1
|
Srivastava S, Mishra S, Babu G, Mohanty B. Neurotensin agonist PD149163 modulates lipopolysaccharide induced inflammation and oxidative stress in the female reproductive system of mice. Reprod Biol 2024; 24:100828. [PMID: 38029502 DOI: 10.1016/j.repbio.2023.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Inflammation-mediated reproductive health problems in females have become an emerging concern. The present investigation was aimed to elucidate the efficacy of the PD149163, agonist of the type I neurotensin receptor, in preventing/ameliorating the lipopolysaccharide (LPS) induced inflammation of the female reproductive system of the mice. Female Swiss Albino Mice (8 weeks old) were maintained in three groups (6/group): Group I as Control, Group II and Group III were exposed to intraperitoneal (i.p) LPS (1 mg/kg bw) for 5 days followed by treatment with PD149163 (100 μg/kg BW i.p.) to Group III (LPS + PD) for 28 days. After termination of the experiment on 29th day, plasma levels of inflammatory cytokines, LH, FSH, estradiol, corticosterone, oxidative stress effects in the ovary and histopathological study of the ovary and uterine horn were done. LPS-induced inflammation of the ovary and uterine horn was ameliorated/prevented by PD149163 as reflected in the reduced histopathological scores, significant elevation of the plasma anti-inflammatory cytokine IL-10 and decrease of the pro inflammatory cytokines TNF-α and IL-6. Significant decrease of lipid peroxide, increase of antioxidant defense enzymes, Superoxide dismutase and Catalase in the ovary indicated reduction of oxidative stress. The plasma levels of the reproduction related hormones and corticosterone were restored. PD149163 acts as an anti-inflammatory and anti-oxidative agent in modulation of inflammation in the female reproductive system (ovary & uterine horn). These findings suggest that the therapeutic potential of the analogs of neurotensin including PD149163 should be explored for the treatment of the female reproductive health issues.
Collapse
Affiliation(s)
- Sonia Srivastava
- Department of Zoology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Swarnima Mishra
- Department of Zoology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Gyan Babu
- Department of Zoology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India.
| |
Collapse
|
2
|
He Z, Chen M, Luo Z. Identification of immune-related genes and integrated analysis of immune-cell infiltration in melanoma. Aging (Albany NY) 2024; 16:911-927. [PMID: 38217549 PMCID: PMC10817386 DOI: 10.18632/aging.205427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVE This study was conducted to screen out immune-related genes in connection with the prognosis of melanoma, construct a prognosis model and explore the relevant mechanisms. METHODS AND MATERIALS 1973 genes associated with immune system were derived from the Immport database, and RNA-seq data of melanoma and information of patients were searched from the Xena database. Cox univariate analysis, Lasso analysis and Cox multivariate analysis were used to screen out six genes to construct the model. Then the risk scores were estimated for patients based on our constructed prognosis model. Estimate was used to affirm that the model was about immune infiltration, and CIBERSORT was used to screen out immune cells associated with prognosis. TIDE was applied to predict the efficacy of immunotherapy. Finally, GSE65904 and GSE19234 were used to confirm the effectiveness of the model. RESULTS ADCYAP1R1, GPI, NTS might cause poor prognosis while IFITM1, KIR2DL4, LIF were more likely conductive to prognosis of melanoma patients and a model of prognosis was constructed on the basis of these six genes. The effectiveness of the model has been proven by the ROC curve, and the miRNAs targeting the screened genes were found out, suggesting that the immune system might impact on the prognosis of melanoma by T cell CD8+, T cell CD4+ memory and NK cells. CONCLUSIONS In this study, the screened six genes were associated with the prognosis of melanoma, which was conductive to clinical prognostic prediction and individualized treatment strategy.
Collapse
Affiliation(s)
- Zhenghao He
- Department of Plastic Surgery, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| | - Manli Chen
- Department of Plastic Surgery, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| | - Zhijun Luo
- Department of Plastic Surgery, Zhongshan City People's Hospital, Zhongshan 528403, Guangdong, China
| |
Collapse
|
3
|
Babu G, Mohanty B. Neurotensin modulation of lipopolysaccharide induced inflammation of gut-liver axis: Evaluation using neurotensin receptor agonist and antagonist. Neuropeptides 2023; 97:102297. [PMID: 36368076 DOI: 10.1016/j.npep.2022.102297] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Lipopolysaccharide (LPS), a toxic component of the cell wall of Gram-negative bacteria, is a potent immune stressor. LPS-induced inflammation of the gut-liver axis is well demonstrated. Neurotensin (NTS), a tri-decapeptide present in the gastrointestinal tract, has anti-inflammatory, anti-oxidative, and growth-promoting properties. This study elucidated the efficacy of PD149163, the type I NTS receptor agonist (NTS1) in the modulation of LPS-induced inflammation of the gut-liver axis of mice. Young-adult female mice (Age: 8 weeks; BW: 25 ± 2.5 g) were maintained in six groups (6/group); Group I as control and Group II, III & IV were exposed to LPS (1 mg/kg BW/Day; i.p.) for five days. LPS pre-exposed Group III and Group IV mice were treated with NTS1 agonist PD149163 (100 μg/kg BW i.p.) and antagonist SR48692 (0.5 mg/kg BW i.p.) respectively for 28 days. Group V and Group VI mice were exposed to only PD149163 and only SR48692 respectively with the doses as mentioned above for 28 days. Group I and LPS-exposed Group II mice were also maintained four weeks without further treatment. Histopathology revealed LPS-induced inflammation of the gut and liver. Significant elevation of plasma TNF-α and IL-6 and serum ALT and AST reflected as biomarkers of inflammation. Oxidative stress on both organs was distinct from decreased glutathione reductase and increased lipid peroxidation. PD149163 but not SR48692 ameliorated LPS-induced inflammation in both gut and liver counteracting inflammatory responses and oxidative stress. The use of NTS agonists including PD149163 could be exploited for therapeutic intervention of inflammatory diseases including that of the gut-liver axis.
Collapse
Affiliation(s)
- Gyan Babu
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India.
| |
Collapse
|
4
|
Hwang SK, Tyszkiewicz C, Dragon M, Navetta K, Ferreira R, Liu CN. Introduction of gloved hand to cage induces 22-kHz ultrasonic vocalizations in male albino rats. PLoS One 2022; 17:e0278034. [PMID: 36399470 PMCID: PMC9674133 DOI: 10.1371/journal.pone.0278034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Rodents emit ultrasonic vocalizations (USVs) above the human hearing threshold of ~ 20 kHz to communicate emotional states and to coordinate their social interactive behavior. Twenty-two kHz USVs emitted by adult rats have been reported in a variety of aversive social and behavioral situations. They occur not only under painful or restraining conditions but can also be evoked by gentle cutaneous touch or airflow. This study aimed to test if placement of a human hand in a cage can evoke 22-kHz USVs. It was found that 36% of the adult male Sprague-Dawley and 13% of the adult male Wistar Han rats emitted 22-kHz USVs when a gloved hand was introduced into the cages. Average vocalization onset latencies were 5.0 ± 4.4 s (Sprague-Dawley) and 7.4 ± 4.0 s (Wistar Han) and the USVs had a stable frequency (22 kHz) across the calls, ranging from 0.1 to 2.3 seconds in duration. Surprisingly, no 22-kHz USVs were found in any female Wistar Han rats tested. To further explore the mechanisms underlying this observation, we compared retinal function, basal serum corticosterone, and testosterone levels between the 22-kHz USV responders and non-responders. None of these parameters or endpoints showed any significant differences between the two cohorts. The results suggest that the introduction of a gloved-hand inside the cage can trigger adult male albino rats to emit 22-kHz ultrasonic vocalizations. This response should be considered in USV studies and animal welfare.
Collapse
Affiliation(s)
- Seo-Kyoung Hwang
- Comparative Medicine, Pfizer Worldwide R&D and Medical, Groton, Connecticut, United States of America
| | - Cheryl Tyszkiewicz
- Comparative Medicine, Pfizer Worldwide R&D and Medical, Groton, Connecticut, United States of America
| | - Melissa Dragon
- Comparative Medicine, Pfizer Worldwide R&D and Medical, Groton, Connecticut, United States of America
| | - Kimberly Navetta
- Drug Safety Research and Development, Pfizer Worldwide R&D and Medical, Andover, Massachusetts, United States of America
| | - Rebecca Ferreira
- Drug Safety Research and Development, Pfizer Worldwide R&D and Medical, Andover, Massachusetts, United States of America
| | - Chang-Ning Liu
- Comparative Medicine, Pfizer Worldwide R&D and Medical, Groton, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
5
|
Ollmann T, Lénárd L, Péczely L, Berta B, Kertes E, Zagorácz O, Hormay E, László K, Szabó Á, Gálosi R, Karádi Z, Kállai V. Effect of D1- and D2-like Dopamine Receptor Antagonists on the Rewarding and Anxiolytic Effects of Neurotensin in the Ventral Pallidum. Biomedicines 2022; 10:biomedicines10092104. [PMID: 36140205 PMCID: PMC9495457 DOI: 10.3390/biomedicines10092104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Neurotensin (NT) acts as a neurotransmitter and neuromodulator in the central nervous system. It was shown previously that NT in the ventral pallidum (VP) has rewarding and anxiolytic effects. NT exerts its effect in interaction with dopamine (DA) receptors in numerous brain areas; however, this has not yet been investigated in the VP. The aim of this study was to examine whether the inhibition of D1-like and D2-like DA receptors of the VP can modify the above mentioned effects of NT. Methods: Microinjection cannulas were implanted by means of stereotaxic operations into the VP of male Wistar rats. The rewarding effect of NT was examined by means of a conditioned place preference test. Anxiety was investigated with an elevated plus maze test. To investigate the possible interaction, D1-like DA receptor antagonist SCH23390 or D2-like DA receptor antagonist sulpiride were microinjected prior to NT. All of the drugs were also injected independently to analyze their effects alone. Results: In the present experiments, both the rewarding and anxiolytic effects of NT in the VP were prevented by both D1-like and D2-like DA receptor antagonists. Administered on their own, the antagonists did not influence reward and anxiety. Conclusion: Our present results show that the activity of the D1-like and D2-like DA receptors of the VP is a necessary requirement for both the rewarding and anxiolytic effects of NT.
Collapse
Affiliation(s)
- Tamás Ollmann
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-72-536000 (ext. 31095)
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, H-7624 Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Beáta Berta
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Olga Zagorácz
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Ádám Szabó
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, H-7624 Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
6
|
Li H, Namburi P, Olson JM, Borio M, Lemieux ME, Beyeler A, Calhoon GG, Hitora-Imamura N, Coley AA, Libster A, Bal A, Jin X, Wang H, Jia C, Choudhury SR, Shi X, Felix-Ortiz AC, de la Fuente V, Barth VP, King HO, Izadmehr EM, Revanna JS, Batra K, Fischer KB, Keyes LR, Padilla-Coreano N, Siciliano CA, McCullough KM, Wichmann R, Ressler KJ, Fiete IR, Zhang F, Li Y, Tye KM. Neurotensin orchestrates valence assignment in the amygdala. Nature 2022; 608:586-592. [PMID: 35859170 PMCID: PMC9583860 DOI: 10.1038/s41586-022-04964-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/10/2022] [Indexed: 02/03/2023]
Abstract
The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.
Collapse
Affiliation(s)
- Hao Li
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Praneeth Namburi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob M Olson
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Neuroscience Program, Department of Psychology, Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Matilde Borio
- Salk Institute for Biological Studies, La Jolla, CA, USA
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mackenzie E Lemieux
- Salk Institute for Biological Studies, La Jolla, CA, USA
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Beyeler
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- University of Bordeaux, Neurocentre Magendie, INSERM 1215, Bordeaux, France
| | - Gwendolyn G Calhoon
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Neuroscience Program, Bates College, Lewiston, ME, USA
| | - Natsuko Hitora-Imamura
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Austin A Coley
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Avraham Libster
- Salk Institute for Biological Studies, La Jolla, CA, USA
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aneesh Bal
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Behavioral Neuroscience, Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Xin Jin
- Society of Fellows, Harvard University, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Peking-Tsinghua Center for Life Science, IDG/McGovern Institute for Brain Research at PKU, Beijing, China
| | - Caroline Jia
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA
| | | | - Xi Shi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ada C Felix-Ortiz
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Verónica de la Fuente
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vanessa P Barth
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Hunter O King
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ehsan M Izadmehr
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jasmin S Revanna
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Kanha Batra
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Kyle B Fischer
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Laurel R Keyes
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Vanderbilt Center for Addiction Research, Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Kenneth M McCullough
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Romy Wichmann
- Salk Institute for Biological Studies, La Jolla, CA, USA
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ila R Fiete
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Peking-Tsinghua Center for Life Science, IDG/McGovern Institute for Brain Research at PKU, Beijing, China
| | - Kay M Tye
- Salk Institute for Biological Studies, La Jolla, CA, USA.
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Systems Neuroscience Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
7
|
Lei S, Hu B. Ionic and signaling mechanisms involved in neurotensin-mediated excitation of central amygdala neurons. Neuropharmacology 2021; 196:108714. [PMID: 34271017 DOI: 10.1016/j.neuropharm.2021.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Neurotensin (NT) serves as a neuromodulator in the brain where it regulates a variety of physiological functions. Whereas the central amygdala (CeA) expresses NT peptide and NTS1 receptors and application of NT has been shown to excite CeA neurons, the underlying cellular and molecular mechanisms have not been determined. We found that activation of NTS1 receptors increased the neuronal excitability of the lateral nucleus (CeL) of CeA. Both phospholipase Cβ (PLCβ) and phosphatidylinositol 4,5-bisphosphate (PIP2) depletion were required, whereas intracellular Ca2+ release and PKC were unnecessary for NT-elicited excitation of CeL neurons. NT increased the input resistance and time constants of CeL neurons, suggesting that NT excites CeL neurons by decreasing a membrane conductance. Depressions of the inwardly rectifying K+ (Kir) channels including both the Kir2 subfamily and the GIRK channels were required for NT-elicited excitation of CeL neurons. Activation of NTS1 receptors in the CeL led to GABAergic inhibition of medial nucleus of CeA neurons, suggesting that NT modulates the network activity in the amygdala. Our results may provide a cellular and molecular mechanism to explain the physiological functions of NT in vivo.
Collapse
Affiliation(s)
- Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA.
| | - Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
8
|
Li J, Li E, Czepielewski RS, Chi J, Guo X, Han YH, Wang D, Wang L, Hu B, Dawes B, Jacobs C, Tenen D, Lin SJ, Lee B, Morris D, Tobias A, Randolph GJ, Cohen P, Tsai L, Rosen ED. Neurotensin is an anti-thermogenic peptide produced by lymphatic endothelial cells. Cell Metab 2021; 33:1449-1465.e6. [PMID: 34038712 PMCID: PMC8266750 DOI: 10.1016/j.cmet.2021.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/20/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022]
Abstract
The lymphatic vasculature plays important roles in the physiology of the organs in which it resides, though a clear mechanistic understanding of how this crosstalk is mediated is lacking. Here, we performed single-cell transcriptional profiling of human and mouse adipose tissue and found that lymphatic endothelial cells highly express neurotensin (NTS/Nts). Nts expression is reduced by cold and norepinephrine in an α-adrenergic-dependent manner, suggesting a role in adipose thermogenesis. Indeed, NTS treatment of brown adipose tissue explants reduced expression of thermogenic genes. Furthermore, adenoviral-mediated overexpression and knockdown or knockout of NTS in vivo reduced and enhanced cold tolerance, respectively, an effect that is mediated by NTSR2 and ERK signaling. Inhibition of NTSR2 promoted energy expenditure and improved metabolic function in obese mice. These data establish a link between adipose tissue lymphatics and adipocytes with potential therapeutic implications.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Erwei Li
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rafael S Czepielewski
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Xiao Guo
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Yong-Hyun Han
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daqing Wang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Luhong Wang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bo Hu
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brian Dawes
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Danielle Tenen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Samuel J Lin
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bernard Lee
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Donald Morris
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Adam Tobias
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Linus Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute, Cambridge, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
9
|
Acoustilytix™: A Web-Based Automated Ultrasonic Vocalization Scoring Platform. Brain Sci 2021; 11:brainsci11070864. [PMID: 34209754 PMCID: PMC8301917 DOI: 10.3390/brainsci11070864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/04/2022] Open
Abstract
Ultrasonic vocalizations (USVs) are known to reflect emotional processing, brain neurochemistry, and brain function. Collecting and processing USV data is manual, time-intensive, and costly, creating a significant bottleneck by limiting researchers’ ability to employ fully effective and nuanced experimental designs and serving as a barrier to entry for other researchers. In this report, we provide a snapshot of the current development and testing of Acoustilytix™, a web-based automated USV scoring tool. Acoustilytix implements machine learning methodology in the USV detection and classification process and is recording-environment-agnostic. We summarize the user features identified as desirable by USV researchers and how these were implemented. These include the ability to easily upload USV files, output a list of detected USVs with associated parameters in csv format, and the ability to manually verify or modify an automatically detected call. With no user intervention or tuning, Acoustilytix achieves 93% sensitivity (a measure of how accurately Acoustilytix detects true calls) and 73% precision (a measure of how accurately Acoustilytix avoids false positives) in call detection across four unique recording environments and was superior to the popular DeepSqueak algorithm (sensitivity = 88%; precision = 41%). Future work will include integration and implementation of machine-learning-based call type classification prediction that will recommend a call type to the user for each detected call. Call classification accuracy is currently in the 71–79% accuracy range, which will continue to improve as more USV files are scored by expert scorers, providing more training data for the classification model. We also describe a recently developed feature of Acoustilytix that offers a fast and effective way to train hand-scorers using automated learning principles without the need for an expert hand-scorer to be present and is built upon a foundation of learning science. The key is that trainees are given practice classifying hundreds of calls with immediate corrective feedback based on an expert’s USV classification. We showed that this approach is highly effective with inter-rater reliability (i.e., kappa statistics) between trainees and the expert ranging from 0.30–0.75 (average = 0.55) after only 1000–2000 calls of training. We conclude with a brief discussion of future improvements to the Acoustilytix platform.
Collapse
|
10
|
Wölk E, Stengel A, Schaper SJ, Rose M, Hofmann T. Neurotensin and Xenin Show Positive Correlations With Perceived Stress, Anxiety, Depressiveness and Eating Disorder Symptoms in Female Obese Patients. Front Behav Neurosci 2021; 15:629729. [PMID: 33664656 PMCID: PMC7921165 DOI: 10.3389/fnbeh.2021.629729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/28/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Neurotensin and xenin are two closely related anorexigenic neuropeptides synthesized in the small intestine that exert diverse peripheral and central functions. Both act via the neurotensin-1-receptor. In animal models of obesity reduced central concentrations of these peptides have been found. Dysregulations of the acute and chronic stress response are associated with development and maintenance of obesity. Until now, associations of both peptides with stress, anxiety, depressiveness, and eating disorder symptoms have not been investigated. The aim of the present study was to examine associations of neurotensin and xenin with these psychological characteristics under conditions of obesity. Materials and Methods From 2010 to 2016 we consecutively enrolled 160 inpatients (63 men and 97 women), admitted due to obesity and its mental and somatic comorbidities. Blood withdrawal und psychometric tests (PSQ-20, GAD-7, PHQ-9, and EDI-2) occurred within one week after admission. We measured levels of neurotensin and xenin in plasma by ELISA. Results Mean body mass index was 47.2 ± 9.5 kg/m2. Concentrations of neurotensin and xenin positively correlated with each other (women: r = 0.788, p < 0.001; men: r = 0.731, p < 0.001) and did not significantly differ between sexes (p > 0.05). Women generally displayed higher psychometric values than men (PSQ-20: 58.2 ± 21.7 vs. 47.0 ± 20.8, p = 0.002; GAD-7: 9.7 ± 5.8 vs. 7.1 ± 5.3, p = 0.004; PHQ-9: 11.6 ± 6.6 vs. 8.8 ± 5.9, p = 0.008; EDI-2: 50.5 ± 12.8 vs. 39.7 ± 11.9, p < 0.001). Only women showed positive correlations of both neuropeptides with stress (neurotensin: r = 0.231, p = 0.023; xenin: r = 0.254, p = 0.013), anxiety (neurotensin: r = 0.265, p = 0.009; xenin: r = 0.257, p = 0.012), depressiveness (neurotensin: r = 0.281, p = 0.006; xenin: r = 0.241, p = 0.019) and eating disorder symptoms (neurotensin: r = 0.276, p = 0.007; xenin: r = 0.26, p = 0.011), whereas, men did not (p > 0.05). Conclusion Neurotensin and xenin plasma levels of female obese patients are positively correlated with perceived stress, anxiety, depressiveness, and eating disorder symptoms. These associations could be influenced by higher prevalence of mental disorders in women and by sex hormones. In men, no correlations were observed, which points toward a sex-dependent regulation.
Collapse
Affiliation(s)
- Ellen Wölk
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Selina Johanna Schaper
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Rose
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Hofmann
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
11
|
Pomrenze MB, Giovanetti SM, Maiya R, Gordon AG, Kreeger LJ, Messing RO. Dissecting the Roles of GABA and Neuropeptides from Rat Central Amygdala CRF Neurons in Anxiety and Fear Learning. Cell Rep 2020; 29:13-21.e4. [PMID: 31577943 PMCID: PMC6879108 DOI: 10.1016/j.celrep.2019.08.083] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/25/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022] Open
Abstract
Central amygdala (CeA) neurons that produce corticotropin-releasing factor (CRF) regulate anxiety and fear learning. These CeACRF neurons release GABA and several neuropeptides predicted to play important yet opposing roles in these behaviors. We dissected the relative roles of GABA, CRF, dynorphin, and neurotensin in CeACRF neurons in anxiety and fear learning by disrupting their expression using RNAi in male rats. GABA, but not CRF, dynorphin, or neurotensin, regulates baseline anxiety-like behavior. In contrast, chemogenetic stimulation of CeACRF neurons evokes anxiety-like behavior dependent on CRF and dynorphin, but not neurotensin. Finally, knockdown of CRF and dynorphin impairs fear learning, whereas knockdown of neurotensin enhances it. Our results demonstrate distinct behavioral roles for GABA, CRF, dynorphin, and neurotensin in a subpopulation of CeA neurons. These results highlight the importance of considering the repertoire of signaling molecules released from a given neuronal population when studying the circuit basis of behavior. Pomrenze et al. demonstrate that CRF neurons of the central amygdala differentially regulate fear and anxiety through the release of GABA and different neuropeptides.
Collapse
Affiliation(s)
- Matthew B Pomrenze
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA.
| | - Simone M Giovanetti
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Rajani Maiya
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Adam G Gordon
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Lauren J Kreeger
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O Messing
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Neurology, University of Texas at Austin, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
12
|
Pandey S, Barson JR. Heightened Exploratory Behavior Following Chronic Excessive Ethanol Drinking: Mediation by Neurotensin Receptor Type 2 in the Anterior Paraventricular Thalamus. Alcohol Clin Exp Res 2020; 44:1747-1759. [PMID: 32623746 DOI: 10.1111/acer.14406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/18/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Chronic, excessive alcohol drinkers, even without dependence, can exhibit changes in behavior and neurochemical systems. Identifying these changes and their relationship with one another could provide novel avenues for the prevention and treatment of alcohol use disorder. We recently demonstrated, in rats, that neurotensin (NTS) in the paraventricular thalamus (PVT) regulates excessive ethanol (EtOH) drinking. Here, we investigate the effects of chronic EtOH drinking on the PVT-NTS system and its contribution to EtOH-induced behavioral changes. METHODS We gave adult male Long-Evans rats 20% EtOH under the intermittent access 2-bottle-choice paradigm or maintained them on chow and water for up to 11 weeks. Prior to EtOH exposure and following several weeks of access, during acute abstinence, we tested these groups for multiple behaviors. In the 12th week, during acute abstinence, we examined gene expression and peptide levels of NTS and its receptors in the anterior and posterior subregions of the PVT. Finally, in chronic EtOH drinkers, during acute abstinence, we microinjected the NTS receptor type 2 (NTS2R) agonist, JMV-431, in the anterior PVT (aPVT) and examined subsequent EtOH intake and behavior. RESULTS Following chronic intermittent EtOH access, rats were classified by cluster analysis as high or low EtOH drinkers. High EtOH drinkers spent more time in the light chamber of a light-dark box and open arms of an elevated plus maze and entered fewer familiar holes in a hole-board apparatus. These differences were absent prior to EtOH exposure but were detectable as early as 4 weeks into drinking. Time in the light chamber following chronic drinking also predicted level of subsequent drinking. High EtOH drinkers also showed elevated protein levels of NTS2R in the aPVT, and pharmacological stimulation of aPVT NTS2R in low drinkers mimicked the increased time spent in the light chamber that was observed in high drinkers. CONCLUSIONS Our findings suggest that chronic, excessive, but not lower level, EtOH drinking induces heightened or flexible exploratory behavior, which predicts future EtOH drinking and is partly mediated by elevated NTS2R signaling in the aPVT. These EtOH-induced alterations represent adaptations that could perpetuate excessive drinking and lead to the development of EtOH dependence.
Collapse
Affiliation(s)
- Surya Pandey
- From the, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jessica R Barson
- From the, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Neurotensin in reward processes. Neuropharmacology 2020; 167:108005. [PMID: 32057800 DOI: 10.1016/j.neuropharm.2020.108005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Neurotensin (NTS) is a neuropeptide neurotransmitter expressed in the central and peripheral nervous systems. Many studies over the years have revealed a number of roles for this neuropeptide in body temperature regulation, feeding, analgesia, ethanol sensitivity, psychosis, substance use, and pain. This review provides a general survey of the role of neurotensin with a focus on modalities that we believe to be particularly relevant to the study of reward. We focus on NTS signaling in the ventral tegmental area, nucleus accumbens, lateral hypothalamus, bed nucleus of the stria terminalis, and central amygdala. Studies on the role of NTS outside of the ventral tegmental area are still in their relative infancy, yet they reveal a complex role for neurotensinergic signaling in reward-related behaviors that merits further study. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
14
|
Rodent ultrasonic vocalizations as biomarkers of future alcohol use: A predictive analytic approach. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:88-98. [PMID: 29209998 DOI: 10.3758/s13415-017-0554-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excessive alcohol consumption has a vast, negative impact on society. Rodent models have been successful in furthering our understanding of the biological underpinnings that drive alcohol consumption. Rodents emit ultrasonic vocalizations (USVs) that are each composed of several acoustic characteristics (e.g., frequency, duration, bandwidth, power). USVs reflect neurotransmitter activity in the ascending limb of the mesolimbic dopaminergic and cholinergic neurotransmitter systems and serve as noninvasive, real-time biomarkers of dopaminergic and cholinergic neurotransmission in the limbic system. In the present study, we recorded spontaneously emitted USVs from alcohol-naïve Long-Evans (LE) rats and then measured their alcohol intake. We compared the USV acoustic characteristics and alcohol consumption data from these LE rats with previously published data from selectively bred high-alcohol (P and HAD-1) and low-alcohol (NP and LAD-1) drinking lines from studies with the same experimental method. Predictive analytic techniques were applied simultaneously to this combined data set and revealed that (a) USVs emitted by alcohol-naïve rats accurately discriminated among high-alcohol consuming, LE, and low-alcohol consuming rat lines, and (b) future alcohol consumption in these same rat lines was reliably predicted from the USV data collected in an alcohol-naïve state. To our knowledge, this is the first study to show that alcohol consumption is predicted directly from USV profiles of alcohol-naïve rats. Because USV acoustic characteristics are sensitive to underlying neural activity, these findings suggest that baseline differences in mesolimbic cholinergic and dopaminergic tone could determine the propensity for future alcohol consumption in rodents.
Collapse
|
15
|
Brudzynski SM. Emission of 22 kHz vocalizations in rats as an evolutionary equivalent of human crying: Relationship to depression. Behav Brain Res 2019; 363:1-12. [PMID: 30677449 DOI: 10.1016/j.bbr.2019.01.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/08/2023]
Abstract
There is no clear relationship between crying and depression based on human neuropsychiatric observations. This situation originates from lack of suitable animal models of human crying. In the present article, an attempt will be made to answer the question whether emission of rat aversive vocalizations (22 kHz calls) may be regarded as an evolutionary equivalent of adult human crying. Using this comparison, the symptom of crying in depressed human patients will be reanalyzed. Numerous features and characteristics of rat 22 kHz aversive vocalizations and human crying vocalizations are equivalent. Comparing evolutionary, biological, physiological, neurophysiological, social, pharmacological, and pathological aspects have shown vast majority of common features. It is concluded that emission of rat 22 kHz vocalizations may be treated as an evolutionary vocal homolog of human crying, although emission of 22 kHz calls is not exactly the same phenomenon because of significant differences in cognitive processes between these species. It is further concluded that rat 22 kHz vocalizations and human crying vocalizations are both expressing anxiety and not depression. Analysis of the relationship between anxiety and depression reported in clinical studies supports this conclusion regardless of the nature and extent of comorbidity between these pathological states.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
16
|
Mittal N, Thakore N, Reno JM, Bell RL, Maddox WT, Schallert T, Duvauchelle CL. Alcohol-naïve USVs distinguish male HAD-1 from LAD-1 rat strains. Alcohol 2018; 68:9-17. [PMID: 29427829 PMCID: PMC5851795 DOI: 10.1016/j.alcohol.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Ultrasonic vocalizations (USVs) are mediated through specific dopaminergic and cholinergic neural pathways and serve as real-time measures of positive and negative emotional status in rodents. Although most USV studies focus primarily on USV counts, each USV possesses a number of characteristics shown to reflect activity in the associated neurotransmitter system. In the present study, we recorded spontaneously emitted USVs from alcohol-naïve high alcohol drinking (HAD-1) and low alcohol drinking (LAD-1) rats. Using our recently developed WAAVES algorithm, we quantified four acoustic characteristics (mean frequency, duration, power, and bandwidth) from each 22-28 kHz and 50-55 kHz frequency-modulated (FM) USV. This rich USV representation allowed us to apply advanced statistical techniques to identify the USV acoustic characteristics that distinguished HAD-1 from LAD-1 rats. Linear mixed models (LMM) examined the predictability of each USV characteristic in isolation and linear discriminant analysis (LDA), and binomial logistic regression examined the predictability of linear combinations of the USV characteristics as a group. Results revealed significant differences in acoustic characteristics between HAD-1 and LAD-1 rats in both 22-28 kHz and 50-55 kHz FM USVs. In other words, these rats selectively bred for high- and low-alcohol consumption can be identified as HAD-1 or LAD-1 rats with high classification accuracy (approximately 92-100%) exclusively based on their emitted 22-28 kHz and 50-55 kHz FM USV acoustic characteristics. In addition, acoustic characteristics of 22-28 kHz and 50-55 kHz FM USVs emitted by alcohol-naïve HAD-1 and LAD-1 rats significantly correlate with their future alcohol consumption. Our current findings provide novel evidence that USV acoustic characteristics can be used to discriminate between alcohol-naïve HAD-1 and LAD-1 rats, and may serve as biomarkers in rodents with a predisposition for, or against, excessive alcohol intake.
Collapse
Affiliation(s)
- Nitish Mittal
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States
| | - Neha Thakore
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States
| | - James M Reno
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States; The University of Texas at Austin, Department of Psychology, Behavioral Neuroscience Division, 108 E. Dean Keeton, Stop A8000, Austin, TX 78712, United States
| | - Richard L Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - W Todd Maddox
- Cognitive Design and Statistical Consulting, Austin, TX 78746, United States
| | - Timothy Schallert
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States; The University of Texas at Austin, Department of Psychology, Behavioral Neuroscience Division, 108 E. Dean Keeton, Stop A8000, Austin, TX 78712, United States
| | - Christine L Duvauchelle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology and Toxicology, 2409 University Avenue, Stop A1915, Austin, TX 78712, United States; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, United States.
| |
Collapse
|