In zebrafish (Danio rerio), acute doses of nicotine have been consistently found to have anxiolytic properties, whereas, chronic exposure elicits anxiogenic effects. To date, however, studies on repeated nicotine administration and the effects of nicotine withdrawal have not been well explored using this model. In this study, we administered nicotine with three different dosing regimens: 1. Single exposures of a "high" dose (25, 50, 100, or 400 mg/L) for 3 minutes. 2. Single exposures to a "low" dose (2.5, 5, or 20 mg/L) for one hour. 3. Repeated one-hour exposure to a "low" dose (2.5, 5, or 20 mg/L) for 21 days. The novel object approach test was used to examine boldness based on the tendency of the fish to explore a novel object. Acutely, nicotine significantly increased the time spent approaching the object with both three-minute and onehour durations of exposure, indicating increased boldness. Conversely, after repeated nicotine exposure for 21 days, fish spent less time approaching the object suggesting a decrease in boldness. Distance moved was unaffected one hour after repeated nicotine exposure, yet decreased after a two-day withdrawal period. Our work suggests that nicotine can have opposing effects on boldness that vary based on dosage and schedule of exposure.
Collapse
|
17
|
Simpson S, Shankar K, Kimbrough A, George O. Role of corticotropin-releasing factor in alcohol and nicotine addiction. Brain Res 2020; 1740:146850. [PMID: 32330519 DOI: 10.1016/j.brainres.2020.146850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The two most prevalent substance use disorders involve alcohol and nicotine, which are often co-abused. Robust preclinical and translational evidence indicates that individuals initiate drug use for the acute rewarding effects of the substance. The development of negative emotional states is key for the transition from recreational use to substance use disorders as subjects seek the substance to obtain relief from the negative emotional states of acute withdrawal and protracted abstinence. The neuropeptide corticotropin-releasing factor (CRF) is a major regulator of the brain stress system and key in the development of negative affective states. The present review examines the role of CRF in preclinical models of alcohol and nicotine abuse and explores links between CRF and anxiety-like, dysphoria-like, and other negative affective states. Finally, the present review discusses preclinical models of nicotine and alcohol use with regard to the CRF system, advances in molecular and genetic manipulations of CRF, and the importance of examining both males and females in this field of research.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Kokila Shankar
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Neuroscience, Scripps Research, La Jolla, CA 92037, United States
| | - Adam Kimbrough
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
18
|
Jiang Y, Peng T, Gaur U, Silva M, Little P, Chen Z, Qiu W, Zhang Y, Zheng W. Role of Corticotropin Releasing Factor in the Neuroimmune Mechanisms of Depression: Examination of Current Pharmaceutical and Herbal Therapies. Front Cell Neurosci 2019; 13:290. [PMID: 31312123 PMCID: PMC6614517 DOI: 10.3389/fncel.2019.00290] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
Approximately 3% of the world population suffers from depression, which is one of the most common form of mental disorder. Recent findings suggest that an interaction between the nervous system and immune system might be behind the pathophysiology of various neurological and psychiatric disorders, including depression. Neuropeptides have been shown to play a major role in mediating response to stress and inducing immune activation or suppression. Corticotropin releasing factor (CRF) is a major regulator of the hypothalamic pituitary adrenal (HPA) axis response. CRF is a stress-related neuropeptide whose dysregulation has been associated with depression. In this review, we summarized the role of CRF in the neuroimmune mechanisms of depression, and the potential therapeutic effects of Chinese herbal medicines (CHM) as well as other agents. Studying the network of CRF and immune responses will help to enhance our understanding of the pathogenesis of depression. Additionally, targeting this important network may aid in developing novel treatments for this debilitating psychiatric disorder.
Collapse
Affiliation(s)
- Yizhou Jiang
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Tangming Peng
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Uma Gaur
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Marta Silva
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Peter Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, Australia
| | - Zhong Chen
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Wei Qiu
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yandong Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
19
|
Changes in striatal dopamine release and locomotor activity following acute withdrawal from chronic nicotine are mediated by CRF1, but not CRF2, receptors. Brain Res 2018; 1706:41-47. [PMID: 30722977 DOI: 10.1016/j.brainres.2018.10.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to investigate the participation of corticotropin-releasing factor (CRF) receptors (CRF1 and CRF2) in the alterations of the dorsal and ventral striatal dopamine release and the vertical and horizontal locomotor activity observed in rats following chronic nicotine treatment and consequent acute withdrawal. In this purpose, male Wistar rats were exposed to repeated intraperitoneal (ip) injection with nicotine or saline solution for 7 days. On the 8th day or the 9th day the rats were injected intracerebroventricularly (icv) with selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin2B or saline solution. Thirty minutes after the icv injection the changes of the horizontal and vertical locomotor activity were recorded in an in vivo conducta system. Immediately after the behavioral recordings the changes of the dorsal and ventral striatal dopamine release were determined in an in vitro superfusion system. On the 8th day, the horizontal and vertical locomotor activities and the dorsal and ventral striatal dopamine releases increased significantly in nicotine-treated rats, compared to the saline-treated ones. On the 9th day, the horizontal locomotor activity and the dorsal striatal dopamine release increased significantly, whereas the vertical locomotor activity and the ventral striatal dopamine release decreased significantly in nicotine-treated rats, compared to the saline-treated ones. All the changes observed were attenuated significantly by antalarmin, but not astressin2B. The present study demonstrates that the changes of striatal dopamine release and locomotor activity observed following chronic nicotine treatment and consequent acute withdrawal are mediated by CRF1, but not CRF2, receptor.
Collapse
|
20
|
Levran O, Correa da Rosa J, Randesi M, Rotrosen J, Adelson M, Kreek MJ. A non-coding CRHR2 SNP rs255105, a cis-eQTL for a downstream lincRNA AC005154.6, is associated with heroin addiction. PLoS One 2018; 13:e0199951. [PMID: 29953524 PMCID: PMC6023117 DOI: 10.1371/journal.pone.0199951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 02/02/2023] Open
Abstract
Dysregulation of the stress response is implicated in drug addiction; therefore, polymorphisms in stress-related genes may be involved in this disease. An analysis was performed to identify associations between variants in 11 stress-related genes, selected a priori, and heroin addiction. Two discovery samples of American subjects of European descent (EA, n = 601) and of African Americans (AA, n = 400) were analyzed separately. Ancestry was verified by principal component analysis. Final sets of 414 (EA) and 562 (AA) variants were analyzed after filtering of 846 high-quality variants. The main result was an association of a non-coding SNP rs255105 in the CRH (CRF) receptor 2 gene (CRHR2), in the discovery EA sample (Pnominal = .00006; OR = 2.1; 95% CI 1.4-3.1). The association signal remained significant after permutation-based multiple testing correction. The result was corroborated by an independent EA case sample (n = 364). Bioinformatics analysis revealed that SNP rs255105 is associated with the expression of a downstream long intergenic non-coding RNA (lincRNA) gene AC005154.6. AC005154.6 is highly expressed in the pituitary but its functions are unknown. LincRNAs have been previously associated with adaptive behavior, PTSD, and alcohol addiction. Further studies are warranted to corroborate the association results and to assess the potential relevance of this lincRNA to addiction and other stress-related disorders.
Collapse
Affiliation(s)
- Orna Levran
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York, United States of America
| | - Joel Correa da Rosa
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York, United States of America
| | - John Rotrosen
- NYU School of Medicine, New York, New York, United States of America
| | - Miriam Adelson
- Dr. Miriam and Sheldon G. Adelson Clinic for Drug Abuse Treatment and Research, Las Vegas, Nevada, United States of America
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
21
|
Alpha-asarone attenuates depression-like behavior in nicotine-withdrawn mice: Evidence for the modulation of hippocampal pCREB levels during nicotine-withdrawal. Eur J Pharmacol 2018; 818:10-16. [DOI: 10.1016/j.ejphar.2017.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
|
22
|
Anxiolytic- and antidepressant-like actions of Urocortin 2 and its fragments in mice. Brain Res 2017; 1680:62-68. [PMID: 29247629 DOI: 10.1016/j.brainres.2017.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/09/2017] [Accepted: 12/11/2017] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to investigate the potential anxiolytic- and antidepressant-like actions of Urocortin 2 (Ucn2) and its two fragments, Ucn2 (1-21) and Ucn2 (22-38), in mice, in an attempt to identify the biologically active sequence of this 38 amino acid neuropeptide. In this purpose, male C57BL/6 mice were treated intracerebroventricularly (icv) with 0.125, 0.25, 0.5 and 1 µg/2 µl of Ucn2, Ucn2 (1-21) or Ucn2 (22-38). After 30 min, the mice were evaluated in an elevated plus-maze test and a forced swim test for anxiety- and depression-like behavior, respectively. Each test lasted 5 min. Ucn2 at dose of 0.25 µg/2 µl and Ucn2 (1-21) at dose of 0.125 µg/2 µl, but not Ucn2 (22-38), increased significantly the number of entries into and the time spent in the open-arms, without influencing the total number of entries. In parallel, the same doses of Ucn2 and Ucn2 (1-21), but not Ucn2 (22-38), increased significantly the climbing and the swimming activity, while decreasing significantly the time of immobility. In addition, Ucn2 at doses of 0.125 µg/2 µl and 0.5 µg/2 µl decreased significantly the time of immobility, but they did not change the other parameters. The present study demonstrates that Ucn2 exerts anxiolytic- and antidepressant-like effects in C57BL/6 mice, which are mediated by the N-terminal, but not the C-terminal fragment of the peptide. The establishment of the smallest active sequence by further fragmentation of Ucn2 (1-21) may allow the synthesis of new anxiolytic and antidepressant drugs.
Collapse
|