1
|
Esteves-Monteiro M, Ferreira-Duarte M, Vitorino-Oliveira C, Costa-Pires J, Oliveira S, Matafome P, Morato M, Dias-Pereira P, Costa VM, Duarte-Araújo M. Oxidative Stress and Histomorphometric Remodeling: Two Key Intestinal Features of Type 2 Diabetes in Goto-Kakizaki Rats. Int J Mol Sci 2024; 25:12115. [PMID: 39596183 PMCID: PMC11594829 DOI: 10.3390/ijms252212115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Gastrointestinal complications of diabetes are often overlooked, despite affecting up to 75% of patients. This study innovatively explores local glutathione levels and morphometric changes in the gut of Goto-Kakizaki (GK) rats, a type 2 diabetes animal model. Segments of the intestine, cecum, and colon were collected for histopathological analysis and glutathione quantification. A significant increase in the total thickness of the intestinal wall of GK rats was observed, particularly in the duodenum (1089.02 ± 39.19 vs. 864.19 ± 37.17 µm), ileum (726.29 ± 24.75 vs. 498.76 ± 16.86 µm), cecum (642.24 ± 34.15 vs. 500.97 ± 28.81 µm), and distal colon (1211.81 ± 51.32 vs. 831.71 ± 53.2 µm). Additionally, diabetic rats exhibited thickening of the muscular layers in all segments, except for the duodenum, which was also the only portion where the number of smooth muscle cells did not decrease. Moreover, myenteric neuronal density was lower in GK rats, suggesting neurological loss. Total glutathione levels were lower in all intestinal segments of diabetic rats (except duodenum), and the reduced/oxidized glutathione ratio (GSH/GSSG) was significantly decreased in GK rats, indicating increased oxidative stress. These findings strongly indicate that GK rats undergo significant intestinal remodeling, notable shifts in neuronal populations, and heightened oxidative stress-factors that likely contribute to the functional gastrointestinal alterations seen in diabetic patients.
Collapse
Affiliation(s)
- Marisa Esteves-Monteiro
- Associated Laboratory for Green Chemistry (LAQV) Network of Chemistry and Technology (REQUIMTE), University of Porto, 4050-313 Porto, Portugal (M.M.)
- Department of Immuno-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), 4050-313 Porto, Portugal
| | - Mariana Ferreira-Duarte
- Associated Laboratory for Green Chemistry (LAQV) Network of Chemistry and Technology (REQUIMTE), University of Porto, 4050-313 Porto, Portugal (M.M.)
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), 4050-313 Porto, Portugal
| | - Cláudia Vitorino-Oliveira
- Institute for Health and Bioeconomy (i4HB), Laboratory of Toxicology, Department of Biological Sciences, FFUP, 4050-313 Porto, Portugal (V.M.C.)
- Research Unit on Applied Molecular Biosciences (UCIBIO), FFUP, Laboratory of Toxicology, Department of Biological Sciences, FFUP, 4050-313 Porto, Portugal
| | - José Costa-Pires
- Department of Immuno-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Sara Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra (UC), 3000-548 Coimbra, Portugal; (S.O.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), UC, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra (UC), 3000-548 Coimbra, Portugal; (S.O.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), UC, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal
- Coimbra Health School (ESTeSC), Polytechnic University of Coimbra, 3046-854 Coimbra, Portugal
| | - Manuela Morato
- Associated Laboratory for Green Chemistry (LAQV) Network of Chemistry and Technology (REQUIMTE), University of Porto, 4050-313 Porto, Portugal (M.M.)
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), 4050-313 Porto, Portugal
| | - Patrícia Dias-Pereira
- Department of Pathology and Molecular Immunology, ICBAS-UP, 4050-313 Porto, Portugal;
| | - Vera Marisa Costa
- Institute for Health and Bioeconomy (i4HB), Laboratory of Toxicology, Department of Biological Sciences, FFUP, 4050-313 Porto, Portugal (V.M.C.)
- Research Unit on Applied Molecular Biosciences (UCIBIO), FFUP, Laboratory of Toxicology, Department of Biological Sciences, FFUP, 4050-313 Porto, Portugal
| | - Margarida Duarte-Araújo
- Associated Laboratory for Green Chemistry (LAQV) Network of Chemistry and Technology (REQUIMTE), University of Porto, 4050-313 Porto, Portugal (M.M.)
- Department of Immuno-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Gimenes GM, Pereira JNB, Borges da Silva E, dos Santos AAC, Rodrigues TM, Santana GDO, Scervino MVM, Pithon-Curi TC, Hirabara SM, Gorjão R, Curi R. Intestinal Motility Dysfunction in Goto-Kakizaki Rats: Role of the Myenteric Plexus. Cells 2024; 13:1626. [PMID: 39404390 PMCID: PMC11475219 DOI: 10.3390/cells13191626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus is associated with changes in intestinal morphology and the enteric nervous system. We previously reported constipation in Goto-Kakizaki (GK) rats, a non-obese model for type 2 diabetes mellitus. AIM The morpho-quantitative analysis of myenteric plexus neurons in the small and large intestines of 120-day-old male GK rats was investigated. METHODS The diabetes was confirmed by high fasting blood glucose levels. The myenteric plexus was evaluated through wholemount immunofluorescence. The morpho-quantitative analyses included evaluating neuronal density (neurons per ganglion) of the total neuronal population, the cholinergic and nitrergic subpopulations, and enteric glial cells per ganglion. The cell body area of 100 neurons per segment per animal was measured. RESULTS The total neurons and nitrergic subpopulation were unaltered in the GK rats' small and large intestines. The cholinergic subpopulation exhibited decreased density in the three segments of the small intestine and an increased number in the proximal colon of the GK rats. The number of enteric glial cells increased in the ileum of the GK rats, which could indicate enteric gliosis caused by the intestinal inflammatory state. The area of the cell body was increased in the total neuronal population of the jejunum and ileum of the GK rats. Frequency histograms of the cell body area distribution revealed the contribution of cholinergic neurons to larger areas in the jejunum and nitrergic neurons in the ileum. CONCLUSION The constipation previously reported in GK rats might be explained by the decrease in the density of cholinergic neurons in the small intestine of this animal model.
Collapse
Affiliation(s)
- Gabriela Mandú Gimenes
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | | | - Eliane Borges da Silva
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Alef Aragão Carneiro dos Santos
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Thais Martins Rodrigues
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Giovanna de Oliveira Santana
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Maria Vitoria Martins Scervino
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
- Butantan Institute, São Paulo 05585-000, Brazil
| |
Collapse
|
3
|
Esteves-Monteiro M, Menezes-Pinto D, Ferreira-Duarte M, Dias-Pereira P, Morato M, Duarte-Araújo M. Histomorphometry Changes and Decreased Reactivity to Angiotensin II in the Ileum and Colon of Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2022; 23:13233. [PMID: 36362021 PMCID: PMC9656372 DOI: 10.3390/ijms232113233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 10/15/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic progressive metabolic disorder associated with several gastrointestinal complications, affecting up to 75% of patients. Knowing that Angiotensin II (AngII) also regulates intestinal contraction, we decided to evaluate changes in ileum and colon histomorphometry and AngII reactivity in a rat model of DM. Streptozotocin (STZ, 55 mg/kg) was administered to induce DM to 24 adult male Wistar rats. Diabetic rats displayed all the characteristic signs of type 1 DM (T1DM) and fecal excretion increased about 4-fold over 14 days, while the excretion of controls remained unaltered. Compared to controls, diabetic ileum and colon presented an increase in both macroscopic (length, perimeter and weight) and microscopic (muscular wall thickness) parameters. Functionally, AngII-induced smooth muscle contraction was lower in diabetic rats, except in the distal colon. These differences in the contractile response to AngII may result from an imbalance between AngII type 1 (antagonized by candesartan, 10 nM) and type 2 receptors activation (antagonized by PD123319, 100 nM). Taken together, these results indicate that an early and refined STZ-induced T1DM rat model already shows structural remodelling of the gut wall and decreased contractile response to AngII, findings that may help to explain diabetic dysmotility.
Collapse
Affiliation(s)
- Marisa Esteves-Monteiro
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Department of Immuno-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), 4050-313 Porto, Portugal
| | - Daniela Menezes-Pinto
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), 4050-313 Porto, Portugal
| | - Mariana Ferreira-Duarte
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), 4050-313 Porto, Portugal
| | - Patrícia Dias-Pereira
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Manuela Morato
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), 4050-313 Porto, Portugal
| | - Margarida Duarte-Araújo
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Department of Immuno-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Almeida PP, de Moraes Thomasi BB, Menezes ÁC, Da Cruz BO, da Silva Costa N, Brito ML, D'Avila Pereira A, Castañon CR, Degani VAN, Magliano DC, Knauf C, Tavares-Gomes AL, Stockler-Pinto MB. 5/6 nephrectomy affects enteric glial cells and promotes impaired antioxidant defense in the colonic neuromuscular layer. Life Sci 2022; 298:120494. [PMID: 35339510 DOI: 10.1016/j.lfs.2022.120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
AIMS Chronic kidney disease (CKD) produces multiple repercussions in the gastrointestinal tract (GIT), such as alterations in motility, gut microbiota, intestinal permeability, and increased oxidative stress. However, despite enteric glial cells (EGC) having important neural and immune features in GIT physiology, their function in CKD remains unknown. The present study investigates colonic glial markers, inflammation, and antioxidant parameters in a CKD model. MAIN METHODS A 5/6 nephrectomized rat model was used to induce CKD in rats and Sham-operated animals as a control to suppress. Biochemical measures in plasma and neuromuscular layer such as glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity were carried out. Kidney histopathology was evaluated. Colon morphology analysis and glial fibrillary acid protein (GFAP), connexin-43 (Cx43), nuclear factor-kappa B (NF-κB) p65, and GPx protein expression were performed. KEY FINDINGS The CKD group exhibited dilated tubules and tubulointerstitial fibrosis in the reminiscent kidney (p = 0.0002). CKD rats showed higher SOD activity (p = 0.004) in plasma, with no differences in neuromuscular layer (p = 0.9833). However, GPx activity was decreased in the CKD group in plasma (p = 0.013) and neuromuscular layer (p = 0.0338). Morphological analysis revealed alterations in colonic morphometry with inflammatory foci in the submucosal layer and neuromuscular layer straightness in CKD rats (p = 0.0291). In addition, GFAP, Cx43, NF-κBp65 protein expression were increased, and GPx decreased in the neuromuscular layer of the CKD group (p < 0.05). SIGNIFICANCE CKD animals present alterations in colonic cytoarchitecture and decreased layer thickness. Moreover, CKD affects the enteric glial network of the neuromuscular layer, associated with decreased antioxidant activity and inflammation.
Collapse
Affiliation(s)
- Patricia Pereira Almeida
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | | | - Ágatha Cristie Menezes
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Beatriz Oliveira Da Cruz
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Nathalia da Silva Costa
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Michele Lima Brito
- Nutrition Graduation, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - Cecília Ribeiro Castañon
- Clinic and Animal Reproduction Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - D'Angelo Carlo Magliano
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Morphology Department, Biomedical Institute, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Claude Knauf
- Institut de Recherche en Santé Digestive, Université Paul Sabatier (UPS), Toulouse, France
| | - Ana Lúcia Tavares-Gomes
- Neuroscience Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Nutrition Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
5
|
Almeida PPD, Thomasi BBDM, Costa NDS, Valdetaro L, Pereira AD, Gomes ALT, Stockler-Pinto MB. Brazil Nut ( Bertholletia excelsa H.B.K) Retards Gastric Emptying and Modulates Enteric Glial Cells in a Dose-Dependent Manner. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022; 41:157-165. [PMID: 33301378 DOI: 10.1080/07315724.2020.1852981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The role of food and nutrients in the regulation of enteric glial cell functions is unclear. Some foods influence enteric neurophysiology and can affect glial cell functions that include regulation of the intestinal barrier, gastric emptying, and colonic transit. Brazil nuts are the most abundant natural source of selenium, unsaturated fatty acids, fibers, and polyphenols. OBJECTIVE The study investigated the effects of a Brazil nut-enriched diet on enteric glial cells and gastrointestinal transit. METHODS Two-month-old male Wistar rats were randomized to a standard diet (control group, CG), standard diet containing 5% (wt/wt) Brazil nut (BN5), and standard diet containing 10% (wt/wt) Brazil nut (BN10) (n = 9 per group). After eight weeks, the animals underwent constipation and gastric emptying tests to assess motility. Evaluations of colonic immunofluorescence staining for glial fibrillary acidic protein (GFAP) and myenteric ganglia area were performed. RESULTS The BN5 group showed increased weight gain while the BN10 group did not (p < 0.0001). The BN10 group showed higher gastric residue amounts compared to the other groups (p = 0.0008). The colon exhibited an increase in GFAP immunoreactivity in the BN5 group compared to that in the other groups (p = 0.0016), and the BN10 group presented minor immunoreactivity compared to the CG (p = 0.04). The BN10 group presented a minor ganglia area compared to the CG (p = 0.0155). CONCLUSION The Brazil nut-enriched diet modified the gastric residual, colonic GFAP immunoreactivity, and myenteric ganglia area after eight weeks in healthy male Wistar rats.
Collapse
Affiliation(s)
| | | | - Nathalia da Silva Costa
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Luisa Valdetaro
- Postgraduate Program in Neurosciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Aline D'Avila Pereira
- Postgraduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ana Lúcia Tavares Gomes
- Postgraduate Program in Neurosciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Postgraduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Postgraduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
6
|
|
7
|
Chiocchetti R, Hitrec T, Giancola F, Sadeghinezhad J, Squarcio F, Galiazzo G, Piscitiello E, De Silva M, Cerri M, Amici R, Luppi M. Phosphorylated Tau protein in the myenteric plexus of the ileum and colon of normothermic rats and during synthetic torpor. Cell Tissue Res 2021; 384:287-299. [PMID: 33511469 PMCID: PMC8141491 DOI: 10.1007/s00441-020-03328-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Tau protein is of primary importance for neuronal homeostasis and when hyperphosphorylated (PP-Tau), it tends to aggregate in neurofibrillary tangles, as is the case with tauopathies, a class of neurodegenerative disorders. Reversible PP-Tau accumulation occurs in the brain of hibernating rodents and it was recently observed in rats (a non-hibernator) during synthetic torpor (ST), a pharmacological-induced torpor-like condition. To date, the expression of PP-Tau in the rat enteric nervous system (ENS) is still unknown. The present study immunohistochemically investigates the PP-Tau expression in the myenteric plexus of the ileum and colon of normothermic rats (CTRL) and during ST, focusing on the two major subclasses of enteric neurons, i.e., cholinergic and nitrergic.Results showed that both groups of rats expressed PP-Tau, with a significantly increased percentage of PP-Tau immunoreactive (IR) neurons in ST vs. CTRL. In all rats, the majority of PP-Tau-IR neurons were cholinergic. In ST rats, the percentage of PP-Tau-IR neurons expressing a nitrergic phenotype increased, although with no significant differences between groups. In addition, the ileum of ST rats showed a significant decrease in the percentage of nitrergic neurons. In conclusion, our findings suggest an adaptive response of ENS to very low core body temperatures, with changes involving PP-tau expression in enteric neurons, especially the ileal nitrergic subpopulation. In addition, the high presence of PP-Tau in cholinergic neurons, specifically, is very interesting and deserves further investigation. Altogether, these data strengthen the hypothesis of a common cellular mechanism triggered by ST, natural hibernation and tauopathies occurring in ENS neurons.
Collapse
Affiliation(s)
- R Chiocchetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - T Hitrec
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - F Giancola
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, and St. Orsola-Malpighi Hospital, Bologna, Italy
| | - J Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - F Squarcio
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - G Galiazzo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - E Piscitiello
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - M De Silva
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - M Cerri
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - R Amici
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - M Luppi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Nitrergic and Substance P Immunoreactive Neurons in the Enteric Nervous System of the Bottlenose Dolphin ( Tursiops truncatus) Intestine. Animals (Basel) 2021; 11:ani11041057. [PMID: 33918065 PMCID: PMC8069003 DOI: 10.3390/ani11041057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The gastrointestinal tract of the bottlenose dolphin (Tursiops truncatus) differs structurally and functionally from that of terrestrial mammals. In particular, the intestine does not show any macroscopic subdivision and lacks a caecum. In addition, the histological aspect of the intestine is relatively constant, without marked differences between the anterior and posterior parts. Although the intestine of these cetaceans presents differences in comparison with terrestrial mammals, little information is currently available on their enteric nervous system. The aim of the present study was to investigate the morphological and quantitative aspects of neurons immunoreactive (IR) for the neuronal nitric oxide synthase (nNOS) and Substance P (SP) in the intestine of bottlenose dolphins (Tursiops truncatus). In these dolphin specimens, a smaller number of nNOS-IR neurons in the submucosal plexus and a larger number of SP-IR neurons in the myenteric plexus were observed compared to other mammals. Interestingly, no co-localization between nNOS- and SP-IR neurons was detected in either of the plexuses, suggesting the existence of two completely distinct functional classes of neurons in the intestine of the bottlenose dolphin. Abstract Compared with other mammals, the digestive system of cetaceans presents some remarkable anatomical and physiological differences. However, the neurochemical features of the enteric nervous system (ENS) in these animals have only been described in part. The present study gives a description of the nitrergic and selected peptidergic systems in the myenteric plexus (MP) and submucosal plexus (SMP) of the intestine of the bottlenose dolphin (Tursiops truncatus). The distribution and morphology of neurons immunoreactive (IR) for the neuronal nitric oxide synthase (nNOS) and Substance P (SP) were immunohistochemically studied in formalin-fixed specimens from the healthy intestine of three animals, and the data were compared with those described in the literature on other mammals (human and non-human). In bottlenose dolphins, the percentages of nitrergic neurons (expressed as median and interquartile range—IQR) were 28% (IQR = 19–29) in the MP and 1% (IQR = 0–2) in the SMP, while the percentages of SP-IR neurons were 31% (IQR = 22–37) in the MP and 41% (IQR = 24–63) in the SMP. Although morphological features of nNOS- and SP-IR neurons were similar to those reported in other mammals, we found some noticeable differences in the percentages of enteric neurons. In fact, we detected a lower proportion of nNOS-IR neurons in the SMP and a higher proportion of SP-IR neurons in the MP compared to other mammals. To the best of the authors’ knowledge, this study represents the first description and quantification of nNOS-IR neurons and the first quantification of SP-IR neurons in the intestine of a cetacean species. As nNOS and SP are important mediators of intestinal functions and the nitrergic population is an important target for many neuroenteropathies, data obtained from a healthy intestine provide a necessary basis to further investigate and understand possible functional differences and motor intestinal dysfunctions/alterations in these special mammals.
Collapse
|
9
|
Protective effects of quercetin-loaded microcapsules on the enteric nervous system of diabetic rats. Auton Neurosci 2021; 230:102759. [DOI: 10.1016/j.autneu.2020.102759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
|
10
|
|
11
|
Gonkowski S, Rytel L. Somatostatin as an Active Substance in the Mammalian Enteric Nervous System. Int J Mol Sci 2019; 20:ijms20184461. [PMID: 31510021 PMCID: PMC6769505 DOI: 10.3390/ijms20184461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022] Open
Abstract
Somatostatin (SOM) is an active substance which most commonly occurs in endocrine cells, as well as in the central and peripheral nervous system. One of the parts of the nervous system where the presence of SOM has been confirmed is the enteric nervous system (ENS), located in the wall of the gastrointestinal (GI) tract. It regulates most of the functions of the stomach and intestine and it is characterized by complex organization and a high degree of independence from the central nervous system. SOM has been described in the ENS of numerous mammal species and its main functions in the GI tract are connected with the inhibition of the intestinal motility and secretory activity. Moreover, SOM participates in sensory and pain stimuli conduction, modulation of the release of other neuronal factors, and regulation of blood flow in the intestinal vessels. This peptide is also involved in the pathological processes in the GI tract and is known as an anti-inflammatory agent. This paper, which focuses primarily on the distribution of SOM in the ENS and extrinsic intestinal innervation in various mammalian species, is a review of studies concerning this issue published from 1973 to the present.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 13, 10-718 Olsztyn, Poland.
| | - Liliana Rytel
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 14, 10-718 Olsztyn, Poland.
| |
Collapse
|