1
|
Kitamura E, Imai N. Molecular and Cellular Neurobiology of Spreading Depolarization/Depression and Migraine: A Narrative Review. Int J Mol Sci 2024; 25:11163. [PMID: 39456943 PMCID: PMC11508361 DOI: 10.3390/ijms252011163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Migraine is a prevalent neurological disorder, particularly among individuals aged 20-50 years, with significant social and economic impacts. Despite its high prevalence, the pathogenesis of migraine remains unclear. In this review, we provide a comprehensive overview of cortical spreading depolarization/depression (CSD) and its close association with migraine aura, focusing on its role in understanding migraine pathogenesis and therapeutic interventions. We discuss historical studies that have demonstrated the role of CSD in the visual phenomenon of migraine aura, along with modern imaging techniques confirming its propagation across the occipital cortex. Animal studies are examined to indicate that CSD is not exclusive to migraines; it also occurs in other neurological conditions. At the cellular level, we review how CSD is characterized by ionic changes and excitotoxicity, leading to neuronal and glial responses. We explore how CSD activates the trigeminal nervous system and upregulates the expression of calcitonin gene-related peptides (CGRP), thereby contributing to migraine pain. Factors such as genetics, obesity, and environmental conditions that influence the CSD threshold are discussed, suggesting potential therapeutic targets. Current treatments for migraine, including prophylactic agents and CGRP-targeting drugs, are evaluated in the context of their expected effects on suppressing CSD activity. Additionally, we highlight emerging therapies such as intranasal insulin-like growth factor 1 and vagus nerve stimulation, which have shown promise in reducing CSD susceptibility and frequency. By elucidating the molecular and cellular mechanisms of CSD, this review aims to enhance the understanding of migraine pathogenesis and support the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Eiji Kitamura
- Department of Neurology, Kitasato University School of Medicine, Sagamihara 252-0329, Japan;
| | - Noboru Imai
- Department of Neurology and Headache Center, Japanese Red Cross Shizuoka Hospital, Shizuoka 420-0853, Japan
| |
Collapse
|
2
|
Circulating Insulin-Like Growth Factor 1 Levels and Migraine Risk: A Mendelian Randomization Study. Neurol Ther 2022; 11:1677-1689. [PMID: 36048332 PMCID: PMC9588118 DOI: 10.1007/s40120-022-00398-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/10/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION Preclinical studies have indicated insulin-like growth factor 1 (IGF1) as a novel therapeutic target in the treatment of migraines. We aimed to investigate the causal effect of circulating IGF1 levels on migraine risk using the two-sample Mendelian randomization method. METHODS A total of 431 independent variants from 363,228 unrelated individuals in the UK Biobank were used as genetic instruments for circulating IGF1 levels. Summary-level data for migraines were obtained from two independent studies with 10,536 and 28,852 migraine cases, respectively. RESULTS Mendelian randomization using inverse-variance weighting showed that increased IGF1 levels were significantly associated with decreased risk of migraines in both outcome datasets (odds ratio 0.905, 95% confidence interval 0.842-0.972, p = 0.006; odds ratio 0.929, 95% confidence interval 0.882-0.979, p = 0.006). Although some other robust Mendelian randomization methods did not demonstrate a significant association, no unbalanced horizontal pleiotropy was found by Mendelian randomization-Egger regression (p values for horizontal pleiotropy 0.232 and 0.435). The effect was confirmed in additional analyses including multivariable Mendelian randomization analyses. CONCLUSION This two-sample Mendelian randomization study showed that genetically determined increased IGF1 levels are causally associated with decreased migraine risk. Future randomized controlled trials are warranted to confirm the benefits of IGF1 administration on migraines.
Collapse
|
3
|
Protective role of IGF-1 and GLP-1 signaling activation in neurological dysfunctions. Neurosci Biobehav Rev 2022; 142:104896. [PMID: 36191807 DOI: 10.1016/j.neubiorev.2022.104896] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022]
Abstract
Insulin-like growth factor-1 (IGF-1), a pleiotropic polypeptide, plays an essential role in CNS development and maturation. Glucagon-like peptide-1 (GLP-1) is an endogenous incretin hormone that regulates blood glucose levels and fatty acid oxidation in the brain. GLP-1 also exhibits similar functions and growth factor-like properties to IGF-1, which is likely how it exerts its neuroprotective effects. Recent preclinical and clinical evidence indicate that IGF-1 and GLP-1, apart from regulating growth and development, prevent neuronal death mediated by amyloidogenesis, cerebral glucose deprivation, neuroinflammation and apoptosis through modulation of PI3/Akt kinase, mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK/ERK). IGF-1 resistance and GLP-1 deficiency impair protective cellular signaling mechanisms, contributing to the progression of neurodegenerative diseases. Over the past decades, IGF-1 and GLP-1 have emerged as an essential component of the neuronal system and as potential therapeutic targets for several neurodegenerative and neuropsychiatric dysfunctions. There is substantial evidence that IGF-1 and GLP-1 analogues penetrate the blood-brain barrier (BBB) and exhibit neuroprotective functions, including synaptic formation, neuronal plasticity, protein synthesis, and autophagy. Conclusively, this review represents the therapeutic potential of IGF-1 and GLP-1 signaling target activators in ameliorating neurological disorders.
Collapse
|
4
|
Colitti N, Desmoulin F, Le Friec A, Labriji W, Robert L, Michaux A, Conchou F, Cirillo C, Loubinoux I. Long-Term Intranasal Nerve Growth Factor Treatment Favors Neuron Formation in de novo Brain Tissue. Front Cell Neurosci 2022; 16:871532. [PMID: 35928573 PMCID: PMC9345199 DOI: 10.3389/fncel.2022.871532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To date, no safe and effective pharmacological treatment has been clinically validated for improving post-stroke neurogenesis. Growth factors are good candidates but low safety has limited their application in the clinic. An additional restraint is the delivery route. Intranasal delivery presents many advantages. Materials and Methods A brain lesion was induced in twenty-four rats. Nerve growth factor (NGF) 5 μg/kg/day or vehicle was given intranasally from day 10 post-lesion for two periods of five weeks, separated by a two-week wash out period with no treatment. Lesion volume and atrophy were identified by magnetic resonance imaging (MRI). Anxiety and sensorimotor recovery were measured by behavior tests. Neurogenesis, angiogenesis and inflammation were evaluated by histology at 12 weeks. Results Remarkable neurogenesis occurred and was visible at the second and third months after the insult. Tissue reconstruction was clearly detected by T2 weighted MRI at 8 and 12 weeks post-lesion and confirmed by histology. In the new tissue (8.1% of the lesion in the NGF group vs. 2.4%, in the control group at 12 weeks), NGF significantly increased the percentage of mature neurons (19% vs. 7%). Angiogenesis and inflammation were not different in the two groups. Sensorimotor recovery was neither improved nor hampered by NGF during the first period of treatment, but NGF treatment limited motor recovery in the second period. Interpretation The first five-week period of treatment was very well tolerated. This study is the first presenting the effects of a long treatment with NGF and has shown an important tissue regeneration rate at 8 and 12 weeks post-injury. NGF may have increased neuronal differentiation and survival and favored neurogenesis and neuron survival through subventricular zone (SVZ) neurogenesis or reprogramming of reactive astrocytes. For the first time, we evidenced a MRI biomarker of neurogenesis and tissue reconstruction with T2 and diffusion weighted imaging.
Collapse
Affiliation(s)
- Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Wafae Labriji
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Amandine Michaux
- Unit of Medical Imaging, National Veterinary School of Toulouse, University of Toulouse, Toulouse, France
| | - Fabrice Conchou
- Unit of Medical Imaging, National Veterinary School of Toulouse, University of Toulouse, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
- *Correspondence: Isabelle Loubinoux,
| |
Collapse
|
5
|
Goel H, Kalra V, Verma SK, Dubey SK, Tiwary AK. Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies. J Control Release 2021; 341:782-811. [PMID: 34906605 DOI: 10.1016/j.jconrel.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Brain, a subtle organ of multifarious nature presents plethora of physiological, metabolic and bio-chemical convolutions that impede the delivery of biomolecules and thereby resulting in truncated therapeutic outcome in pathological conditions of central nervous system (CNS). The absolute bottleneck in the therapeutic management of such devastating CNS ailments is the BBB. Another pitfall is the lack of efficient technological platforms (due to high cost and low approval rates) as well as limited clinical trials (due to failures of neuro‑leads in late-stage pipelines) for CNS disorders which has become a literal brain drain with poorest success rates compared to other therapeutic areas, owing to time consuming processes, tremendous convolutions and conceivable adverse effects. With the advent of intranasal delivery (via direct N2B or indirect nose to blood to brain), several novel drug delivery carriers viz. unmodified or surface modified nanoparticle based carriers, lipid based colloidal nanocarriers and drysolid/liquid/semisolid nanoformulations or delivery platforms have been designed as a means to deliver therapeutic agents (small and large molecules, peptides and proteins, genes) to brain, bypassing BBB for disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, schizophrenia and CNS malignancies primarily glioblastomas. Intranasal application offers drug delivery through both direct and indirect pathways for the peripherally administered psychopharmacological agents to CNS. This route could also be exploited for the repurposing of conventional drugs for new therapeutic uses. The limited clinical translation of intranasal formulations has been primarily due to existence of barriers of mucociliary clearance in the nasal cavity, enzyme degradation and low permeability of the nasal epithelium. The present review literature aims to decipher the new paradigms of nano therapeutic systems employed for specific N2B drug delivery of CNS drugs through in silico complexation studies using rationally chosen mucoadhesive polymers (exhibiting unique physicochemical properties of nanocarrier's i.e. surface modification, prolonging retention time in the nasal cavity, improving penetration ability, and promoting brain specific delivery with biorecognitive ligands) via molecular docking simulations. Further, the review intends to delineate the feats and fallacies associated with N2B delivery approaches by understanding the physiological/anatomical considerations via decoding the intranasal drug delivery pathways or critical factors such as rationale and mechanism of excipients, affecting the permeability of CNS drugs through nasal mucosa as well as better efficacy in terms of brain targeting, brain bioavailability and time to reach the brain. Additionally, extensive emphasis has also been laid on the innovative formulations under preclinical investigation along with their assessment by means of in vitro /ex vivo/in vivo N2B models and current characterization techniques predisposing an efficient intranasal delivery of therapeutics. A critical appraisal of novel technologies, intranasal products or medical devices available commercially has also been presented. Finally, it could be warranted that more reminiscent pharmacokinetic/pharmacodynamic relationships or validated computational models are mandated to obtain effective screening of molecular architecture of drug-polymer-mucin complexes for clinical translation of N2B therapeutic systems from bench to bedside.
Collapse
Affiliation(s)
- Honey Goel
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India.
| | - Vinni Kalra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | | | - Ashok Kumar Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
6
|
Pusic KM, Kraig RP, Pusic AD. IFNγ-stimulated dendritic cell extracellular vesicles can be nasally administered to the brain and enter oligodendrocytes. PLoS One 2021; 16:e0255778. [PMID: 34388189 PMCID: PMC8363003 DOI: 10.1371/journal.pone.0255778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles secreted from IFNγ-stimulated rat dendritic cells (referred to here as IFNγ-DC-EVs) contain miRNAs which promote myelination (including but not limited to miR-219), and preferentially enter oligodendrocytes in brain slice cultures. IFNγ-DC-EVs also increase myelination when nasally administered to naïve rats. While we can infer that these extracellular vesicles enter the CNS from functional studies, here we demonstrate biodistribution throughout the brain after nasal delivery by way of imaging studies. After nasal administration, Xenolight DiR-labelled IFNγ-DC-EVs were detected 30 minutes later throughout the brain and the cervical spinal cord. We next examined cellular uptake of IFNγ-DC-EVs by transfecting IFNγ-DC-EVs with mCherry mRNA prior to nasal administration. mCherry-positive cells were found along the rostrocaudal axis of the brain to the brainstem. These cells morphologically resembled oligodendrocytes, and indeed cell-specific co-staining for neurons, astrocytes, microglia and oligodendrocytes showed that mcherry positive cells were predominantly oligodendrocytes. This is in keeping with our prior in vitro results showing that IFNγ-DC-EVs are preferentially taken up by oligodendrocytes, and to a lesser extent, microglia. To confirm that IFNγ-DC-EVs delivered cargo to oligodendrocytes, we quantified protein levels of miR-219 mRNA targets expressed in oligodendrocyte lineage cells, and found significantly reduced expression. Finally, we compared intranasal versus intravenous delivery of Xenolight DiR-labelled IFNγ-DC-EVs. Though labelled IFNγ-DC-EVs entered the CNS via both routes, we found that nasal delivery more specifically targeted the CNS with less accumulation in the liver. Taken together, these data show that intranasal administration is an effective route for delivery of IFNγ-DC-EVs to the CNS, and provides additional support for their development as an EV-based neurotherapeutic that, for the first time, targets oligodendrocytes.
Collapse
Affiliation(s)
- Kae M. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Richard P. Kraig
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Aya D. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
7
|
Won L, Kraig RP. Insulin-like growth factor-1 inhibits nitroglycerin-induced trigeminal activation of oxidative stress, calcitonin gene-related peptide and c-Fos expression. Neurosci Lett 2021; 751:135809. [PMID: 33713748 DOI: 10.1016/j.neulet.2021.135809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 01/06/2023]
Abstract
Migraineurs experience increased oxidative stress which drives the initiation and maintenance of migraine-related pain in animal models and, by extension, migraine in humans. Oxidative stress augments calcitonin gene-related peptide (CGRP) levels, a mediator of migraine pain. Insulin-like growth factor-1 (IGF-1), a neuroprotective growth factor, reduces susceptibility to spreading depression, a preclinical model of migraine, in cultured brain slices by blocking oxidative stress and neuroinflammation from microglia. Similarly, nasal delivery of IGF-1 inhibits spreading depression in vivo. After recurrent cortical spreading depression, nasal administration of IGF-1 also significantly reduces trigeminal ganglion oxidative stress and CGRP levels as well as trigeminocervical c-Fos activation. Here, we probed for the impact of nasal IGF-1 pretreatment on trigeminal system activation using a second well-established preclinical model of migraine, systemic nitroglycerin injection. Adult male rats were treated with one of three doses of IGF-1 (37.5, 75 or 150 μg) and the optimal dose found in males was subsequently used for treatment of female rats. One day later, animals received an intraperitoneal injection of nitroglycerin. Measurements taken two hours later after nitroglycerin alone showed increased surrogate markers of trigeminal activation - oxidative stress and CGRP in the trigeminal ganglion and c-Fos in the trigeminocervical complex compared to vehicle control. These effects were significantly reduced at all doses of IGF-1 for trigeminal ganglion metrics of oxidative stress and CGRP and only at the lowest dose in both males and females for c-Fos. The latter inverted U-shaped or hormetic response is seen in enzyme-targeting drugs. While the specific mechanisms remain to be explored, our data here supports the ability of IGF-1 to preserve mitochondrial and antioxidant pathway homeostasis as means to prevent nociceptive activation in the trigeminal system produced by an experimental migraine model.
Collapse
Affiliation(s)
- Lisa Won
- Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA
| | - Richard P Kraig
- Department of Neurology, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
8
|
Pusic KM, Won L, Kraig RP, Pusic AD. Environmental Enrichment and Its Benefits for Migraine: Dendritic Cell Extracellular Vesicles as an Effective Mimetic. JOURNAL OF CELLULAR IMMUNOLOGY 2021; 3:215-225. [PMID: 34337600 PMCID: PMC8321388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Environmental enrichment produces beneficial effects in the brain at genetic, molecular, cellular and behavior levels, and has long been studied as a therapeutic intervention for a wide variety of neurological disorders. However, the complexity of applying a robust environmental enrichment paradigm makes clinical use difficult. Accordingly, there has been increased interest in developing environmental enrichment mimetics, also known as enviromimetics. Here we review the benefits of environmental enrichment for migraine treatment, and discuss the potential of using extracellular vesicles derived from interferon gamma-stimulated dendritic cells as an effective mimetic.
Collapse
Affiliation(s)
- Kae Myriam Pusic
- Department of Neurology, The University of Chicago, Chicago, Il 60637-1470, USA
| | - Lisa Won
- Department of Neurology, The University of Chicago, Chicago, Il 60637-1470, USA
| | - Richard Paul Kraig
- Department of Neurology, The University of Chicago, Chicago, Il 60637-1470, USA
| | - Aya Darinka Pusic
- Department of Neurology, The University of Chicago, Chicago, Il 60637-1470, USA
| |
Collapse
|
9
|
Xu J, Tao J, Wang J. Design and Application in Delivery System of Intranasal Antidepressants. Front Bioeng Biotechnol 2020; 8:626882. [PMID: 33409272 PMCID: PMC7779764 DOI: 10.3389/fbioe.2020.626882] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
One of the major reasons why depressed patients fail their treatment course is the existence of the blood-brain barrier (BBB), which prevents drugs from being delivered to the central nervous system (CNS). In recent years, nasal drug delivery has achieved better systemic bioavailability and activity in low doses in antidepressant treatment. In this review, we focused on the latest strategies for delivery carriers (or formation) of intranasal antidepressants. We began this review with an overview of the nasal drug delivery systems, including nasal drug delivery route, absorption mechanism, advantages, and limitations in the nasal drug delivery route. Next, we introduced the development of nasal drug delivery devices, such as powder devices, liquid-based devices, and so on. Finally, intranasal delivery carriers of antidepressants in clinical studies, including nanogels, nanostructured lipid, liposomes nanoparticles, nanoemulsions/microemulsion, were summarized. Moreover, challenges and future perspectives on recent progress of intranasal delivery carriers in antidepressant treatments were discussed.
Collapse
Affiliation(s)
- Jingying Xu
- School of Marxism, Yanshan University, Qinhuangdao, China
- Mental Health Service Center, Yanshan University, Qinhuangdao, China
| | - Jiangang Tao
- School of Marxism, Yanshan University, Qinhuangdao, China
- Mental Health Service Center, Yanshan University, Qinhuangdao, China
| | - Jidong Wang
- Applied Chemistry Key Laboratory of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, China
| |
Collapse
|
10
|
Takizawa T, Ayata C, Chen SP. Therapeutic implications of cortical spreading depression models in migraine. PROGRESS IN BRAIN RESEARCH 2020; 255:29-67. [PMID: 33008510 DOI: 10.1016/bs.pbr.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Migraine is among the most common and disabling neurological diseases in the world. Cortical spreading depression (CSD) is a wave of near-complete depolarization of neurons and glial cells that slowly propagates along the cortex creating the perception of aura. Evidence suggests that CSD can trigger migraine headache. Experimental models of CSD have been considered highly translational as they recapitulate migraine-related phenomena and have been validated for screening migraine therapeutics. Here we outline the essential components of validated experimental models of CSD and provide a comprehensive review of potential modulators and targets against CSD. We further focus on novel interventions that have been recently shown to suppress CSD susceptibility that may lead to therapeutic targets in migraine.
Collapse
Affiliation(s)
- Tsubasa Takizawa
- Department of Neurology, Keio Universrity School of Medicine, Tokyo, Japan
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shih-Pin Chen
- Department of Medical Research & Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
11
|
Abstract
We describe a model of neurological disease based on dysfunctional brain oscillators. This is not a new model, but it is not one that is widely appreciated by clinicians. The value of this model lies in the predictions it makes and the utility it provides in translational applications, in particular for neuromodulation devices. Specifically, we provide a perspective on devices that provide input to sensory receptors and thus stimulate endogenous sensory networks. Current forms of clinically applied neuromodulation, including devices such as (implanted) deep brain stimulators (DBS) and various, noninvasive methods such as transcranial magnetic stimulation (TMS) and transcranial current methods (tACS, tDCS), have been studied extensively. The potential strength of neuromodulation of a sensory organ is access to the same pathways that natural environmental stimuli use and, importantly, the modulatory signal will be transformed as it travels through the brain, allowing the modulation input to be consistent with regional neuronal dynamics. We present specific examples of devices that rely on sensory neuromodulation and evaluate the translational potential of these approaches. We argue that sensory neuromodulation is well suited to, ideally, repair dysfunctional brain oscillators, thus providing a broad therapeutic approach for neurological diseases.
Collapse
|
12
|
Insulin-like growth factor-1 inhibits spreading depression-induced trigeminal calcitonin gene related peptide, oxidative stress & neuronal activation in rat. Brain Res 2020; 1732:146673. [PMID: 31978377 DOI: 10.1016/j.brainres.2020.146673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/21/2022]
Abstract
Migraineurs can show brain hyperexcitability and oxidative stress that may promote headache. Since hyperexcitability can enhance oxidative stress which promotes hyperexcitability, ending this feed-back loop may reduce migraine. Neocortical spreading depression, an animal model of migraine begins with hyperexcitability and triggers oxidative stress in the neocortical area involved and in the trigeminal system, which is important to pain pathway nociceptive activation in migraine. Additionally, oxidative stress causes increased trigeminal ganglion calcitonin gene-related peptide release and oxidative stress can reduce spreading depression threshold. Insulin-like growth factor-1 significantly protects against spreading depression in vitro by reducing oxidative stress and it is effective against spreading depression after intranasal delivery to animals. Here, we used adult male rats and extend this work to study the trigeminal system where insulin-like growth factor-1 receptors are highly expressed. Recurrent neocortical spreading depression significantly increased surrogate markers of trigeminal activation - immunostaining for trigeminal ganglion oxidative stress, calcitonin gene related peptide levels and c-fos in the trigeminocervical complex versus sham. These effects were significantly reduced by intranasal delivery of insulin-like growth factor-1 a day before recurrent neocortical spreading depression. Furthermore, intranasal treatment with insulin-like growth factor-1 significantly reduced naïve levels of trigeminal ganglion calcitonin gene related peptide versus sham with no impact on blood glucose levels. Intranasal delivery of insulin-like growth factor-1 not only mitigates neocortical spreading depression, a cause of migraine hyperexcitability modeled in animals, but also when neocortical spreading depression is triggered by supra-threshold stimuli, insulin-like growth factor-1 effectively reduces nociceptive activation in the trigeminal system.
Collapse
|
13
|
Peng S, Yang J, Wang Y, Fan Y, Tang F, Hou C, Yu J, Wang X, Jiang G. Low-dose intranasal insulin improves cognitive function and suppresses the development of epilepsy. Brain Res 2019; 1726:146474. [PMID: 31557476 DOI: 10.1016/j.brainres.2019.146474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 01/19/2023]
Abstract
Intranasal insulin exerts neuroprotective effects in a variety of neurological diseases. Whether intranasal insulin affects epileptic activity and whether it has neuroprotective effects in epileptic diseases is however still unknown. In this study we show that low-dose intranasal insulin inhibited kainic acid (KA)- or pentylenetetrazole (PTZ)-induced acute seizures and reduced epileptic discharge activities in mice, potentially by alleviating the increase in seizure-induced glutamate in the hippocampus. Meanwhile, intranasal insulin increased GABA levels and the activities of hippocampal theta, which may affect the excitability of the hippocampus. In chronic KA-induced epilepsy, low-dose intranasal insulin reduces the frequency of spontaneous recurrent seizures and epileptic discharges, while it increases theta energy and thereby improves spatial memory. Larger doses of intranasal insulin increased the frequency of seizures but did not aggravate cognitive impairment, suggesting that the frequency of seizures may not be related to impaired cognitive function. Overall, our findings show that low-dose intranasal insulin inhibits epileptic events and improves cognitive impairment in epileptic mice, suggesting that learning and memory can be improved by intranasal insulin. However, larger doses might increase the risk of epileptic seizures.
Collapse
Affiliation(s)
- Shu Peng
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Jin Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Yufeng Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Yang Fan
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Feng Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Changyue Hou
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Juming Yu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Xiaoming Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China.
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China.
| |
Collapse
|
14
|
Pusic KM, Won L, Kraig RP, Pusic AD. IFNγ-Stimulated Dendritic Cell Exosomes for Treatment of Migraine Modeled Using Spreading Depression. Front Neurosci 2019; 13:942. [PMID: 31551696 PMCID: PMC6733989 DOI: 10.3389/fnins.2019.00942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/21/2019] [Indexed: 01/12/2023] Open
Abstract
Migraine is a common headache disorder characterized by unilateral, intense headaches. In migraine with aura, the painful headache is preceded by focal neurological symptoms that can be visual, sensory, or motor in nature. Spreading depression (the most likely cause of migraine with aura and perhaps related headache pain) results in increased neuronal excitability and related increases in inflammation and production of reactive oxygen species. This in turn can promote the transformation of low-frequency, episodic migraine into higher-frequency and eventually chronic migraine. Though migraine affects 11% of adults worldwide, with 3% experiencing chronic headache, existing therapies offer only modest benefits. Here, we focus on the mechanisms by which environmental enrichment (i.e., volitionally increased intellectual, social, and physical activity) mitigates spreading depression. In prior work, we have shown that exposure to environmental enrichment reduces susceptibility to spreading depression in rats. This protective effect is at least in part due to environmental enrichment-mediated changes in the character of serum exosomes produced by circulating immune cells. We went on to show that environmental enrichment-mimetic exosomes can be produced by stimulating dendritic cells with low levels of interferon gamma (a cytokine that is phasically increased during environmental enrichment). Interferon gamma-stimulated dendritic cell exosomes (IFNγ-DC-Exos) significantly improve myelination and reduce oxidative stress when applied to hippocampal slice cultures. Here, we propose that they may also be effective against spreading depression. We found that administration of IFNγ-DC-Exos reduced susceptibility to spreading depression in vivo and in vitro, suggesting that IFNγ-DC-Exos may be a potential therapeutic for migraine.
Collapse
Affiliation(s)
| | | | | | - Aya D. Pusic
- Department of Neurology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|