1
|
Xing J, Li Y, Hu J, Gu L, Sun G, Li X. Lateral periaqueductal gray participate in the regulation of irritable bowel syndrome induced by chronic restraint stress. Neurobiol Dis 2024; 204:106758. [PMID: 39638155 DOI: 10.1016/j.nbd.2024.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disorder defined by recurrent abdominal pain, coupled with irregular bowel habits and alterations in the frequency as well as the consistency of stool. At present, IBS is considered as a disease of gut-brain interaction, and an increasing number of studies are focusing on the brain-gut axis. However, the brain regions associated with IBS have not been fully studied yet. In this study, we utilized the chronic restraint stress (CRS) model to evoke IBS-like symptoms in mice, which were accompanied by anxiety-like behaviors and hyperalgesia. Through cFOS staining, we observed the activation of the lateral periaqueductal gray (LPAG) in the mice after CRS. By inhibiting the activity of the LPAG through tetanus toxin or chemogenetics, we found that IBS-like symptoms could be relieved, whereas chemogenetic activation of the LPAG induced IBS-like symptoms. Finally, we utilized the classic analgesic drug sufentanil and found that it could alleviate CRS-induced IBS-like symptoms.
Collapse
Affiliation(s)
- Jiaotao Xing
- Department of Anorectal, Affiliated Nanhua Hospital, University of south China, Hengyang 421200, Hunan, China
| | - Ying Li
- Department of Anorectal, Affiliated Nanhua Hospital, University of south China, Hengyang 421200, Hunan, China
| | - Jiali Hu
- Central Hospital of Hengyang City, Hengyang 421200, Hunan, China
| | - Liyao Gu
- Central Hospital of Hengyang City, Hengyang 421200, Hunan, China
| | - Guanghua Sun
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang 421200, Hunan, China
| | - Xiangle Li
- Central Hospital of Hengyang City, Hengyang 421200, Hunan, China.
| |
Collapse
|
2
|
Effects of Intra-BLA Administration of PPAR Antagonists on Formalin-Evoked Nociceptive Behaviour, Fear-Conditioned Analgesia, and Conditioned Fear in the Presence or Absence of Nociceptive Tone in Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27062021. [PMID: 35335382 PMCID: PMC8949000 DOI: 10.3390/molecules27062021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
There is evidence for the involvement of peroxisome proliferator-activated receptors (PPARs) in pain, cognition, and anxiety. However, their role in pain–fear interactions is unknown. The amygdala plays a key role in pain, conditioned fear, and fear-conditioned analgesia (FCA). We investigated the effects of intra-basolateral amygdala (BLA) administration of PPARα, PPARβ/δ, and PPARγ antagonists on nociceptive behaviour, FCA, and conditioned fear in the presence or absence of nociceptive tone. Male Sprague-Dawley (SD) rats received footshock (FC) or no footshock (NFC) in a conditioning arena. Twenty-three and a half hours later, rats received an intraplantar injection of formalin or saline and, 15 min later, intra-BLA microinjections of vehicle, PPARα (GW6471) PPARβ/δ (GSK0660), or PPARγ (GW9662) antagonists before arena re-exposure. Pain and fear-related behaviour were assessed, and neurotransmitters/endocannabinoids measured post-mortem. Intra-BLA administration of PPARα or PPARγ antagonists potentiated freezing in the presence of nociceptive tone. Blockade of all PPAR subtypes in the BLA increased freezing and BLA dopamine levels in NFC rats in the absence of nociceptive tone. Administration of intra-BLA PPARα and PPARγ antagonists increased levels of dopamine in the BLA compared with the vehicle-treated counterparts. In conclusion, PPARα and PPARγ in the BLA play a role in the expression or extinction of conditioned fear in the presence or absence of nociceptive tone.
Collapse
|
3
|
Santos DFS, Donahue RR, Laird D, Oliveira M, Taylor B. The PPARγ agonist pioglitazone produces a female-predominant inhibition of hyperalgesia associated with surgical incision, peripheral nerve injury, and painful diabetic neuropathy. Neuropharmacology 2022; 205:108907. [PMID: 34856203 PMCID: PMC8992004 DOI: 10.1016/j.neuropharm.2021.108907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 12/21/2022]
Abstract
Pioglitazone, an agonist at peroxisome proliferator-activated receptor gamma, is FDA-approved for the treatment of insulin resistance in type 2 diabetes. Numerous studies in male rodents suggest that pioglitazone inhibits inflammatory and neuropathic pain, but few included female subjects. To address this gap, we compared the effects of pioglitazone in both sexes in the intraplantar methylglyoxal model (MG) model of chemical pain and painful diabetic neuropathy (PDN), the plantar incision model (PIM) of postoperative pain, the spared nerve injury (SNI) model of traumatic nerve injury, and the ZDF rat and db/db mouse models of PDN. We administered pioglitazone by one-time intrathecal or intraperitoneal injection or by adding it to chow for 6 weeks, followed by measurement of hypersensitivity to non-noxious mechanical, noxious mechanical, heat, and/or cold stimuli. In all mouse models, injection of pioglitazone decreased pain-like behaviors with greater potency and/or efficacy in females as compared to males: heat and mechanical hypersensitivity in the MG model (0.1-10 mg/kg); mechanical hypersensitivity in the PIM model (10 μg); mechanical and cold hypersensitivity in the SNI model (100 mg/kg); and heat hypersensitivity in the db/db model (100 mg/kg). Furthermore, co-administration of low doses of morphine (1 mg/kg) and pioglitazone (10 mg/kg) decreased SNI-induced mechanical and cold hypersensitivity in female but not male mice. In the ZDF rat, pioglitazone (100 mg/kg) decreased heat and mechanical hypersensitivity with no sex difference. In the db/db model, pioglitazone had no effect when given into chow for 6 weeks at 0.3, 3 or 30 mg/kg doses. We conclude that females exhibit greater anti-hyperalgesic responses to pioglitazone in mouse models of chemical-induced nociception, postsurgical pain, neuropathic pain, and PDN. These findings set the stage for clinical trials to determine whether pioglitazone has analgesic properties across a broad spectrum of chronic pain conditions, particularly in women.
Collapse
Affiliation(s)
- D. F. S. Santos
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA.,School of Applied Sciences, State University of Campinas-UNICAMP, Limeira, SP, Brazil
| | - R. R. Donahue
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA
| | - D.E. Laird
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA
| | - M.C. Oliveira
- School of Applied Sciences, State University of Campinas-UNICAMP, Limeira, SP, Brazil
| | - B.K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Pharmacological Blockade of PPARα Exacerbates Inflammatory Pain-Related Impairment of Spatial Memory in Rats. Biomedicines 2021; 9:biomedicines9060610. [PMID: 34072060 PMCID: PMC8227714 DOI: 10.3390/biomedicines9060610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors that exist in three isoforms: PPARα, PPARβ/δ and PPARγ. Studies suggest that the PPAR signalling system may modulate pain, anxiety and cognition. The aim of the present study was to investigate whether endogenous signalling via PPARs differentially modulates innate anxiety responses and mnemonic function in the presence and absence of inflammatory pain. We examined the effects of intraperitoneal administration of GW6471 (PPARα antagonist), GSK0660 (PPARβ/δ antagonist), GW9662 (PPARγ antagonist), and N-palmitoylethanolamide (PEA) on rat behaviour in the elevated plus maze (EPM), open field (OF), light-dark box (LDB), and novel object recognition (NOR) tests in the presence or absence of chronic inflammatory pain. Complete Freund’s Adjuvant (CFA)-injected rats exhibited impaired recognition and spatial mnemonic performance in the NOR test and pharmacological blockade of PPARα further impaired spatial memory in CFA-treated rats. N-oleoylethanolamide (OEA) levels were higher in the dorsal hippocampus in CFA-injected animals compared to their counterparts. The results suggest a modulatory effect of CFA-induced chronic inflammatory pain on cognitive processing, but not on innate anxiety-related responses. Increased OEA-PPARα signalling may act as a compensatory mechanism to preserve spatial memory function following CFA injection.
Collapse
|
5
|
The influence of rat strain on the development of neuropathic pain and comorbid anxio-depressive behaviour after nerve injury. Sci Rep 2020; 10:20981. [PMID: 33262364 PMCID: PMC7708988 DOI: 10.1038/s41598-020-77640-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Back-translating the clinical manifestations of human disease burden into animal models is increasingly recognized as an important facet of preclinical drug discovery. We hypothesized that inbred rat strains possessing stress hyper-reactive-, depressive- or anxiety-like phenotypes may possess more translational value than common outbred strains for modeling neuropathic pain. Rats (inbred: LEW, WKY, F344/ICO and F344/DU, outbred: Crl:SD) were exposed to Spared Nerve Injury (SNI) and evaluated routinely for 6 months on behaviours related to pain (von Frey stimulation and CatWalk-gait analysis), anxiety (elevated plus maze, EPM) and depression (sucrose preference test, SPT). Markers of stress reactivity together with spinal/brain opioid receptor expression were also measured. All strains variously developed mechanical allodynia after SNI with the exception of stress-hyporesponsive LEW rats, despite all strains displaying similar functional gait-deficits after injury. However, affective changes reflective of anxiety- and depressive-like behaviour were only observed for F344/DU in the EPM, and for Crl:SD in SPT. Although differences in stress reactivity and opioid receptor expression occurred, overall they were relatively unaffected by SNI. Thus, anxio-depressive behaviours did not develop in all strains after nerve injury, and correlated only modestly with degree of pain sensitivity or with genetic predisposition to stress and/or affective disturbances.
Collapse
|
6
|
Gaspar JC, Okine BN, Llorente-Berzal A, Roche M, Finn DP. Pharmacological Blockade of PPAR Isoforms Increases Conditioned Fear Responding in the Presence of Nociceptive Tone. Molecules 2020; 25:molecules25041007. [PMID: 32102354 PMCID: PMC7070536 DOI: 10.3390/molecules25041007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/29/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors with three isoforms (PPARα, PPARβ/δ, PPARγ) and can regulate pain, anxiety, and cognition. However, their role in conditioned fear and pain-fear interactions has not yet been investigated. Here, we investigated the effects of systemically administered PPAR antagonists on formalin-evoked nociceptive behaviour, fear-conditioned analgesia (FCA), and conditioned fear in the presence of nociceptive tone in rats. Twenty-three and a half hours following fear conditioning to context, male Sprague-Dawley rats received an intraplantar injection of formalin and intraperitoneal administration of vehicle, PPARα (GW6471), PPARβ/δ (GSK0660) or PPARγ (GW9662) antagonists, and 30 min later were re-exposed to the conditioning arena for 15 min. The PPAR antagonists did not alter nociceptive behaviour or fear-conditioned analgesia. The PPARα and PPARβ/δ antagonists prolonged context-induced freezing in the presence of nociceptive tone without affecting its initial expression. The PPARγ antagonist potentiated freezing over the entire trial. In conclusion, pharmacological blockade of PPARα and PPARβ/δ in the presence of formalin-evoked nociceptive tone, impaired short-term, within-trial fear-extinction in rats without affecting pain response, while blockade of PPARγ potentiated conditioned fear responding. These results suggest that endogenous signalling through these three PPAR isoforms may reduce the expression of conditioned fear in the presence of nociceptive tone.
Collapse
Affiliation(s)
- Jessica C. Gaspar
- Pharmacology and Therapeutics Department, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland; (J.C.G.); (B.N.O.); (A.L.-B.)
- Galway Neuroscience Centre, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland
| | - Bright N. Okine
- Pharmacology and Therapeutics Department, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland; (J.C.G.); (B.N.O.); (A.L.-B.)
- Galway Neuroscience Centre, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland
| | - Alvaro Llorente-Berzal
- Pharmacology and Therapeutics Department, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland; (J.C.G.); (B.N.O.); (A.L.-B.)
- Galway Neuroscience Centre, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland
| | - Michelle Roche
- Galway Neuroscience Centre, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland
- Physiology Department, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland
| | - David P. Finn
- Pharmacology and Therapeutics Department, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland; (J.C.G.); (B.N.O.); (A.L.-B.)
- Galway Neuroscience Centre, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland;
- Physiology Department, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland
- Correspondence: ; Tel.: +353-(0)91-495-280; Fax: +353-(0)91-495-586
| |
Collapse
|
7
|
Okine BN, Gaspar JC, Finn DP. PPARs and pain. Br J Pharmacol 2018; 176:1421-1442. [PMID: 29679493 DOI: 10.1111/bph.14339] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/19/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic pain is a common cause of disability worldwide and remains a global health and socio-economic challenge. Current analgesics are either ineffective in a significant proportion of patients with chronic pain or associated with significant adverse side effects. The PPARs, a family of nuclear hormone transcription factors, have emerged as important modulators of pain in preclinical studies and therefore a potential therapeutic target for the treatment of pain. Modulation of nociceptive processing by PPARs is likely to involve both transcription-dependent and transcription-independent mechanisms. This review presents a comprehensive overview of preclinical studies investigating the contribution of PPAR signalling to nociceptive processing in animal models of inflammatory and neuropathic pain. We examine current evidence from anatomical, molecular and pharmacological studies demonstrating a role for PPARs in pain control. We also discuss the limited evidence available from relevant clinical studies and identify areas that warrant further research. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Bright N Okine
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - Jessica C Gaspar
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
8
|
Woodhams SG, Chapman V, Finn DP, Hohmann AG, Neugebauer V. The cannabinoid system and pain. Neuropharmacology 2017; 124:105-120. [PMID: 28625720 PMCID: PMC5785108 DOI: 10.1016/j.neuropharm.2017.06.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/31/2017] [Accepted: 06/14/2017] [Indexed: 01/20/2023]
Abstract
Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics, representing an enormous clinical, societal, and economic burden. Existing pain medications have significant limitations and adverse effects including tolerance, dependence, gastrointestinal dysfunction, cognitive impairment, and a narrow therapeutic window, making the search for novel analgesics ever more important. In this article, we review the role of an important endogenous pain control system, the endocannabinoid (EC) system, in the sensory, emotional, and cognitive aspects of pain. Herein, we briefly cover the discovery of the EC system and its role in pain processing pathways, before concentrating on three areas of current major interest in EC pain research; 1. Pharmacological enhancement of endocannabinoid activity (via blockade of EC metabolism or allosteric modulation of CB1receptors); 2. The EC System and stress-induced modulation of pain; and 3. The EC system & medial prefrontal cortex (mPFC) dysfunction in pain states. Whilst we focus predominantly on the preclinical data, we also include extensive discussion of recent clinical failures of endocannabinoid-related therapies, the future potential of these approaches, and important directions for future research on the EC system and pain. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Stephen G Woodhams
- Arthritis UK Pain Centre, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom.
| | - Victoria Chapman
- Arthritis UK Pain Centre, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - David P Finn
- Pharmacology & Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Interdisciplinary Biochemistry Graduate Program, Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|